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Abstract

Atrial fibrillation (AF) is a prevalent arrhythmia, while pulmonary vein isolation (PVI) has become a cornerstone in its treatment. The
creation of durable lesions is crucial for successful and long-lasting PVI, as inconsistent lesions lead to reconnections and recurrence
after ablation. Various approaches have been developed to assess lesion quality and transmurality in vivo, acting as surrogates for
improved lesion creation and long-term outcomes utilizing radiofrequency (RF) energy. This review manuscript examines the biophysics
of lesion creation and different lesion assessment techniques that can be used daily in the electrophysiology laboratory when utilizing RF
energy. These methods provide valuable insights into lesion effectiveness, facilitating optimized ablation procedures and reducing atrial
arrhythmia recurrences. However, each approach has its limitations, and a combination of techniques is recommended for comprehensive
lesion assessment during AF catheter ablation. Future advancements in imaging techniques, such as magnetic Resonance Imaging (MRI),
optical coherence tomography, and photoacoustic imaging, hold promise in further enhancing lesion evaluation and guiding treatment
strategies.
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1. Introduction
Pulmonary vein isolation (PVI) utilizing thermal ab-

lation has become one of the most effective and widely em-
ployed ablation modalities for the management of atrial fib-
rillation (AF) [1,2]. Thermal ablation lesion creation can be
achieved with either radiofrequency (RF) energy applica-
tion or cryoablation application, each offers unique mecha-
nisms for generating tissue injuries. Application of RF ab-
lation energy results in direct cellular lysis and immediate
necrosis. Cryoablation results in irreversible alterations to
the cytoplasmic components of cells without destroying the
cellular membrane [3].

Restoration and maintenance of sinus rhythm via
catheter ablation have been associated with the remodeling
of the left atrium. Several studies have demonstrated that
following the restoration of the sinus rhythm via catheter
ablation, there is a significant reduction in the left atrial di-
mension as well as the geometry of the pulmonary vein ostia
[4,5].

As the cornerstone of AF ablation, the objective of ra-
diofrequency ablation (RFA) is to create continuous, trans-
mural lesions, utilizing sufficient energy delivery that re-
sults in irreversible electrical isolation and permanent cel-
lular damage, without subjecting surrounding structures to

collateral damage [6–9]. Inconsistent lesions have been as-
sociated with reconnections and AF recurrence after abla-
tion [10,11].

The purpose of this review is to identify the key as-
pects in the biophysics of lesion creation and review the
different available tools to assess transmural and effective
RFA lesions.

2. Biophysics of Radiofrequency Lesion
Creation

Traditionally, RF lesion formation has relied on the
application of moderate power, ranging from 25 to 35
Watts, delivered over a maximum period of 60 seconds,
while maintaining contact forces (CFs) between 10 and 20
g. However, this ablation strategy was associated with
high rates of pulmonary vein reconnections at 3 months
post PVI, although these were thought to be secondary
to catheter instability and tissue edema, which eventually
failed to create a permanent lesion [1,6]. To address these
elevated recurrence rates, while minimizing the risk of ther-
mal injury to surrounding tissues, an ablation strategy em-
ploying the delivery of high wattage (40–50W) over a short
period, commonly referred to as a high power–short du-
ration (HPSD) ablation approach, has been developed and
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has resulted in improved freedom from AF at one year with
no increase in collateral damage to the adjacent structures
(Fig. 1, Fig. 2.1) [12].

Fig. 1. Typical lesion created using high power–short dura-
tion set up at 50 W power, 10 g force, and 5 seconds duration.
This picture illustrates lesion depth, morphology, diameter, and
differentiation in resistive and conductive heating areas.

Lesions created using RF energy rely on a thermal
injury occurring in two consecutive heating phases. The
initial heating phase, known as resistive heating, occurs
immediately on the tissue–catheter interphase, where elec-
tric current is transmitted directly onto the superficial tis-
sue layer. During the subsequent phase, passive conductive
heating propagates through the tissue, resulting in a deeper
lesion formation (Fig. 1) [13]. Both resistive and conduc-
tive phases are time-dependent, with shorter lesion appli-
cations relying on resistive heating and longer applications
relying on conductive heating [6,13].

