Information
References
Contents
Download
[1]E. Syková, C. Nicholson: Diffusion in brain extracellular space. Physiol Rev 88, 1277-1340 (2008)
[2]S. Miyata, H. Kitagawa: Mechanisms for modulation of neural plasticity and axon regeneration by chondroitin sulphate. J Biochem 157, 13-22 (2015)
[3]H. Kitagawa: Using sugar remodeling to study chondroitin sulfate function. Biol Pharm Bull 37, 1705-1712 (2014)
[4]T. Pizzorusso, P. Medini, N. Berardi, S. Chierzi, J.W. Fawcett, L. Maffei: Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298, 1248-1251 (2002)
[5]E.J. Bradbury, L.D. Moon, R.J. Popat, V.R. King, G.S. Bennett, P.N. Patel, J.W. Fawcett, S.B. McMahon: Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636-640 (2002)
[6]S. Soleman, M.A. Filippov, A. Dityatev, J.W. Fawcett: Targeting the neural extracellular matrix in neurological disorders. Neuroscience 253, 194-213 (2013)
[7]M.R. Celio, R. Spreafico, S. De Biasi, L. Vitellaro-Zuccarello: Perineuronal nets: past and present. Trends Neurosci 21, 510–515 (1998)
[8]S. Miyata, Y. Komatsu, Y. Yoshimura, C. Taya, H. Kitagawa: Persistent cortical plasticity by upregulation of chondroitin 6-sulfation. Nat Neurosci 15, 414-422 (2012)
[9]M. Beurdeley, J. Spatazza, H.H. Lee, S. Sugiyama, C. Bernard, A.A. Di Nardo, T.K. Hensch, A. Prochiantz: Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex. J Neurosci 32, 9429-9437 (2012)
[10]D.A. Lewis, A.A. Curley, J.R. Glausier, D.W. Volk: Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci 35, 57-67 (2012)
[11]L. Verret, E.O. Mann, G.B. Hang, A.M. Barth, I. Cobos, K. Ho, N. Devidze, E. Masliah, A.C. Kreitzer, I. Mody, L. Mucke, J.J. Palop: Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149, 708-21 (2012)
[12]K. Morimoto, M. Fahnestock, R.J. Racine: Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 73, 1-60 (2004)
[13]T. Mikami, H. Kitagawa: Biosynthesis and function of chondroitin sulfate. Biochim Biophys Acta 1830, 4719-4733 (2013)
[14]K. Sugahara, T. Mikami, T. Uyama, S. Mizuguchi, K. Nomura, H. Kitagawa: Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr Opin Struct Biol 13, 612-620 (2003)
[15]F. Wegner, W. Härtig, A. Bringmann, J. Grosche, K. Wohlfarth, W. Zuschratter, G. Brückner: Diffuse perineuronal nets and modified pyramidal cells immunoreactive for glutamate and the GABA(A) receptor alpha1 subunit form a unique entity in rat cerebral cortex. Exp Neurol 184, 705-714 (2003)
[16]A. Alpár, U. Gärtner, W. Härtig, G. Brückner: Distribution of pyramidal cells associated with perineuronal nets in the neocortex of rat. Brain Res 1120, 13-22 (2006)
[17]D. Carulli, K.E. Rhodes, D.J. Brown, T.P. Bonnert, S.J. Pollack, K. Oliver, P. Strata, J.W. Fawcett: Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. J Comp Neurol 494, 559-577 (2006)
[18]D.R. Zimmermann, M.T. Dours-Zimmermann: Extracellular matrix of the central nervous system: from neglect to challenge. Histochem Cell Biol 130, 635-653 (2008)
[19]K.A. Giamanco, M. Morawski, R.T. Matthews: Perineuronal net formation and structure in aggrecan knockout mice. Neuroscience 170, 1314-1327 (2010)
[20]D. Carulli, T. Pizzorusso, J.C. Kwok, E. Putignano, A. Poli, S. Forostyak, M.R. Andrews, S.S. Deepa, T.T. Glant, J.W. Fawcett: Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain 133, 2331-2347 (2010)
[21]Y. Bekku, M. Saito, M. Moser, M. Fuchigami, A. Maehara, M. Nakayama, S. Kusachi, Y. Ninomiya, T. Oohashi: Bral2 is indispensable for the proper localization of brevican and the structural integrity of the perineuronal net in the brainstem and cerebellum. J Comp Neurol 520, 1721-1736 (2012)
