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Abstract

Background: The incidence of postoperative acute kidney injury (AKI) is high due to insufficient perfusion in patients with heart failure.
Heart failure patients with preserved ejection fraction (HFpEF) have strong heterogeneity, which can obtain more accurate results. There
are few studies for predicting AKI after coronary artery bypass grafting (CABG) in HFpEF patients especially using machine learning
methodology. Methods: Patients were recruited in this study from 2018 to 2022. AKI was defined according to the Kidney Disease
Improving Global Outcomes (KDIGO) criteria. The machine learning methods adopted included logistic regression, random forest (RF),
extreme gradient boosting (XGBoost), gaussian naive bayes (GNB), and light gradient boosting machine (LGBM). We used the receiver
operating characteristic curve (ROC) to evaluate the performance of these models. The integrated discrimination improvement (IDI)
and net reclassification improvement (NRI) were utilized to compare the prediction model. Results: In our study, 417 (23.6%) patients
developed AKI. Among the five models, random forest was the best predictor of AKI. The area under curve (AUC) value was 0.834
(95% confidence interval (CI) 0.80–0.86). The IDI and NRI was also better than the other models. Ejection fraction (EF), estimated
glomerular filtration rate (eGFR), age, albumin (Alb), uric acid (UA), lactate dehydrogenase (LDH) were also significant risk factors in
the random forest model. Conclusions: EF, eGFR, age, Alb, UA, LDH are independent risk factors for AKI in HFpEF patients after
CABG using the random forest model. EF, eGFR, and Alb positively correlated with age; UA and LDH had a negative correlation. The
application of machine learning can better predict the occurrence of AKI after CABG and may help to improve the prognosis of HFpEF
patients.

Keywords: heart failure with preserved ejection fraction (HFpEF); acute kidney injury (AKI); coronary artery bypass grafting (CABG);
machine learning

1. Introduction
The incidence of acute kidney injury (AKI) after coro-

nary artery bypass grafting (CABG) is high and has been
reported to range from 6.7% to 39% [1–3]. AKI has
been associated with increased morbidity and mortality af-
ter CABG [3–5], which further increases in the more severe
stages of AKI; and is associated with increased short-term
and long-term mortality [4,6–9]. AKI after cardiac surgery
also increases intensive care unit (ICU) length of stay and
resource utilization [2,10].

The development of AKI involves a variety of mech-
anisms, including ischemic reperfusion injury, renal toxin
release, hemolysis, oxidative stress and cytokine secretion,
which can cause a systemic inflammatory response, en-
dothelial damage and renal tubular cell damage [1,11–13].
Previous studies have shown that older age, low ejection
fraction, a previous history of kidney disease, and increased
time on cardiopulmonary bypass are important predictors of
the development of AKI [6,14–16].

While patients with heart failure and reduced ejection
fraction are more likely to develop AKI after CABG, pa-
tients with preserved ejection fraction may also develop
AKI after surgery which will also seriously affect the prog-
nosis of those patients. The research methods for disease
risk prediction models are constantly being updated. The
introduction of machine learning methods now offers an-
other technique to predict the occurrence of adverse events
following surgery [17]. Traditional logistic analysis gen-
erally deals with data with appropriate size, single types of
data, structured data and simple parameter models that meet
certain assumptions. For large and complex data, machine
learning methods can be used to obtain more accurate risk
prediction. In this study, we sought to predict AKI in pa-
tients with preserved ejection fraction after isolated CABG
using machine learning methodology.
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Fig. 1. Analysis flow for the development and evaluation of models. LGBM, light gradient boosting machine; XGBoost, extreme
gradient boosting; GNB, gaussian naive bayes.

2. Methods
2.1 Patients and Setting

1767 patients who underwent CABG for the first time
from 2018 to 2022 were recruited in this study. Accord-
ing to the Kidney Disease Improving Global Outcomes
(KDIGO) diagnostic criteria of AKI [18], patients divided
into developed AKI (AKI group) and who did not (non-AKI
group).

2.2 Definition of AKI
AKI was defined according to the KDIGO criteria

[18]: an increase in serum creatinine (Scr ≥0.3 mg/dL)
or an increase in Scr ≥1.5 times baseline in 7 days after
surgery or urine volume ≤0.5 mL/kg/h for 6 h.