In addition to the power and duration of RF applica-
tion, there exist other variables that can be manipulated,
which ultimately impact lesion creation, including irriga-
tion and fluid tonicity (Fig. 2.2). Non-irrigated tip ab-
lation catheters rely on convective cooling at the tissue–
catheter interface and result in the creation of larger diam-
eter, hemisphere-shaped lesions closer to the tissue surface
[14]. Non-irrigated ablation catheters reach the set temper-
ature limits more quickly, effectively reducing the amount
of current that can be delivered into the tissue and limiting
the propagation of heat deep into the tissue. Open-irrigated
catheters, which utilize saline to cool the tissue–catheter in-
terphase, allow for longer application durations at a higher
power of delivery at the tissue-catheter interphase, resulting
in a teardrop-shaped lesion with a deeper maximal width,
compared to lesions created by non-irrigated catheters [14–
16]. Additionally, by immediately reducing the temper-
ature at the tissue–catheter interphase, the lesions created
with irrigated catheters reduce the rates of char and throm-
bus formation [17].

The durability of lesion formation is crucial in provid-
ing persistent pulmonary vein isolation. With RF energy
delivery, there is cellular membrane destabilization, edema,
and eventual cellular necrosis; however, many factors make
achieving this goal challenging. Prior studies have shown
that there is a significant amount of tissue edema that re-

sults from the application of RF energy onto tissue and
this edema may contribute to a transient, reversible block
[3]. A potential way to avoid the effects of acute tissue
edema is to optimize certain aspects of lesion formation,
including catheter stability, to achieve the appropriate con-
tact forces and adjustments in power delivery in order to
generate durable lesions.

3. Ablation Lesion Assessments. Are We
Using the Appropriate Tools?

Histopathology is considered the gold standard for
experimentally assessing the effectiveness of lesions de-
livered during ablation [7]. However, obtaining real-time
histopathological information during the procedure is of
course not feasible. Therefore, various tools have been de-
veloped to assess the quality and transmurality of lesions
in vivo, serving as surrogates for better lesion creation and,
consequently, improved mid and long-term outcomes after
catheter ablation (Table 1, Ref. [18–24]) [8].

3.1 Impedance Modification Variables

Early studies demonstrated that impedance is a dy-
namic parameter during catheter ablation. Harvey et al.
(1992) [25] showed that a 10 Ohms impedance decrease
during the ablation of accessory pathways or the atrioven-
tricular (AV) node junction predicted tissue heating through
abrupt conduction interruption. Moreover, sudden incre-
ments in impedance were associated with thrombus forma-
tion at the catheter tip. Animal studies have also revealed
that sudden increases in impedance during ablation are as-
sociated with significant electrode–tissue interphase tem-
peratures, exceeding 100 °C, resulting in tissue denatura-
tion, boiling, creation of steam pops, and clot formation
[26].

Impedance changes during ablation can be attributed
to a progressive increase in tissue temperature, which en-
hances the mobility of ions in the solution, leading to a de-
crease in the resistance to the current flow [27]. A signif-
icant and early decrease in impedance is associated with a
higher risk of tissue damage and steam pop formation. A
sudden impedance drop of more than 15 Ohms during the
first 2 seconds of ablation predicts the subsequent signif-
icant impedance rise. Conversely, lesions not terminating
in a sudden increase exhibited an initial impedance drop of
3.2 Ohms during the first two seconds of catheter energy
delivery (Fig. 2.3) [27].

Prior studies have confirmed that ablation lesions with
impedance drops of less than 10 Ohms during an index PVI
procedure were present in 89% of the areas with conduction
recovery during a re-do intervention. The most common ar-
eas of reconnection were found in the posterior antra [28].
De Bortoli et al. [29] established a correlation between
impedance reduction during ablation and CF, demonstrat-
ing that a CF greater than 5 g produced a better impedance
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Fig. 2. Ten commandments for durable lesion creation and assessment based on available surrogates of tissue transmurality.
* Stop ablation earlier if signs of collateral damage are present: elevation of esophageal temperature, late progressive impedance rise
during ablation, and early steep impedance decrease during ablation. EGM, electrogram.

decrease. However, CFs exceeding 20 g were related to
impedance increments at the end of the ablation and tissue
overheating [29].

Impedance is measured with radiofrequency genera-
tors from the tip of the ablation catheter to an indifferent
electrode placed on the patient’s skin. This measurement
is susceptible to influences from various factors, including
abnormalities in the chest wall, muscles, obesity, and alter-
ations in the patch–patient interface (e.g., sweat, air), which
limit the use of circuit impedance as a reliable measurement
[30].

