IMR Press / FBL / Volume 8 / Issue 4 / DOI: 10.2741/1028

Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on as a courtesy and upon agreement with Frontiers in Bioscience.

Neural CAMS and their role in the development and organization of myelin sheaths
Show Less
1 Zentrum fuer Molekulare Neurobiologie, Universitaet Hamburg, Martinistr. 52, D-20246 Hamburg, Germany
Front. Biosci. (Landmark Ed) 2003, 8(4), 477–490;
Published: 1 January 2003

Myelination of axons is a prerequisite for the rapid propagation of nerve impulses, and thus for the proper functioning of the nervous system. Phenotypic analysis of genetically engineered mice has provided evidence that cell adhesion molecules are critically involved in the interaction of myelin-forming glial cells with axons, the formation of regularly spaced myelin internodes along axons and the organisation of paranodes and the myelin-free gaps separating the internodes, the nodes of Ranvier. This review will focus on three members of the immunoglobulin-superfamily, the myelin-associated glycoprotein (MAG), the neural cell adhesion molecule (NCAM) and the neural adhesion molecule L1 and will discuss studies on transgenic mice that have analyzed the role of these cell adhesion molecules in the initiation of myelination, formation of structurally intact myelin sheaths and/or maintenance of myelin and axon integrity.

Back to top