2.3 Definition of Heart Failure with Preserved Ejection
Fraction (HFpEF)

(1) Symptoms and signs of heart failure (HF); (2) An
left ventricular ejection fraction (LVEF) ≥50%; (3) Objec-
tive evidence of cardiac structural and/or functional abnor-
malities consistent with the presence of left ventricle (LV)
diastolic dysfunction/raised LV filling pressures, including
raised brain natriuretic peptide (BNP) (>35 (sinus rhythm))
or >105 (atrial fibrillation) pg/mL [19].

2.4 Data Collection

Detailed clinical information included age, sex, body
mass index (BMI), previous cardiac history (previous my-
ocardial infarction and previous percutaneous coronary in-
tervention (PCI)), diabetes, hypertension, Carotid-artery-
stenosis, previous stroke or chronic obstructive pulmonary
disease, smoking, baseline renal function (eGFR, estimated
glomerular filtration rate), anemia, and preoperative intra-
aortic balloon pump (IABP) implantation.

2.5 Model Development

We used logistic regression, random forest (RF), ex-
treme gradient boosting (XGBoost), gaussian naive bayes
(GNB), light gradient boosting machine (LGBM), and lo-
gistic regression (LR) algorithms to filter out significant
variables. The significant variables are derived to train and
verify the model. In our study, 80% of the population were
merged to form a training group, while the remaining (20%)
served as the verification group. The process was repeated
five times for each result so that each subset can be used
for a validation set to explain the differences between pa-
tients and provide risk estimates for all cases. The soft-
ware (version: 4.1.0) packages including XGB Classifier,
LGBMClassifier, sklearn naive bayes, sklearnmodel selec-

2

https://www.imrpress.com


tion, sklearn.metrics, sklearn.ensemble were used for anal-
ysis as shown in Fig. 1. We used the receiver operating
characteristic curve (ROC) to evaluate the performance of
these models. The integrated discrimination improvement
(IDI) and net reclassification improvement (NRI) also were
used to evaluate the prediction model.

2.6 Outcome Measures
Themost important variables were screened out by the

five models, and then the area under curve (AUC), NRI and
IDI of eachmodel were compared. By comparingAUC val-
ues, the best prediction model was selected. Then the cali-
bration of the best model was checked. Themost significant
factors are included in the nomogram.

2.7 Statistical Analysis
SPSS 23.0 for Mac (IBM SPSS Statistics, Armonk,

NY, USA), R (version 4.1.0, Lucent Technologies, Mur-
ray Hill, NJ, USA) and Python (version 3.5) were used for
statistical analysis. Continuous variables were reported as
the mean standard deviation or median (interquartile range
(IQR)). Categorical variables were reported as the absolute
frequency and as a percentage. Student’s t-test was applied
for continuous data with equal or unequal variances. The
Mann-Whitney U test was applied for continuous data that
were not normally distributed. Pearson’s χ2 and Fisher’s
exact tests were used for categorical data. A p < 0.05 was
considered to be statistically significant.

3. Results
3.1 Patient Characteristics

1767 patients with HFpEF were included. The base-
line clinical data train and test groups are shown in Table 1.
There was no significant difference in baseline statistical re-
sults between the training group and the verification group.
The incidence of AKI was 23.6%. The comparison of ROC
curves among the five models is shown in Fig. 2. The RF
performed best with the highest C-statistic (0.834 95% CI
0.80–0.86, Brier score: 0.142, NRI: 0.044, IDI: 0.172). The
results if the other models are shown in Table 2.

3.2 Predictor Variables
The five models screened out the most important pre-

dictors. Random forest showed the best prediction effect.
The ejection fraction (EF), eGFR, age, albumin (Alb), uric
acid (UA), lactate dehydrogenase (LDH) were the most ob-
vious risk factors in random forest.

3.3 Calibration of the Model
The best model was calibrated. The Hosmer-

Lemeshow good of fit test was used to evaluate the calibra-
tion degree of the predicted model. The p value was 0.14,
which indicated that the calibration of the RF model was
good. The calibration curve was shown in Fig. 3.

Fig. 2. The comparison of receiver operating characteristic
curve (ROC) curves among the fivemodels. LGBM, light gradi-
ent boosting machine; XGBoost, extreme gradient boosting; gnb,
gaussian naive bayes; AUC, area under curve.

Fig. 3. The calibration of random forest model.