[22]M. Morawski, A. Dityatev, M. Hartlage-Rübsamen, M. Blosa, M. Holzer, K. Flach, S. Pavlica, G. Dityateva, J. Grosche, G. Brückner, M. Schachner: Tenascin-R promotes assembly of the extracellular matrix of perineuronal nets via clustering of aggrecan. Philos Trans R Soc Lond B Biol Sci 369 20140046 (2014)
[23]H. Kitagawa, K. Tsutsumi, Y. Tone. K. Sugahara: Developmental regulation of the sulfation profile of chondroitin sulfate chains in the chicken embryo brain. J Biol Chem 272, 31377-31381 (1997)
[24]T.K. Hensch: Critical period plasticity in local cortical circuits. Nature Rev Neurosci 6, 877-888 (2005)
[25]H. Morishita, T.K. Hensch: Critical period revisited: impact on vision. Curr Opin Neurobiol 18, 101-107 (2008)
[26]Z.J. Huang, A. Kirkwood, T. Pizzorusso, V. Porciatti, B. Morales, M.F. Bear, L. Maffei, S. Tonegawa: BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98, 739-755 (1999)
[27]T.K. Hensch, M. Fagiolini, N. Mataga, M.P. Stryker, S. Baekkeskov, S.F. Kash: Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282, 1504-1508 (1998)
[28]H. Morishita, J.M. Miwa, N. Heintz, T.K. Hensch: Lynx1, a cholinergic brake, limits plasticity in adult visual cortex. Science 330, 1238-1240 (2010)
[29]A. Harauzov, M. Spolidoro, G. DiCristo, R. De Pasquale, L. Cancedda, T. Pizzorusso, A. Viegi, N. Berardi, L. Maffei: Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. J Neurosci 30, 361-371 (2010)
[30]A. Kepecs, G. Fishell: Interneuron cell types are fit to function. Nature 505, 318-326 (2014)
[31]S. Sugiyama, A.A. Di Nardo, S. Aizawa, I. Matsuo, M. Volovitch, A. Prochiantz, T.K. Hensch: Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity. Cell 134, 508-520 (2008)
[32]D. Bavelier, D.M. Levi, R.W. Li, Y. Dan, T.K. Hensch: Removing brakes on adult brain plasticity: from molecular to behavioral interventions. J Neurosci 30, 14964-14971 (2010)
[33]K. Fox, B, Caterson: Freeing the bain from the perineuronal net. Science 298, 1187-1189 (2002)
[34]J. Spatazza, H.H. Lee, A.A. Di Nardo, L. Tibaldi, A. Joliot, T.K. Hensch, A. Prochiantz: Choroid-plexus-derived Otx2 homeoprotein constrains adult cortical plasticity. Cell Rep 3, 1815-1823 (2013)
[35]G. Despras, C. Bernard, A. Perrot, L. Cattiaux, A. Prochiantz, H. Lortat-Jacob, J.M. Mallet: Toward libraries of biotinylated chondroitin sulfate analogues: from synthesis to in vivo studies. Chemistry 19, 531-540 (2013)
[36]M.C. Chang, J.M. Park, K.A. Pelkey, H.L. Grabenstatter, D. Xu, D.J. Linden, T.P. Sutula, C.J. McBain, P.F. Worley: Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons. Nat Neurosci 13, 1090–1097 (2010)
[37]Y. Gu, S. Huang, M.C. Chang, P. Worley, A. Kirkwood, E.M. Quinlan: Obligatory role for the immediate early gene NARP in critical period plasticity. Neuron 79, 335-346 (2013)
[38]T. Vo, D. Carulli, E.M. Ehlert, J.C. Kwok, G. Dick, V. Mecollari, E.B. Moloney, G. Neufeld, F. de Winter, J.W. Fawcett, J. Verhaagen: The chemorepulsive axon guidance protein semaphorin3A is a constituent of perineuronal nets in the adult rodent brain. Mol Cell Neurosci 56, 186-200 (2013)
[39]G. Dick, C.L. Tan, J.N. Alves, E.M. Ehlert, G.M. Miller, L.C. Hsieh-Wilson, K. Sugahara, A. Oosterhof, T.H. van Kuppevelt, J. Verhaagen, J.W. Fawcett, J.C. Kwok: Semaphorin 3A binds to the perineuronal nets via chondroitin sulfate type E motifs in rodent brains. J Biol Chem 288, 27384-27395 (2013)
[40]D.A. Lewis, T. Hashimoto, D.W. Volk: Cortical inhibitory neurons and schizophrenia Nat Rev Neurosci 6, 312-24 (2005)
[41]S. Berretta, H. Pantazopoulos, M. Markota, C. Brown, E.T. Batzianouli: Losing the sugar coating: Potential impact of perineuronal net abnormalities on interneurons in schizophrenia. Schizophr Res 167, 18-27 (2015)
[42]S.A. Mauney, K.M. Athanas, H. Pantazopoulos, N. Shaskan, E. Passeri, S. Berretta, T.U. Woo: Developmental pattern of perineuronal nets in the human prefrontal cortex and their deficit in schizophrenia. Biol Psychiatry 74, 427-435 (2013)
