IMR Press / FBL / Volume 7 / Issue 4 / DOI: 10.2741/isom

Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.

Open Access Article
The role of sodium channels in cell adhesion
Show Less
1 Department of Pharmacology, The University of Michigan, Ann Arbor, MI, USA
Academic Editor:Michael Hortsch
Front. Biosci. (Landmark Ed) 2002, 7(4), 12–23; https://doi.org/10.2741/isom
Published: 1 January 2002
(This article belongs to the Special Issue Neural cell adhesion molecules)
Abstract

Voltage-gated sodium channels are unique in that they combine action potential conduction with cell adhesion. Mammalian sodium channels are heterotrimers, composed of a central, pore-forming alpha subunit and two auxiliary beta subunits. The alpha subunits are members of a large gene family containing the voltage-gated sodium, potassium, and calcium channels. Sodium channel α subunits form a gene subfamily with at least eleven members. Mutations in sodium channel α subunit genes have been linked to paroxysmal disorders such as epilepsy, long QT syndrome (LQT), and hyperkalemic periodic paralysis in humans, and motor endplate disease and cerebellar ataxia in mice. Three genes encode the sodium channel β subunits with at least one alternative splice product. Unlike the pore-forming β subunits, the sodium channel β subunits are not structurally related to β subunits of calcium and potassium channels. Sodium channel beta subunits are multifunctional. They modulate channel gating and regulate the level of channel expression at the plasma membrane. We have shown that β subunits also function as cell adhesion molecules (CAMs) in terms of interaction with extracellular matrix molecules, regulation of cell migration, cellular aggregation, and interaction with the cytoskeleton. A mutation in SCN1B has been shown to cause GEFS+1 epilepsy in human families. We propose that the sodium channel signaling complex at nodes of Ranvier involves β subunits as channel modulators as well as CAMs, other CAMs such as neurofascin and contactin, RPTPβ, and extracellular matrix molecules such as tenascin. Finally, we explore other subunits of voltage-gated ion channels as potential CAM candidates.

Keywords
Sodium Channel
Cell Adhesion Molecule
Ankyrin
Tenascin
Epilepsy
Review
Share
Back to top