IMR Press / FBL / Volume 11 / Issue 1 / DOI: 10.2741/1835

Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.

Open Access Article

Human periodontal ligament cells express osteoblastic phenotypes under intermittent force loading in vitro

Show Less
1 Orthodontics, Peking University School of Stomatology, Beijing, China
2 Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
Front. Biosci. (Landmark Ed) 2006, 11(1), 776–781; https://doi.org/10.2741/1835
Published: 1 January 2006
Abstract

Mechanical strain applied to bone leads to bone remodeling. In the oral cavity, it is unclear how such mechanical force applied to move teeth orthodontically induces alveolar bone remodeling. It is known that osteoclasts are the only cells that are responsible for bone resorption, while the formation and activity of osteoclasts are regulated by osteoblasts. So it is believed that osteoblasts play an important role not only in bone formation but in bone remodeling as well. Therefore, the purpose of this study was to examine the effect of mechanical force on human periodontal ligament (PDL) cells and whether they express osteoblastic characters in vitro. Methods: Human PDL cells cultured in vitro were loaded with intermittently stretching force for 24 hours. The expression of alkaline phosphatase (ALP), osteocalcin (OCN) and osteoprotegerin (OPG) were detected at mRNA and protein levels at 0, 2nd, 4th, 6th, 12th, 24th hours after intermittent force loading. Results: Without any stimulation, ALP and OPG mRNA expressions were detected in human PDL cells by in-situ hybridization, but not that of OCN mRNA. ALP mRNA signal was up-regulated and that of OPG was down-regulated by mechanical force within 24 hours. OCN mRNA expression was induced by mechanical force in the late phase of the 24-hours loading cycle. The changes in secreted proteins showed similar results with those seen at the mRNA level. Conclusion: Human PDL cells express osteoblastic phenotypes under intermittent force loading and play a role in alveolar bone remodeling.

Share
Back to top