[43]S. Mah, M.R. Nelson, L.E. Delisi, R.H. Reneland, N. Markward, M.R. James, D.R. Nyholt, N. Hayward, H. Handoko, B. Mowry, S. Kammerer, A. Braun: Identification of the semaphorin receptor PLXNA2 as a candidate for susceptibility to schizophrenia. Mol Psychiatry 11, 471-478 (2006)
[44]M. Takeshita, K. Yamada, E. Hattori, Y. Iwayama, T. Toyota, Y. Iwata, K.J. Tsuchiya, G. Sugihara, K. Hashimoto, H. Watanabe, M. Iyo, M. Kikuchi, Y. Okazaki, T. Yoshikawa: Genetic examination of the PLXNA2 gene in Japanese and Chinese people with schizophrenia. Schizophr Res 99, 359-364 (2008)
[45]S. Kimoto, M.M. Zaki, H.H. Bazmi, D.A. Lewis: Altered Markers of Cortical γ-Aminobutyric Acid Neuronal Activity in Schizophrenia: Role of the NARP Gene. JAMA Psychiatry 72, 747-756 (2015)
[46]H. Pantazopoulos, T.U. Woo, M.P. Lim, N. Lange, S. Berretta: Extracellular matrix-glial abnormalities in the amygdala and entorhinal cortex of subjects diagnosed with schizophrenia. Arch Gen Psychiatry 67, 155-166 (2010)
[47]N. Hayashi, K. Tatsumi, H. Okuda, M. Yoshikaw, S. Ishizaka, S. Miyata, T. Manabe, A. Wanaka: DACS, novel matrix structure composed of chondroitin sulfate proteoglycan in the brain. Biochem Biophys Res Commun 364, 410-415 (2007)
[48]N. Horii-Hayashi, K. Tatsumi, Y. Matsusue, H. Okuda, A. Okuda, M. Hayashi, H. Yan, A. Tsuboi, M. Nishi, M. Yoshikawa, A. Wanaka A: Chondroitin sulfate demarcates astrocytic territories in the mammalian cerebral cortex. Neurosci Lett 483, 67-72 (2010)
[49]H. Pantazopoulos, M. Markota, F. Jaquet, D. Ghosh, A. Wallin, A. Santos, B. Caterson, S. Berretta: Aggrecan and chondroitin-6-sulfate abnormalities in schizophrenia and bipolar disorder: a postmortem study on the amygdala. Transl Psychiatry 5, e496 (2015)
[50]S. Nadanaka, H. Kinouchi, K. Taniguchi-Morita, J. Tamura, H. Kitagawa: Down-regulation of chondroitin 4-O-sulfotransferase-1 by Wnt signaling triggers diffusion of Wnt-3a. J Biol Chem 286, 4199-4208 (2011)
[51]M. Klüppel: The roles of chondroitin-4-sulfotransferase-1 in development and disease. Prog Mol Biol Transl Sci 93, 113-132 (2010)
[52]H. Wang, Y. Katagiri, T.E. McCann, E. Unsworth, P. Goldsmith, Z.X. Yu, F. Tan, L. Santiago, E.M. Mills, Y. Wang, A.J. Symes, H.M. Geller: Chondroitin-4-sulfation negatively regulates axonal guidance and growth. J Cell Sci 121, 3083-3091 (2008)
[53]R. Krencik, K.C. Hokanson, A.R. Narayan, J. Dvornik, G.E. Rooney, K.A. Rauen, L.A. Weiss, D.H. Rowitch, E.M. Ullian: Dysregulation of astrocyte extracellular signaling in Costello syndrome. Sci Transl Med 7, 286ra66 (2015)
[54]M. Klüppel, P. Samavarchi-Tehrani, K. Liu, J.L. Wrana, A. Hinek: C4ST-1/CHST11-controlled chondroitin sulfation interferes with oncogenic HRAS signaling in Costello syndrome. Eur J Hum Genet 20, 870-877 (2012)
[55]A. Hinek, M.A. Teitell, L. Schoyer, W. Allen, K.W. Gripp, R. Hamilton, R. Weksberg, M. Klüppel, A.E. Lin: Myocardial storage of chondroitin sulfate-containing moieties in Costello syndrome patients with severe hypertrophic cardiomyopathy. Am J Med Genet A 133A, 1-12 (2005)
[56]A. Suttkus, M. Morawski, T. Arendt: Protective Properties of Neural Extracellular Matrix. Mol Neurobiol 53, 73-82 (2016)
[57]D. Praticò: Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol Sci 29, 609-615 (2008)
[58]G. Brückner, D. Hausen, W. Härtig, M. Drlicek, T. Arendt, K. Brauer: Cortical areas abundant in extracellular matrix chondroitin sulphate proteoglycans are less affected by cytoskeletal changes in Alzheimer’s disease. Neuroscience 92, 791-805 (1999)
[59]M. Morawski, M.K. Bruckner, P. Riederer, G. Bruckner, T. Arendt: Perineuronal nets potentially protect against oxidative stress. Exp Neurol 188, 309-315 (2004)