Advancements have allowed the development of tech-
niques that calculate local tissue impedance usingmini elec-
trodes located in the catheter tip. Clinical studies have con-
cluded that assessing local impedance during ablation can
differentiate local myocardium from the blood pool, pro-
vide information about the catheter orientation, and tissue
thickness, and indicate lesion dimension. Furthermore, ac-
celerated local impedance drops may be associated with a
higher risk of steam pops [30].

The LOCALIZE trial (Local catheter impedance drop
during pulmonary vein isolation), which utilized a new lo-
cal impedance-based catheter, involved performing map-
ping procedures threemonths after the first PVI to assess the
characteristics of durable lesions [31]. The study found that
a local impedance drop was a better predictor of a durable

conduction block compared to a generator impedance. The
optimal delta local impedance changes in the left atrium
(LA)were 16.8Ohms in the anterior/superior areas and 14.2
Ohms in the posterior/inferior, with positive predictive val-
ues for a durable conduction block of 97.7% and 96.9%,
respectively. Baseline local impedance was found to be dif-
ferent in healthy tissues, gaps, and established scars. An op-
timal baseline impedance of 110 Ohms was determined to
achieve greater local impedance drops [31]. Results from
the CHARISMA (Catheter Ablation of Arrhythmias with
a High-Density Mapping System in Real-World Practice)
registry showed that successful ablation lesions had greater
local impedance drops (14± 8Ohms vs. 6± 4) and demon-
strated that the rate of atrial arrhythmia recurrence was 18%
after a mean follow-up of 366 ± 130 days [18].

While impedance drops offer valuable insights, they
have limitations as predictors of transmural lesions. Their
utility can only be used after ablation has started, and
there is no clear impedance drop cutoff and correspond-
ing time that accurately predicts transmurality. As demon-
strated before, most of the data using baseline impedance or
impedance variation comes from paroxysmal AF patients,
meaning these variables have not been widely studied in
patients with persistent AF, LA fibrosis, or prior ablation
procedures, which may limit their use in this subset of pa-
tients. Additionally, generator-based impedance measure-

3

https://www.imrpress.com


ments are affected by other factors, such as indifferent elec-
trode position, hemodynamic conditions, body composi-
tion, and generator connections.

3.2 Changes in Electrogram Morphology during Ablation:
A Parameter for Lesion Transmurality

Assessing the change in electrogram (EGM)morphol-
ogy during ablation has emerged as an alternative parameter
to define lesion transmurality in the treatment of AF [32–
35]. Experimental studies in animals have demonstrated
that achieving an 80% reduction in unipolar EGMs is as-
sociated with the development of transmural, long-lasting
lesions after the initial ablation [36]. However, the EGM
modificationwas smaller and had a higher incidence of non-
transmural lesions in the trabeculated areas of the LA [35].
Alternatively, the elimination of the negative component on
unipolar EGMs was found to be associated with transmu-
ral lesions, independently of the catheter orientation [34].
Modifications to the unipolar electrogram characteristics
have been shown to provide more relevant information. In
bipolar recordings, the signals from the ring electrode tend
to dominate the EGM and lead to a potential rise in bipo-
lar amplitude after ablation owing to a greater signal dif-
ference between both electrodes [32,37]. In bipolar EGMs,
the signs of transmurality included the elimination of a pos-
itive deflection with a non-parallel catheter orientation and
the attenuation of an existent R wave, which was higher
than 75% in areas with QRS morphology EGM patterns,
or the complete elimination of an R’ wave in areas with a
preablation RSR’ morphology [34].

Unipolar signal modification has been used as a guide
to define lesion creation in patients undergoing PVI to treat
AF. RF applications were delivered until the unipolar EGM
had a total abolition of the negative component and turned
completely positive. Compared to empiric 30-second RF
applications, the unipolar EGM approach was associated
with a lower recurrence rate of atrial arrhythmias after 21
± 4 months (88% vs. 70%, respectively) [38].

Clinical studies have demonstrated that the time to
achieve a monophasic R wave unipolar EGM was less than
7 seconds when a power of 30 W in the LA posterior wall
and a CF between 11 g and 16.5 g was used [39]. The re-
sults of the UNIFORCE study (Elimination of the negative
component of the unipolarelectrogram as a local procedural
endpoint during paroxysmalatrial fibrillation catheter abla-
tion using contact-force sensing: the UNIFORCE study)
showed that an ablation approach that targeted the elimina-
tion of the negative component of the unipolar signal during
the application of RF energy in patients with paroxysmal
AF undergoing PVI resulted in a long-lasting effect. Af-
ter a two-year follow-up, 87% of the patients remained free
of arrhythmia without administering antiarrhythmic drugs
(Fig. 2.4) [40].