3.4 Construction of Tools for Patient Classification

In order to calculate the probability of postoperative
AKI, we included the most important risk factors in the
nomogram. By using the nomogram we could quickly cal-
culate the incidence of AKI and provide more accurate data
for clinical practice. The nomogram was shown in Fig. 4.
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Table 1. Characteristics of patients in training and testing group.
Overall Test Train

p
1767 353 1414

BNP (pg/L) (median (IQR)) 280 (179, 446) 294 (183, 488) 275 (177, 473) 0.21
EF (%) (median (IQR)) 58 (54, 60) 58 (54, 60) 58 (54, 60) 0.92
ICU stay (h) (median (IQR)) 21.3 (16.8, 39.9) 21.4 (17.8, 40.2) 21.2 (16.6, 39.7) 0.19
Hb (g/L) 112.65 (22.69) 113.57 (24.10) 112.42 (22.33) 0.40
ALT (U/L) 34.31 (61.14) 39.67 (73.61) 32.97 (57.56) 0.07
AST (U/L) 33.31 (44.07) 37.31 (45.09) 32.31 (43.77) 0.06
TG (mmol/L) 1.60 (0.92) 1.63 (0.90) 1.59 (0.92) 0.50
TC (mmol/L) 3.92 (1.04) 3.84 (0.92) 3.95 (1.07) 0.08
HDL (mmol/L) 0.98 (0.23) 0.98 (0.24) 0.98 (0.23) 0.98
LDL (mmol/L) 2.31 (0.88) 2.22 (0.77) 2.34 (0.91) 0.03
Urea (mmol/L) 6.67 (2.67) 6.62 (2.62) 6.68 (2.68) 0.71
Cr (umol/L) 73.61 (21.24) 74.33 (19.88) 73.43 (21.58) 0.48
eGFR (umol/L) 90.12 (17.92) 90.07 (16.91) 90.14 (18.16) 0.95
UA (umol/L) 333.01 (91.22) 330.60 (94.81) 333.61 (90.32) 0.58
CK (U/L) 8.54 (21.14) 9.83 (20.77) 8.22 (21.23) 0.20
TP (g/L) 67.80 (5.73) 68.15 (5.55) 67.72 (5.77) 0.21
Alb (g/L) 41.50 (3.61) 41.69 (3.52) 41.45 (3.64) 0.26
TB (umol/L) 12.12 (5.86) 12.39 (5.81) 12.05 (5.87) 0.33
DB (umol/L) 3.90 (2.03) 3.93 (1.88) 3.90 (2.07) 0.77
WBC (109/L) 10.19 (4.13) 9.96 (3.76) 10.25 (4.22) 0.23
RBC (1012/L) 3.67 (0.74) 3.70 (0.79) 3.66 (0.73) 0.45
PLT (109/L) 205.71 (76.72) 203.72 (79.06) 206.20 (76.15) 0.59
NE (%) 76.13 (11.82) 75.76 (12.00) 76.22 (11.78) 0.51
HCT (%) 32.83 (6.48) 33.03 (6.88) 32.78 (6.38) 0.52
Glu (mmol/L) 8.27 (3.35) 8.54 (3.59) 8.20 (3.29) 0.09
Hcy (ummol/L) 16.83 (9.46) 16.79 (9.09) 16.84 (9.56) 0.93
LDH (U/L) 203.72 (101.27) 205.65 (98.15) 203.24 (102.06) 0.69
Mb (ng/mL) 244.19 (286.28) 239.20 (243.01) 245.44 (296.17) 0.71
Ca (mmol/L) 2.17 (0.20) 2.16 (0.21) 2.17 (0.20) 0.25
ALP (U/L) 80.40 (27.86) 81.85 (32.18) 80.03 (26.67) 0.27
GGT (U/L) 37.04 (37.01) 37.27 (40.89) 36.98 (36.00) 0.89
Age (median (IQR)) 64 (58, 69) 64 (57, 68) 65 (58, 69) 0.08
Sex (%)

Female 458 (25.9) 89 (25.2) 369 (26.1) 0.74
Male 1309 (74.1) 264 (74.8) 1045 (73.9)

Hight (cm) 166.44 (7.82) 166.76 (7.80) 166.36 (7.83) 0.39
Weight (kg) 71.58 (11.39) 71.30 (11.49) 71.64 (11.36) 0.61
BMI 25.77 (3.25) 25.56 (3.17) 25.82 (3.27) 0.17
Inhospital days (d) 14.52 (5.80) 14.55 (5.81) 14.51 (5.80) 0.90
On-pump (%)