[60]A. Suttkus, S. Rohn, S. Weigel, P. Glöckner, T. Arendt, M. Morawski: Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress. Cell Death Dis 5, e1119 (2014)
[61]K.Q. Do, M. Cuenod, T.K. Hensch: Targeting Oxidative Stress and Aberrant Critical Period Plasticity in the Developmental Trajectory to Schizophrenia. Schizophr Bull 41, 835-846 (2015)
[62]L. Verret, E.O. Mann, G.B. Hang, A.M. Barth, I. Cobos, K. Ho, N. Devidze, E. Masliah, A.C. Kreitzer, I. Mody, L. Mucke, J.J. Palop: Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149, 708-721 (2012)
[63]J.H. Cabungcal, P. Steullet, H. Morishita, R. Kraftsik, M. Cuenod, T.K. Hensch, K.Q. Do: Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proc Natl Acad Sci U S A 110, 9130-9135 (2013)
[64]H. Morishita, J.H. Cabungcal, Y. Chen, K.Q. Do, T.K. Hensch: Prolonged Period of Cortical Plasticity upon Redox Dysregulation in Fast-Spiking Interneurons. Biol Psychiatry 78, 396-402 (2015)
[65]E.K. Rankin-Gee, P.A. McRae, E. Baranov, S. Rogers, L. Wandrey, B.E. Porter: Perineuronal net degradation in epilepsy. Epilepsia 56, 1124-1133 (2015)
[66]P.A. McRae, E. Baranov, S.L. Rogers, B.E. Porter: Persistent decrease in multiple components of the perineuronal net following status epilepticus. Eur J Neurosci 36, 3471-3482 (2012)
[67]M. Okamoto, J. Sakiyama, S. Mori, S. Kurazono, S. Usui, M. Hasegawa, A. Oohira A: Kainic acid-induced convulsions cause prolonged changes in the chondroitin sulfate proteoglycans neurocan and phosphacan in the limbic structures. Exp Neurol 184, 179-195 (2003)
[68]N. Yutsudo, H. Kitagawa: Involvement of chondroitin 6-sulfation in temporal lobe epilepsy. Exp Neurol 274, 126-133 (2015)
[69]E. Pollock, M. Everest, A. Brown, M.O. Poulter: Metalloproteinase inhibition prevents inhibitory synapse reorganization and seizure genesis. Neurobiol Dis 70, 21-31 (2014)
[70]S. Miyata, H. Kitagawa: Chondroitin 6-Sulfation Regulates Perineuronal Net Formation by Controlling the Stability of Aggrecan. Neural Plast 2016, Article ID 1305801, 13 pages (2016).
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Chondroitin sulfate and neuronal disorders
1 Institute for Advanced Research, Nagoya University, Furo-cho, Nagoya 464-8601, Japan
2 Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Nagoya 464-8601, Japan
3 Department of Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Kobe 658-8558, Japan
Abstract
The brain extracellular matrix (ECM) is involved in several aspects of neuronal development, plasticity, and pathophysiology. Chondroitin sulfate proteoglycans (CSPGs), consisting of core proteins with covalently attached chondroitin sulfate (CS) chains, are essential components of the brain ECM. During late postnatal development, CSPGs condense around parvalbumin-expressing inhibitory neurons (PV-cells) and form lattice-like ECM structures called perineuronal nets (PNNs). Enzymatic or genetic manipulation of PNNs reactivates neuronal plasticity in the adult brain, probably by resetting the excitatory/inhibitory balance in neural networks. Recent studies have indicated that PNNs control PV-cell function by enhancing the accumulation of specific proteins at the cell surface and/or acting as neuroprotective shields against oxidative stress. Since dysfunction of PV-cells and remodeling of CSPGs are commonly observed in several disorders, including schizophrenia, Costello syndrome, Alzheimer’s disease, and epilepsy, modulation of PV-cell function by CSPGs may provide a novel strategy for these neuronal disorders. Here we review the potential roles of CSPGs as therapeutic targets for neuronal disorders, with particular focus on structural changes of CS chains under pathological conditions.