A prospective multicenter randomized study com-
pared a catheter ablation, guided by a unipolar signal mod-

ification, to CFs, in the unipolar signal group, an ablation
was delivered until a completely positive EGM was devel-
oped. After a 12-month follow-up, there was a significant
difference in the time the patients were free of atrial arrhyth-
mias in both groups, with 85% of patients free in the EGM
group vs. 70% in the CF group [19].

Contradictory results were found in another random-
ized controlled trial comparing the administering of an
EGM-guided approach until the complete abolition of the
negative component in the unipolar signals vs. an LSI-
guided approach (4.5–5.0 in the anterior/superior segments
and 4.0–4.5 in the posterior/inferior segments) [41]. The
LSI values were lower in the EGM-based approach com-
pared with targeted LSI (p < 0.001); however, the rate of
the atrial arrhythmias was comparable in both groups af-
ter 11.31 ± 1.70 months, with 90% in the EGM group and
91.7% in the LSI-based approach [41].

The use of EGM-based approaches for ablation strate-
gies is currently limited to a small sample of clinical studies
since these strategies are susceptible to artifacts, and inter-
preting unipolar signals in patients with atrial fibrillation
can be challenging. Additionally, this approach has only
been documented in patients with paroxysmal AF, thereby
limiting its consideration to patients with persistent AF or
prior ablations, where interpreting unipolar signals may be
more challenging.

3.3 Contact Force and Force–Time Variables in
Radiofrequency Ablation

Catheter–tissue interphase contact is a crucial variable
in defining the success of a radiofrequency lesion creation
[42]. Improved catheter contact enhances the interaction
between the electrode surface and the myocardium, leading
to a decrease in RF loss in the blood pool [42]. A higher
CF correlates with a larger lesion size, thereby making it an
important factor in successful ablations [43,44].

More effective lesions are delivered by CFs within a
range of 10 to 20 g, compared to lower forces of 2 g [4].
In turn, forces exceeding 40 g may proportionally create
larger lesions but also increase the risk of tissue damage and
steam pops [45,46]. ACF between 10 and 22 gwas found to
be associated with the prevention of acute pulmonary vein
reconnection, with a probability of over 95% (Fig. 2.5) [47].

Clinical studies have demonstrated the benefits of CF-
guided ablations. In a study from Germany, the use of a CF
compared to a no-CF ablation resulted in a reduced proce-
dure time (128.4± 29 min vs. 157.7± 30.8 min, p = 0.001)
and a significant reduction in the rate of arrhythmia recur-
rences after 12 months of follow-up (16.1% vs. 36.6%, p
= 0.031) [20]. Similar outcomes were reported by Andrade
et al. [48] in 2014, with a 12% arrhythmia recurrence rate
in patients undergoing pulmonary vein isolation guided by
CFs after 12 months of follow-up, compared to 34% in the
non-CF group.
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Table 1. Comparison of outcomes after radiofrequency catheter ablation for AF using different lesion assessment parameters.
Variable Impedance modifica-

tion [18]
EGM changes [19] Contact force

[20]
FTI [21] LSI [22] Alation index and interle-

sion distance [23]
Electrical excitabil-
ity [24]

Targeted parameter Impedance drops (14±
8 Ohms vs. 6 ± 4)

Ablation is delivered un-
til unipolar EGM becomes
monophasic positive

Average force
26.8 ± 10.7

CFs between 10 to 20 g
and an FTI of 400 gs

LSI of 6.0 in the left pul-
monary veins ridge, 5.5 in the
anterior, and 5.0 in the poste-
rior segments of the PVs

AI of at least 400 in the
posterior wall and 550 in
the anterior wall and inter-
lesion distance <6 mm

Loss of capture
along the line after
PVI

Freedom from atrial
arrhythmias after 1-year
follow-up

82% 85% 84% 85% 86% 94% 83%

Mean follow-up 366 ± 130 days 12 months 12 months 3 months 24 months 12 months 24 months
AI, ablation index; EGM, electrogram; FTI, force-time integral; LSI, lesion size integral; PVI, pulmonary vein isolation; AF, atrial fibrillation; CFs, contact forces; PVs, pulmonary veins.
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3.4 Force–Time Integral (FTI) as a Calculated Function
The introduction of CF ablation catheters has also al-

lowed for the development of calculated indices that may
estimate the extent of the lesion formation. The FTI is the
product of multiplying the total RF time by the average
CF and can be rapidly assessed during ablation. Both the
FTI and average CF have been associated with transmural
lesions [49]. Higher FTI values (>700 gs) correlate with
100% transmural RF lesions in the atrium [49].