Yes 1391 (78.7) 282 (79.9) 1109 (78.4) 0.55
No 376 (21.3) 71 (20.1) 305 (21.6)

Re-thoracotomy (%)
No 1734 (98.1) 346 (98.0) 1388 (98.2) 0.86
Yes 33 (1.9) 7 (2.0) 26 (1.8)

Preoperative IABP (%)
No 1680 (95.1) 330 (93.5) 1350 (95.5) 0.12
Yes 87 (4.9) 23 (6.5) 64 (4.5)

Ventilation >24 h (%)
No 1297 (73.4) 250 (70.8) 1047 (74.0) 0.22
Yes 470 (26.6) 103 (29.2) 367 (26.0)
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Table 1. Continued.
Overall Test Train

p
1767 353 1414

Prior-MI (%)
No 1464 (82.9) 301 (85.3) 1163 (82.2) 0.18
Yes 303 (17.1) 52 (14.7) 251 (17.8)

Angina (%)
No 154 (8.7) 32 (9.1) 122 (8.6) 0.80
Yes 1613 (91.3) 321 (90.9) 1292 (91.4)

STEMI (%)
No 1695 (95.9) 337 (95.5) 1358 (96.0) 0.63
Yes 72 (4.1) 16 (4.5) 56 (4.0)

NSTEMI (%)
No 1685 (95.4) 337 (95.5) 1348 (95.3) 0.91
Yes 82 (4.6) 16 (4.5) 66 (4.7)

Hypertension (%)
No 615 (34.8) 123 (34.8) 492 (34.8) 0.99
Yes 1152 (65.2) 230 (65.2) 922 (65.2)

Diabetes (%)
No 1059 (59.9) 203 (57.5) 856 (60.5) 0.30
Yes 708 (40.1) 150 (42.5) 558 (39.5)

Previous stroke (%)
No 1549 (87.7) 294 (83.3) 1255 (88.8) 0.01
Yes 218 (12.3) 59 (16.7) 159 (11.2)

COPD (%)
No 1720 (97.3) 340 (96.3) 1380 (97.6) 0.18
Yes 47 (2.7) 13 (3.7) 34 (2.4)

Prior-PCI (%)
No 1581 (89.5) 324 (91.8) 1257 (88.9) 0.11
Yes 186 (10.5) 29 (8.2) 157 (11.1)

Carotid-artery-stenosis (%)
No 1698 (96.1) 341 (96.6) 1357 (96.0) 0.58
Yes 69 (3.9) 12 (3.4) 57 (4.0)

AF (%)
No 1723 (97.5) 342 (96.9) 1381 (97.7) 0.40
Yes 44 (2.5) 11 (3.1) 33 (2.3)

Family-history (%)
No 1711 (96.8) 345 (97.7) 1366 (96.6) 0.28
Yes 56 (3.2) 8 (2.3) 48 (3.4)

Smoking (%)
No 961 (54.4) 198 (56.1) 763 (54.0) 0.47
Yes 806 (45.6) 155 (43.9) 651 (46.0)

Drink (%)
No 1309 (74.1) 266 (75.4) 1043 (73.8) 0.54
Yes 458 (25.9) 87 (24.6) 371 (26.2)

EuroScore (median (IQR)) 5 (4, 7) 5 (4, 6) 5 (4, 7) 0.65
IQR, interquartile range; eGFR, estimated glomerular filtration rate; Alb, albumin; LDH, lac-
tate dehydrogenase; BMI, body mass index; IABP, intra-aortic balloon pump; PCI, percuta-
neous coronary intervention; EF, ejection fraction; ALT, alanine amiotransferase; AST, aspartate
aminotransferase; TG, triglyceride; TC, total cholesterol; HDL, high density lipoprotein choles-
terol; LDL, low density lipoprotein cholesterol; UA, uric acid; CK, creatine kinase; TP, total
protein; TB, total bilirubin; DB, direct bilirubin; ALP, alkaline phosphatase; GGT, γ-glutamyl
transpeptadase; WBC, white blood cell; RBC, red blood cell; PLT, platelet count; NE, neutrofili;
HCT, hematocrit; STEMI, ST segment elevation myocardial infarction: NSTEMI, non-ST seg-
ment elevation myocardial infarcion; COPD, chronic obstructive pulmonary disease; AF, atrial
fibrillation; MI, myocardial infarct; BNP, brain natriuretic peptide; ICU, intensive care unit; Hb,
hemoglobin; Glu, glucose; Hcy, homocysteine; Mb, myoglobin.
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Table 2. Comparison of prediction effect evaluation of five models.
Model Precision Recall F1score Accuracy Brier NRI IDI