Keywords
- Chondroitin Sulfate
- Proteoglycan
- Perineuronal Nets
- Parvalbumin-Expressing Inhibitory Neuron
- Schizophrenia
- Costello Syndrome
- Alzheimer’s Disease
- Epilepsy
- Oxidative Stress
- Neuroprotection
- Ocular Dominance Plasticity
- Critical Period
- Otx2
- Semaphorin3A
- Neuronal Activity-Regulated Pentraxin
- Review
References
- [1] E. Syková, C. Nicholson: Diffusion in brain extracellular space. Physiol Rev 88, 1277-1340 (2008)
- [2] S. Miyata, H. Kitagawa: Mechanisms for modulation of neural plasticity and axon regeneration by chondroitin sulphate. J Biochem 157, 13-22 (2015)
- [3] H. Kitagawa: Using sugar remodeling to study chondroitin sulfate function. Biol Pharm Bull 37, 1705-1712 (2014)
- [4] T. Pizzorusso, P. Medini, N. Berardi, S. Chierzi, J.W. Fawcett, L. Maffei: Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298, 1248-1251 (2002)
- [5] E.J. Bradbury, L.D. Moon, R.J. Popat, V.R. King, G.S. Bennett, P.N. Patel, J.W. Fawcett, S.B. McMahon: Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636-640 (2002)
- [6] S. Soleman, M.A. Filippov, A. Dityatev, J.W. Fawcett: Targeting the neural extracellular matrix in neurological disorders. Neuroscience 253, 194-213 (2013)
- [7] M.R. Celio, R. Spreafico, S. De Biasi, L. Vitellaro-Zuccarello: Perineuronal nets: past and present. Trends Neurosci 21, 510–515 (1998)
- [8] S. Miyata, Y. Komatsu, Y. Yoshimura, C. Taya, H. Kitagawa: Persistent cortical plasticity by upregulation of chondroitin 6-sulfation. Nat Neurosci 15, 414-422 (2012)
- [9] M. Beurdeley, J. Spatazza, H.H. Lee, S. Sugiyama, C. Bernard, A.A. Di Nardo, T.K. Hensch, A. Prochiantz: Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex. J Neurosci 32, 9429-9437 (2012)
- [10] D.A. Lewis, A.A. Curley, J.R. Glausier, D.W. Volk: Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci 35, 57-67 (2012)
- [11] L. Verret, E.O. Mann, G.B. Hang, A.M. Barth, I. Cobos, K. Ho, N. Devidze, E. Masliah, A.C. Kreitzer, I. Mody, L. Mucke, J.J. Palop: Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149, 708-21 (2012)
- [12] K. Morimoto, M. Fahnestock, R.J. Racine: Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 73, 1-60 (2004)
- [13] T. Mikami, H. Kitagawa: Biosynthesis and function of chondroitin sulfate. Biochim Biophys Acta 1830, 4719-4733 (2013)
- [14] K. Sugahara, T. Mikami, T. Uyama, S. Mizuguchi, K. Nomura, H. Kitagawa: Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr Opin Struct Biol 13, 612-620 (2003)
- [15] F. Wegner, W. Härtig, A. Bringmann, J. Grosche, K. Wohlfarth, W. Zuschratter, G. Brückner: Diffuse perineuronal nets and modified pyramidal cells immunoreactive for glutamate and the GABA(A) receptor alpha1 subunit form a unique entity in rat cerebral cortex. Exp Neurol 184, 705-714 (2003)
- [16] A. Alpár, U. Gärtner, W. Härtig, G. Brückner: Distribution of pyramidal cells associated with perineuronal nets in the neocortex of rat. Brain Res 1120, 13-22 (2006)
- [17] D. Carulli, K.E. Rhodes, D.J. Brown, T.P. Bonnert, S.J. Pollack, K. Oliver, P. Strata, J.W. Fawcett: Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. J Comp Neurol 494, 559-577 (2006)
- [18] D.R. Zimmermann, M.T. Dours-Zimmermann: Extracellular matrix of the central nervous system: from neglect to challenge. Histochem Cell Biol 130, 635-653 (2008)
- [19] K.A. Giamanco, M. Morawski, R.T. Matthews: Perineuronal net formation and structure in aggrecan knockout mice. Neuroscience 170, 1314-1327 (2010)