The lessons learned from previous studies have con-
tributed to the establishment of improved workflows during
PVI. The EFFICAS II study (Optimization of Catheter Con-
tact Force Improves Outcome of Pulmonary Vein Isolation
for Paroxysmal Atrial Fibrillation) set ablation parameters
for PVI using a CF target between 10 and 20 g and an FTI of
400 gs (Fig. 2.6). After 3 months of follow-up, 85% of the
pulmonary veins remained isolated, and 15% of the recon-
nections correlated with areas where the catheters were un-
stable during ablation [21]. The continuity index, which can
be used as a marker of stability and is based on the different
positions of the catheter tip during ablation, was lower in
areas without evidence of reconnection (4.1 ± 2.4), com-
pared to the gap formation areas (8.4 ± 4.1) (p < 0.0001).
Lesions with a continuity index <6 had a 98% chance of
remaining isolated compared to 62% of those with a CI>6
(p < 0.0001) [21].

Previous findings from meta-analyses regarding the
benefits of CF-guided ablations have been contradictory.
Initial reports from observational studies showed a signif-
icant reduction in atrial arrhythmia recurrence, procedure
time, and fluoroscopy time [50,51]. However, these asso-
ciations were less pronounced when considering only infor-
mation from randomized control trials [51].

3.5 The Lesion Size Index (LSI)
The LSI is an automated module that has been inte-

grated into different versions of the Ensite mapping system
(Abbott Medical, Minneapolis, MN, USA), and considers
multiple ablation parameters. It is obtained by integrating
power, time, CF, and impedance data during RFA. The LSI
was developed to understand the characteristics of in vivo
lesions during AF and to predict the degree of myocardial
damage [8,52].

Animal studies have shown that the LSI correlates
well with the FTI and lesion dimensions using different
powers and a fixed CF with a parallel catheter orientation
[52,53]. Optimal LSI values that reach transmurality have
been established as an LSI >4.0 in the posterior wall and
>5.2 in other areas, to prevent the formation of conduc-
tion recovery (Fig. 2.7) [54]. Another study showed that
patients who did not experience recurrence after 12 months
of follow-up had possessed a higher average LSI during the
first procedure [55]. Sundaram et al. [22] concluded that
in their cohort, aiming for a minimum LSI of 6.0 in the left
pulmonary veins ridge, 5.5 in the anterior, and 5.0 in the

posterior segments of the pulmonary veins (PVs) resulted
in an 86% freedom from atrial arrhythmias after two years
of follow-up.

While the LSI offers promising results as an effective
marker for lesion creation, it is currently only available in
one manufacturer’s algorithm. Furthermore, the evidence
supporting its use mainly originates from small observa-
tional studies [52,53]. However, despite these limitations,
the LSI offers valuable insights into lesion characteristics
during AF ablation and may help to predict the likelihood
of a successful lesion creation. Further research and larger
studies are needed to establish its widespread clinical util-
ity.

3.6 Ablation Index and Interlesion Distance in
Radiofrequency Ablation

Advancements in CF, power, energy delivery param-
eters, catheter stability information (Fig. 2.8), and the un-
derstanding of lesion biophysics have led to the develop-
ment of ablation indexes (AIs) that can objectively assess
lesion creation and durability during RFA [56,57]. Com-
mercially available AIs, such as the Lesion Index (Abbott,
Green Oaks, IL, USA) and the CARTO VISITAG™ Mod-
ule (Biosense Webster, Irvine, CA, USA), integrate stabil-
ity, CF, time, and power to aid in optimizing lesion forma-
tion.

Studies have shown that AIs are associated with
significantly higher first-pass isolation rates, higher
impedance drops, and lower atrial arrhythmia recurrence
rates [56]. In patients with a prior PVI who underwent a
second ablation independent of symptoms to assess lesion
durability, their PV reconnection areas had lower AI and
FTI values compared to non-reconnected segments [56].
An AI >370 in the posterior wall and 480 in the anterior
roof areas correlated with no evidence of PV reconnection
(Fig. 2.9) [56].

