IMR Press / FBL / Volume 5 / Issue 3 / DOI: 10.2741/rasgado

Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.

Article
Plasmalemmal transport of magnesium in excitable cells
Show Less
1 Department of Physiology and Biophysics, FUHS/Chicago Medical School, N. Chicago, IL 60064, USA
2 Department of Physiology, University of Maryland at Baltimore, School of Medicine, Baltimore, MD 21201, USA
Front. Biosci. (Landmark Ed) 2000, 5(3), 866–879; https://doi.org/10.2741/rasgado
Published: 1 September 2000
Abstract

In excitable cells, the concentration of intracellular free Mg2+ ([Mg2+]i) is several hundred times lower than expected if Mg2+ ions were at electrochemical equilibrium. Since Mg2+ is a permeant ion across the plasmalemma, it must be constantly extruded. An ATP-dependent Na/Mg exchanger has been proposed as the sole mechanism responsible for Mg2+ extrusion. However, this hypothesis fails to explain numerous observations including the fact that K+ and Cl- appear to be involved in Mg2+ transport. Until now three main limitations have hampered the studies of plasmalemmal Mg2+ transport: i) 28Mg, the only useful radioactive isotope of Mg2+, has a short half-life and is difficult to obtain; ii) squid giant axons, the ideal preparation to carry out transport studies under "zero-trans" conditions, are only available during the summer months; and iii) the ionic fluxes mediated by the Mg2+ transporter are very small and difficult to measure. The purpose of this manuscript is to review how these limitations have been recently overcame and to propose a novel hypothesis for the plasmalemmal Mg2+ transporter in squid axons and barnacle muscle cells. Overcoming the limitations for studying the plasmalemmal Mg2+ transporter has been possible as a result of the following findings: i) the Mg2+ exchanger can operate in "reverse", thus extracellular Mg2+-dependent ionic fluxes (e.g., Na+ efflux) can be utilized to measure its activity; ii) internally perfused, voltage-clamped barnacle muscle cells which are available all year long can be used in addition to squid axons; and iii) phosphoinositides (e.g., PIP2) produce an 8-fold increase in the ionic fluxes mediated by the Mg2+ exchanger. The hypothesis that we postulate is that, in squid giant axons and barnacle muscle cells, a 2Na+2K+2Cl:1Mg exchanger is responsible for transporting Mg2+ across the plasmalemma and for maintaining [Mg2+]i under steady-state conditions.

Keywords
Magnesium
Calcium
Potassium
Chloride
Muscle
Review
Share
Back to top