- [20] D. Carulli, T. Pizzorusso, J.C. Kwok, E. Putignano, A. Poli, S. Forostyak, M.R. Andrews, S.S. Deepa, T.T. Glant, J.W. Fawcett: Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain 133, 2331-2347 (2010)
- [21] Y. Bekku, M. Saito, M. Moser, M. Fuchigami, A. Maehara, M. Nakayama, S. Kusachi, Y. Ninomiya, T. Oohashi: Bral2 is indispensable for the proper localization of brevican and the structural integrity of the perineuronal net in the brainstem and cerebellum. J Comp Neurol 520, 1721-1736 (2012)
- [22] M. Morawski, A. Dityatev, M. Hartlage-Rübsamen, M. Blosa, M. Holzer, K. Flach, S. Pavlica, G. Dityateva, J. Grosche, G. Brückner, M. Schachner: Tenascin-R promotes assembly of the extracellular matrix of perineuronal nets via clustering of aggrecan. Philos Trans R Soc Lond B Biol Sci 369 20140046 (2014)
- [23] H. Kitagawa, K. Tsutsumi, Y. Tone. K. Sugahara: Developmental regulation of the sulfation profile of chondroitin sulfate chains in the chicken embryo brain. J Biol Chem 272, 31377-31381 (1997)
- [24] T.K. Hensch: Critical period plasticity in local cortical circuits. Nature Rev Neurosci 6, 877-888 (2005)
- [25] H. Morishita, T.K. Hensch: Critical period revisited: impact on vision. Curr Opin Neurobiol 18, 101-107 (2008)
- [26] Z.J. Huang, A. Kirkwood, T. Pizzorusso, V. Porciatti, B. Morales, M.F. Bear, L. Maffei, S. Tonegawa: BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98, 739-755 (1999)
- [27] T.K. Hensch, M. Fagiolini, N. Mataga, M.P. Stryker, S. Baekkeskov, S.F. Kash: Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282, 1504-1508 (1998)
- [28] H. Morishita, J.M. Miwa, N. Heintz, T.K. Hensch: Lynx1, a cholinergic brake, limits plasticity in adult visual cortex. Science 330, 1238-1240 (2010)
- [29] A. Harauzov, M. Spolidoro, G. DiCristo, R. De Pasquale, L. Cancedda, T. Pizzorusso, A. Viegi, N. Berardi, L. Maffei: Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. J Neurosci 30, 361-371 (2010)
- [30] A. Kepecs, G. Fishell: Interneuron cell types are fit to function. Nature 505, 318-326 (2014)
- [31] S. Sugiyama, A.A. Di Nardo, S. Aizawa, I. Matsuo, M. Volovitch, A. Prochiantz, T.K. Hensch: Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity. Cell 134, 508-520 (2008)
- [32] D. Bavelier, D.M. Levi, R.W. Li, Y. Dan, T.K. Hensch: Removing brakes on adult brain plasticity: from molecular to behavioral interventions. J Neurosci 30, 14964-14971 (2010)
- [33] K. Fox, B, Caterson: Freeing the bain from the perineuronal net. Science 298, 1187-1189 (2002)
- [34] J. Spatazza, H.H. Lee, A.A. Di Nardo, L. Tibaldi, A. Joliot, T.K. Hensch, A. Prochiantz: Choroid-plexus-derived Otx2 homeoprotein constrains adult cortical plasticity. Cell Rep 3, 1815-1823 (2013)
- [35] G. Despras, C. Bernard, A. Perrot, L. Cattiaux, A. Prochiantz, H. Lortat-Jacob, J.M. Mallet: Toward libraries of biotinylated chondroitin sulfate analogues: from synthesis to in vivo studies. Chemistry 19, 531-540 (2013)
- [36] M.C. Chang, J.M. Park, K.A. Pelkey, H.L. Grabenstatter, D. Xu, D.J. Linden, T.P. Sutula, C.J. McBain, P.F. Worley: Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons. Nat Neurosci 13, 1090–1097 (2010)
- [37] Y. Gu, S. Huang, M.C. Chang, P. Worley, A. Kirkwood, E.M. Quinlan: Obligatory role for the immediate early gene NARP in critical period plasticity. Neuron 79, 335-346 (2013)
