IMR Press / FBE / Volume 7 / Issue 2 / DOI: 10.2741/E729

Frontiers in Bioscience-Elite (FBE) is published by IMR Press from Volume 13 Issue 2 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.

Open Access Review
Current strategies and challenges in engineering a bioartificial kidney
Show Less
1 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158
2 Division of Nephrology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158
3 Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, TN 37232
4 Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109

*Author to whom correspondence should be addressed.

Academic Editors: Ogo Egbuna, Jean Francis

Front. Biosci. (Elite Ed) 2015, 7(2), 248–262; https://doi.org/10.2741/E729
Published: 1 January 2015
Abstract

Renal replacement therapy was an early pioneer in both extra-corporeal organ replacement and whole organ transplantation. Today, the success of this pioneering work is directly demonstrated in the millions of patients worldwide successfully treated with dialysis and kidney transplantation. However, there remain significant shortcomings to current treatment modalities that limit clinical outcomes and quality of life. To address these problems, researchers have turned to using cell-based therapies for the development of a bioartificial kidney. These approaches aim to recapitulate the numerous functions of the healthy kidney including solute clearance, fluid homeostasis and metabolic and endocrine functions. This review will examine the state-of-the-art in kidney bioengineering by evaluating the various techniques currently being utilized to create a bioartificial kidney. These promising new technologies, however, still need to address key issues that may limit the widespread adoption of cell therapy including cell sourcing, organ scaffolding, and immune response. Additionally, while these new methods have shown success in animal models, it remains to be seen whether these techniques can be successfully adapted for clinical treatment in humans.

Keywords
Kidney bioengineering
Organ development
Cell therapy
Bioartificial
Review
Share
Back to top