Other studies have suggested that an interlesion dis-
tance of ≤5 mm and a CF of >10 g are important fac-
tors for achieving acute durable lesions [58]. Hoffmann et
al. [59] proposed aiming for an interlesion distance of 3–4
mm to increase the acute success rate of first-pass isolation
(Fig. 2.10).

The CLOSE) protocol (Role of Interlesion Distance,
Ablation Index, and Contact Force Variability) emphasizes
the importance of contiguous lesionswith an interlesion dis-
tance <6 mm and optimized RF lesions with an AI of at
least 400 in the posterior wall and 550 in the anterior wall
[23]. The CLOSE approach has demonstrated superiority
in procedure time, RF time per PV circle, and incidence of
adenosine-sensitive dormant conduction compared to con-
ventional CF-guided approaches [23]. The freedom from
atrial arrhythmias was higher in the CLOSE group after 12
months of follow-up (94% vs. 80%) [23].

Ameta-analysis of the available studies comparing the
use of AIs as the main strategy for ablation during PVI

6

https://www.imrpress.com


to other approaches showed favorable outcomes for the AI
group, whereby AIs were associated with shorter procedure
times, shorter ablation times, higher rates of first-pass iso-
lation, less acute PV reconnections, and a lower incidence
of atrial arrhythmias without a significant increase in com-
plications [60].

3.7 Modification in Electrical Excitability Post-Ablation

Changes in the pacing threshold with the loss of cap-
ture in the atrial tissue after catheter ablation have been
recognized as strong markers of transmural lesion creation.
These changes can be used in addition to entrance and exit
blocks to predict dormant areas of isolation [32,61]

In patients undergoing PVI, the loss of pace capture
at 10 mA/2 ms along the PVI line was associated with an
entrance block in 95% of patients. In the remaining 5%,
extra lesions were delivered to achieve the entrance block,
and 50% of patients required additional ablation lesions to
reach an exit block [62]. The loss of capture along the line
after PVI is associated with a better outcome after 2 years
of follow-up, and a higher success rate (83% vs. 52%) [24].

After circumferential ablation, high-output pace-
capture identified a dormant conduction that required addi-
tional reinforcement lesions. The results of a study compar-
ing high-output pacing at the ablation line, vs. adenosine,
to recognize areas with persistent conduction after ablation
showed a similar recurrence rate of 35% in both groups after
a one-year follow-up [63].

These findings highlight the importance of monitor-
ing changes in the pacing threshold and pace capture dur-
ing catheter ablation procedures. They can serve as valu-
able tools to assess the effectiveness of lesion creation and
predict the need for additional ablations to achieve com-
plete isolation. However, longer-term follow-ups and larger
studies are necessary to validate these findings and deter-
mine their broader clinical significance.

3.8 Imaging Techniques to Assess Ablation Effects

Various imaging techniques have been explored to im-
prove catheter visualization, and stability, and reduce ion-
izing radiation during electrophysiology (EP) procedures.

Nowadays, intracardiac echocardiography (ICE) has
become an essential tool in the practice of cardiac electro-
physiology. Its introduction has allowed for a better under-
standing of cardiac anatomy, reduced fluoroscopy time—is
an essential component of zero-fluoroscopy procedures—
reduced the risks of complications, and improved pa-
tient outcomes after ablation [64–67]. ICE permits real-
time catheter visualization and confirms adequate catheter–
tissue contact during ablation, thereby increasing the pos-
sibility of reaching transmurality more efficiently (shorter
RF time, shorter procedure time, and more effective energy
delivery) [68]. Local tissue changes on ICE that are indica-
tive of an effective lesion creation include good catheter–

tissue contact before ablation, swelling, tissue indentations
or crater formation, and an increase in echogenicity; ICE
can also predict the development of steam pops when ac-
celerated bubbles are present in the catheter tip tissue inter-
phase [64,69].