- [38] T. Vo, D. Carulli, E.M. Ehlert, J.C. Kwok, G. Dick, V. Mecollari, E.B. Moloney, G. Neufeld, F. de Winter, J.W. Fawcett, J. Verhaagen: The chemorepulsive axon guidance protein semaphorin3A is a constituent of perineuronal nets in the adult rodent brain. Mol Cell Neurosci 56, 186-200 (2013)
- [39] G. Dick, C.L. Tan, J.N. Alves, E.M. Ehlert, G.M. Miller, L.C. Hsieh-Wilson, K. Sugahara, A. Oosterhof, T.H. van Kuppevelt, J. Verhaagen, J.W. Fawcett, J.C. Kwok: Semaphorin 3A binds to the perineuronal nets via chondroitin sulfate type E motifs in rodent brains. J Biol Chem 288, 27384-27395 (2013)
- [40] D.A. Lewis, T. Hashimoto, D.W. Volk: Cortical inhibitory neurons and schizophrenia Nat Rev Neurosci 6, 312-24 (2005)
- [41] S. Berretta, H. Pantazopoulos, M. Markota, C. Brown, E.T. Batzianouli: Losing the sugar coating: Potential impact of perineuronal net abnormalities on interneurons in schizophrenia. Schizophr Res 167, 18-27 (2015)
- [42] S.A. Mauney, K.M. Athanas, H. Pantazopoulos, N. Shaskan, E. Passeri, S. Berretta, T.U. Woo: Developmental pattern of perineuronal nets in the human prefrontal cortex and their deficit in schizophrenia. Biol Psychiatry 74, 427-435 (2013)
- [43] S. Mah, M.R. Nelson, L.E. Delisi, R.H. Reneland, N. Markward, M.R. James, D.R. Nyholt, N. Hayward, H. Handoko, B. Mowry, S. Kammerer, A. Braun: Identification of the semaphorin receptor PLXNA2 as a candidate for susceptibility to schizophrenia. Mol Psychiatry 11, 471-478 (2006)
- [44] M. Takeshita, K. Yamada, E. Hattori, Y. Iwayama, T. Toyota, Y. Iwata, K.J. Tsuchiya, G. Sugihara, K. Hashimoto, H. Watanabe, M. Iyo, M. Kikuchi, Y. Okazaki, T. Yoshikawa: Genetic examination of the PLXNA2 gene in Japanese and Chinese people with schizophrenia. Schizophr Res 99, 359-364 (2008)
- [45] S. Kimoto, M.M. Zaki, H.H. Bazmi, D.A. Lewis: Altered Markers of Cortical γ-Aminobutyric Acid Neuronal Activity in Schizophrenia: Role of the NARP Gene. JAMA Psychiatry 72, 747-756 (2015)
- [46] H. Pantazopoulos, T.U. Woo, M.P. Lim, N. Lange, S. Berretta: Extracellular matrix-glial abnormalities in the amygdala and entorhinal cortex of subjects diagnosed with schizophrenia. Arch Gen Psychiatry 67, 155-166 (2010)
- [47] N. Hayashi, K. Tatsumi, H. Okuda, M. Yoshikaw, S. Ishizaka, S. Miyata, T. Manabe, A. Wanaka: DACS, novel matrix structure composed of chondroitin sulfate proteoglycan in the brain. Biochem Biophys Res Commun 364, 410-415 (2007)
- [48] N. Horii-Hayashi, K. Tatsumi, Y. Matsusue, H. Okuda, A. Okuda, M. Hayashi, H. Yan, A. Tsuboi, M. Nishi, M. Yoshikawa, A. Wanaka A: Chondroitin sulfate demarcates astrocytic territories in the mammalian cerebral cortex. Neurosci Lett 483, 67-72 (2010)
- [49] H. Pantazopoulos, M. Markota, F. Jaquet, D. Ghosh, A. Wallin, A. Santos, B. Caterson, S. Berretta: Aggrecan and chondroitin-6-sulfate abnormalities in schizophrenia and bipolar disorder: a postmortem study on the amygdala. Transl Psychiatry 5, e496 (2015)
- [50] S. Nadanaka, H. Kinouchi, K. Taniguchi-Morita, J. Tamura, H. Kitagawa: Down-regulation of chondroitin 4-O-sulfotransferase-1 by Wnt signaling triggers diffusion of Wnt-3a. J Biol Chem 286, 4199-4208 (2011)
- [51] M. Klüppel: The roles of chondroitin-4-sulfotransferase-1 in development and disease. Prog Mol Biol Transl Sci 93, 113-132 (2010)
- [52] H. Wang, Y. Katagiri, T.E. McCann, E. Unsworth, P. Goldsmith, Z.X. Yu, F. Tan, L. Santiago, E.M. Mills, Y. Wang, A.J. Symes, H.M. Geller: Chondroitin-4-sulfation negatively regulates axonal guidance and growth. J Cell Sci 121, 3083-3091 (2008)