RF 0.462 1.000 0.632 0.858 0.142 0.044 0.172
LGBM 0.392 1.000 0.610 0.850 0.131 0.034 0.162
XGBoost 0.452 0.940 0.622 0.856 0.144 0.033 –0.185
GNB 0.430 0.769 0.552 0.816 0.184 –0.035 0.139
LR 0.430 0.930 0.588 0.841 0.159 0.000 0.000
Precision: Measure the precision of the model. Recall: It measures the recall of the
retrieval system. F1score: It is the harmonic average of precision and recall. Brier: Eval-
uation of the overall performance of the model. IDI, integrated discrimination improve-
ment; NRI, net reclassification improvement; RF, random forest; LR, logistic regression;
LGBM, light gradient boosting machine; XGBoost, extreme gradient boosting; GNB,
gaussian naive bayes.

Fig. 4. The nomogram used to quantify the risk of AKI. EF, ejection fraction; UA, uric acid; eGFR, estimated glomerular filtration
rate; LDH, lactate dehydrogenase; Alb, albumin; AKI, acute kidney injury.

4. Discussion

Our study used machine learning methods, whereas
previous studies included a small population andmixed sur-
gical types. Our results suggest that the EF, eGFR, age, Alb,
UA, and LDH are independent risk factors for AKI in HF-
pEF patients after CABG using the random forest model.
The incidence of AKI was 23.6% in our study which is sim-
ilar to previous studies [1–3].

While there are many studies on acute renal injury af-
ter cardiac surgery, only a few used the machine learning

method to predict AKI after cardiac surgery [20–22]. How-
ever, there are only a few studies on patients with HFpEF
undergoing isolated CABG by machine learning. In this
study, we used a new machine learning method, to make
a risk prediction model for this group of patients to better
predict the occurrence of AKI following CABG surgery to
decrease morbidity and mortality in these patients.

The eGFR, EF and age are important risk factors for
predicting postoperative AKI in this study, which is consis-
tent with many previous studies [1,2,16]. The eGFR is an
index to reflect the basic function of the kidney. An abnor-
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mal eGFR prior to surgery indicates poor renal function and
a group of patients who will be more prone to acute kidney
injury after surgery. Increased age is a risk factor for AKI
as the renal function of the human body gradually declines
with age. EF is an important indicator of cardiac function,
and a low EF leads to low renal perfusion, which can lead to
oliguria and is more prone to acute renal injury [19,23–25].

Although LDH is not specifically produced by kidney,
it can predict the occurrence of renal injury, as noted in pre-
vious studies [22]. Previous studies have not found that pre-
operative albumin is a risk factor for predicting AKI after
cardiac surgery. However, previous studies [26] have sug-
gested that albumin infusion before CABG can reduce the
occurrence of acute renal injury after surgery. In addition,
studies [27] have shown that the increase of albumin ab-
sorption by renal tubules can reduce the occurrence of AKI.
Albumin, a risk factor found in our study, can be used to
predict AKI after bypass surgery. It may further improve
the prediction of acute kidney injury and identify patients
with potential risks at an early stage. In addition, our re-
sults also show that uric acid is an independent risk factor
for AKI. Tang H et al. [28] showed that when uric acid is
increased before cardiac surgery, there is an increased risk
of AKI after cardiac surgery. Previous studies have also
found that increased preoperative uric acid levels is an in-
dependent risk factor for AKI after cardiac surgery [29].

There are limitations of this study. Our study was a
single-center, retrospective study, with some selection bias.
However, all the included patients were HFpEF, and were
not compared with other heart failure patients. In the future,
we will try to increase these variables to further improve the
prediction model. In this study, the diagnosis of AKI was
based on KDIGO criteria. Since diuretics are used in many
patients after surgery, urine volume was not used as one of
the diagnostic criteria of AKI.

5. Conclusions
Ejection fraction, estimated glomerular filtration rate,

age, albumin, uric acid, and lactate dehydrogenase are inde-
pendent risk factors for acute kidney injury in heart failure
preserved ejection fraction patients after coronary artery by-
pass grafting by the random forest model. The application
of machine learning can better predict clinical events.
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