IMR Press / FBL / Volume 12 / Issue 6 / DOI: 10.2741/2210

Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.

Article
Megakaryopoiesis: transcriptional insights into megakaryocyte maturation
Show Less
1 Department of Biological Sciences, University of Delaware, Newark, USA
2 Department of Chemistry and Biochemistry, University of Delaware, Newark, USA
3 Department of Chemical Engineering, University of Delaware, Newark, USA
4 Delaware Biotechnology Institute, University of Delaware, Newark, USA
Front. Biosci. (Landmark Ed) 2007, 12(6), 2050–2062; https://doi.org/10.2741/2210
Published: 1 January 2007
Abstract

Platelets are small anucleate cells that travel near the vessel wall during laminar flow. In response to vascular injury, platelets undergo alterations in morphology which allow them to aggregate and cover the injured site. Platelets are produced by megakaryocytes in a process that involves the formation of platelet precursors called proplatelets and subsequent release of these proplatelets into the circulation. By forming a demarcation membrane system within the cytosol, megakaryocytes contain a membrane reservoir which allows for the production of thousands of platelets per mature megakaryocyte. Interestingly, the above process known as megakaryopoiesis is not yet fully understood. However, several groups have contributed evidence to unveil the role of thrombopoietin (TPO), the principal regulator of megakaryopoiesis in vivo. TPO is necessary for megakaryocyte maturation in that TPO deficient mice display greatly reduced megakaryocyte production as well as reduced numbers of mature megakaryocytes. Several transcription factors have also been implicated in megakaryopoiesis including, GATA-1, friend of GATA-1 (FOG-1), nuclear factor-erythroid 2 (NF-E2), and Fli-1. In fact, interactions among some of the transcription factors have been reported to produce synergistic effects. GATA-1 and Fli-1 interactions result in heightened GPIX and GPIb (2 components of von Willebrand Factor (vWF) receptor) expression, while GATA-1, RUNX1 and core-binding factor β interactions result in improved αIIb promoter activity. Mutations in the vWF complex and αΙΙββ3 have been linked to disorders such as Bernard-Soulier syndrome and Glazmann thrombasthenia respectively. Therefore, a more comprehensive understanding of the transcriptional control of megakaryopoiesis may lead to more effective treatments of platelet-related disorders.

Share
Back to top