IMR Press / FBL / Volume 10 / Issue 1 / DOI: 10.2741/1577

Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.

Article

Reactive oxygen species (ROS) induce chemical and structural changes on human insulin in vitro, including alterations in its immunoreactivity

Show Less
1 Laboratorio de Bioquimica, Direccion de Investigacion y Enseñanza del Hospital Juarez de Mexico, DF Mexico
2 Laboratorio Multidisciplinario de Investigacion, Seccion de Graduados, Escuela Superior de Medicina del Instituto Politecnico Nacional, D.F. Mexico
3 Unidad de Investigacion Medica en Bioquimica del Hospital de Especialidades del Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, D.F. Mexico
4 Laboratorio de Bioquimica Inorganica, Unidad de Investigación Instituto Nacional de Enfermedades Respiratorias, Subdireccion de Investigacion Biomedica. D.F. Mexico
Front. Biosci. (Landmark Ed) 2005, 10(1), 838–843; https://doi.org/10.2741/1577
Published: 1 January 2005
Abstract

Oxidative stress occurs when the production of reactive oxygen species (ROS) exceeds the endogenous antioxidant defense. Peroxidations induced by ROS are the key of chemical and structural modifications of biomolecules including circulating proteins. To elucidate the effect of ROS on circulating proteins and considering the presence of oxidative stress in Diabetes Mellitus, the effects of ROS, in vitro, on human insulin were studied. We utilized the Fenton reaction for free hydroxyl radical (HO) generation in presence of human recombinant insulin measuring chemical changes on its molecular structure. The induced changes in insulin were: a) significant increase on absorbance (280 nm) due to phenylalanine hydroxylation (0.023 +/- 0.007 to 0.13 +/- 0.07). b) Peroxidation products formed on amino acids side branches (peroxyl and alcohoxyl group); measured as increased capacity of reduce nitroblue of tetrazolium (NBT) to formazan (0.007 +/- 0.007 to 0.06 +/- 0.02). c) Increased concentration of free carbonyl groups (8.8 +/- 8.7 to 45.6 +/- 20.2 pmoles dinitrophenylhidrazones/nmol insulin) with lost of secondary structure, and d) Modification of epithopes decreasing the insulin antigen-antibody reactivity measured as a decrease in insulin concentration by RIA. In conclusion, the radical hydroxyl in vitro is able to induce molecular modifications on insulin.

Keywords
Free radicals
Reactive oxygen species
carbonyl stress
insulin modification
protein oxidation
Fenton reaction
Share
Back to top