- [53] R. Krencik, K.C. Hokanson, A.R. Narayan, J. Dvornik, G.E. Rooney, K.A. Rauen, L.A. Weiss, D.H. Rowitch, E.M. Ullian: Dysregulation of astrocyte extracellular signaling in Costello syndrome. Sci Transl Med 7, 286ra66 (2015)
- [54] M. Klüppel, P. Samavarchi-Tehrani, K. Liu, J.L. Wrana, A. Hinek: C4ST-1/CHST11-controlled chondroitin sulfation interferes with oncogenic HRAS signaling in Costello syndrome. Eur J Hum Genet 20, 870-877 (2012)
- [55] A. Hinek, M.A. Teitell, L. Schoyer, W. Allen, K.W. Gripp, R. Hamilton, R. Weksberg, M. Klüppel, A.E. Lin: Myocardial storage of chondroitin sulfate-containing moieties in Costello syndrome patients with severe hypertrophic cardiomyopathy. Am J Med Genet A 133A, 1-12 (2005)
- [56] A. Suttkus, M. Morawski, T. Arendt: Protective Properties of Neural Extracellular Matrix. Mol Neurobiol 53, 73-82 (2016)
- [57] D. Praticò: Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol Sci 29, 609-615 (2008)
- [58] G. Brückner, D. Hausen, W. Härtig, M. Drlicek, T. Arendt, K. Brauer: Cortical areas abundant in extracellular matrix chondroitin sulphate proteoglycans are less affected by cytoskeletal changes in Alzheimer’s disease. Neuroscience 92, 791-805 (1999)
- [59] M. Morawski, M.K. Bruckner, P. Riederer, G. Bruckner, T. Arendt: Perineuronal nets potentially protect against oxidative stress. Exp Neurol 188, 309-315 (2004)
- [60] A. Suttkus, S. Rohn, S. Weigel, P. Glöckner, T. Arendt, M. Morawski: Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress. Cell Death Dis 5, e1119 (2014)
- [61] K.Q. Do, M. Cuenod, T.K. Hensch: Targeting Oxidative Stress and Aberrant Critical Period Plasticity in the Developmental Trajectory to Schizophrenia. Schizophr Bull 41, 835-846 (2015)
- [62] L. Verret, E.O. Mann, G.B. Hang, A.M. Barth, I. Cobos, K. Ho, N. Devidze, E. Masliah, A.C. Kreitzer, I. Mody, L. Mucke, J.J. Palop: Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149, 708-721 (2012)
- [63] J.H. Cabungcal, P. Steullet, H. Morishita, R. Kraftsik, M. Cuenod, T.K. Hensch, K.Q. Do: Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proc Natl Acad Sci U S A 110, 9130-9135 (2013)
- [64] H. Morishita, J.H. Cabungcal, Y. Chen, K.Q. Do, T.K. Hensch: Prolonged Period of Cortical Plasticity upon Redox Dysregulation in Fast-Spiking Interneurons. Biol Psychiatry 78, 396-402 (2015)
- [65] E.K. Rankin-Gee, P.A. McRae, E. Baranov, S. Rogers, L. Wandrey, B.E. Porter: Perineuronal net degradation in epilepsy. Epilepsia 56, 1124-1133 (2015)
- [66] P.A. McRae, E. Baranov, S.L. Rogers, B.E. Porter: Persistent decrease in multiple components of the perineuronal net following status epilepticus. Eur J Neurosci 36, 3471-3482 (2012)
- [67] M. Okamoto, J. Sakiyama, S. Mori, S. Kurazono, S. Usui, M. Hasegawa, A. Oohira A: Kainic acid-induced convulsions cause prolonged changes in the chondroitin sulfate proteoglycans neurocan and phosphacan in the limbic structures. Exp Neurol 184, 179-195 (2003)
- [68] N. Yutsudo, H. Kitagawa: Involvement of chondroitin 6-sulfation in temporal lobe epilepsy. Exp Neurol 274, 126-133 (2015)
- [69] E. Pollock, M. Everest, A. Brown, M.O. Poulter: Metalloproteinase inhibition prevents inhibitory synapse reorganization and seizure genesis. Neurobiol Dis 70, 21-31 (2014)
- [70] S. Miyata, H. Kitagawa: Chondroitin 6-Sulfation Regulates Perineuronal Net Formation by Controlling the Stability of Aggrecan. Neural Plast 2016, Article ID 1305801, 13 pages (2016).