Magnetic resonance imaging (MRI)-guided ablation
has been studied as an alternative to visualize lesions in
real-time, using T-2 sequences to assess for an edema and
late gadolinium enhancement (LGE) series to predict necro-
sis. However, its implementation is currently limited to
right-sided procedures, and more data are needed to estab-
lish its use in LA ablation or in the left ventricle [70,71].
Challenges include the correlation between T-2 edemas and
long-lasting lesions and the time required for LGE to be
fully established, in addition to the EP laboratory device
and equipment compatibility limitation, which remains a
major area of concern [57,71]. Additionally, studies have
revealed that utilizing an MRI-guided, fibrosis-targeted ab-
lation with PVI did not significantly improve ablation out-
comes. This is thought to be secondary to the fact that the
application of thermal injury to fibrotic tissuemight not lead
to the elimination of its arrhythmogenic potential [72].

In preclinical studies, this technique proved sensitive
in identifying temperature changes in saline baths. How-
ever, despite its overall good performance, its sensitivity
was found to be dependent on the distance between the
antenna and the heat source [73]. An irrigated ablation
catheter with microwave radiometry capacity was devel-
oped, and its ability to predict the development of steam
pops was compared to conventional parameters, such as
power, impedance, and catheter temperature in an animal
model [74]; rate of increase in volumetric temperature (V
temp) greater than 1.5 °C/s, as measured by microwave ra-
diometry, emerged as the most powerful predictor of pop
formation, outperforming prior conventional parameters in
a multivariate analysis. Interestingly, no steam pops oc-
curred when the V temp was maintained below 89 °C [74].
A similar catheter with the capability to adjust irrigation and
the power to maintain a targeted tissue temperature exhib-
ited wide but superficial lesions of 7–9.2 mm, and 4.3–5.5
mm, respectively [75].

Nicotinamide adenine dinucleotide (NADH), used in
fluorometric imaging to assess catheter contact and pre-
dict lesion effectiveness, has shown promise in animals, al-
though data from clinical studies are still pending [57,76].

Near-field ultrasound (NFUS) imaging with transduc-
ers in the ablation catheter provides valuable feedback
on catheter contact, lesion formation, and wall thickness
[77,78]. It can be useful in clinical applications for vi-
sualizing the electrode–tissue contact, measuring the wall
thickness, identifying ablation lesions, and predicting le-
sion transmurality [77].

Optical coherence tomography (OCT) uses light to ob-
tain high-resolution images and can precisely define abla-
tion lesion characteristics [79]. Studies have shown that
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OCT can visualize ablation lesions with a power of≥20 W
and correlate lesion characteristics with histological find-
ings [79].

Photoacoustic imaging may offer a real-time visual-
ization of lesion progression and efficacy during ablation
procedures. Although promising, this technique has not yet
been proven in human studies [80].

The use of endoscopic laser ablation is currently un-
der development. The concept consists of a 980 nm diode
laser and a multi-lumen catheter with an inflatable balloon
at the tip. Before ablation, the balloon is advanced into
the LA, and inflated in the ostium of a PV. Additionally,
the endoscope is introduced to guide ablation. The infrared
laser can be aimed radially or at variable angles toward the
catheter tip to create point-by-point circumferential lesions
[81]. The first study in humans showed an acute PVI in 91%
of patients, and freedom of atrial arrhythmias after a 12-
month follow-up in 60% [82]. A second-generation device
has been tested in human studies showing non-inferiority to
RF energy after 12 months of follow-up (61.1% vs. 61.7%)
[83], and to cryoablation (73% vs. 63%, p = 0.18) [84].

These imaging techniques have the potential to en-
hance the precision and success of catheter ablation proce-
dures. However, further research and validation are needed
before widespread clinical implementation, particularly to
develop the practical and real-time utilization of such tech-
niques.

4. Conclusions
Despite significant advancements in the anatomical

approach for atrial fibrillation ablation over the past 25
years, achieving durable lesions without collateral damage
remains a challenge in the field of cardiac electrophysiol-
ogy. This challenge has driven the rapid evolution of our
specialty, with a focus on improving lesion creation through
the development of new energy delivery technologies.

To assess the effectiveness of lesions during abla-
tion procedures, there are several surrogate tools available.
Rather than relying on just one or two of these tools, it
is recommended to use them in combination. This article
proposes the consideration of the “10 commandments of
lesion creation and assessment during AF ablation proce-
dures” (Fig. 2), which can guide operators in their approach
to durable lesions.

Understanding the biophysics of lesion creation and
continuously improving lesion assessment techniques are
essential for advancing catheter ablation of atrial fibrilla-
tion and achieving better long-term outcomes for patients.
As the field continues to evolve, further research and in-
novation in lesion assessment will likely lead to even more
effective and durable treatments for atrial fibrillation.
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