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Abstract

Coronary artery disease is a leading cause of death worldwide. Major adverse cardiac events are associated not only with coronary
luminal stenosis but also with atherosclerotic plaque components. Coronary computed tomography angiography (CCTA) enables non-
invasive evaluation of atherosclerotic plaque along the entire coronary tree. However, precise and efficient assessment of plaque features
on CCTA is still a challenge for physicians in daily practice. Artificial intelligence (AI) refers to algorithms that can simulate intelligent
human behavior to improve clinical work efficiency. Recently, cardiovascular imaging has seen remarkable advancements with the use
of AI. AI-assisted CCTA has the potential to facilitate the clinical workflow, offer objective and repeatable quantitative results, accelerate
the interpretation of reports, and guide subsequent treatment. Several AI algorithms have been developed to provide a comprehensive
assessment of atherosclerotic plaques. This review serves to highlight the cutting-edge applications of AI-assisted CCTA in atheroscle-
rosis plaque characterization, including detecting obstructive plaques, assessing plaque volumes and vulnerability, monitoring plaque
progression, and providing risk assessment. Finally, this paper discusses the current problems and future directions for implementing AI
in real-world clinical settings.
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1. Introduction
Despite advances in primary and secondary preven-

tive therapy, coronary artery disease (CAD) remains the
predominant cause of morbidity and mortality globally
[1]. The luminal stenosis of the coronary artery had been
thought to be the main variable for risk stratification and the
choice of treatment. However, that concept has been chal-
lenged during the past decades by the theory that atheroscle-
rotic plaque is more associated with major adverse cardiac
events (MACE) rather than obstructive or nonobstructive
coronary disease [2,3]. Previous studies have demonstrated
that plaque morphology and composition play a major role
in plaque stability and subsequent risk of acute coronary
syndrome (ACS) [4,5].

This renewed interest in atherosclerotic plaque stabi-
lization has resulted in the development of several imag-
ing techniques, including invasive modalities such as in-
travascular ultrasound (IVUS), optical coherence tomogra-
phy (OCT), and non-invasive modalities such as computed
tomography (CT), magnetic resonance imaging (MRI) and
positron emission tomography (PET) [6,7]. In the recent
guidelines, coronary CT angiography (CCTA) has become
the first-line diagnostic technique for the management of
patients with stable chest pain [8,9]. CCTA enables the

evaluation of the presence, luminal stenosis, composition,
and vulnerability of plaques throughout the coronary tree
[10,11]. However, the increasing use of CCTA exams in
daily clinical practice has created an enormous challenge
for radiologists and clinicians to assess this valuable in-
formation on atherosclerotic plaques accurately and effi-
ciently.

Artificial intelligence (AI), as well as related tech-
niques such as radiomics, might be ideally suited to solve
these challenges [12–14]. AI has increasingly been used
in CT to assess atherosclerotic plaques and can potentially
improve the radiologists’ workflow, reduce image post-
processing time, and improve the accuracy of test results
[15–17]. In addition, risk stratification and prognosis can
be more accurately evaluated as AI enables the processing
of large amounts of data [13]. Several reviews have been
published to discuss the AI methods used for CCTA inter-
pretation [17–19] or plaque characterization [20,21]. This
review focuses on the latest AI applications for character-
izing atherosclerotic plaques on CCTA, ranging from de-
tecting luminal stenosis to risk prediction. We performed a
search of PubMed, EMBASE, Scopus and Google Scholar
for articles published between database inception and June
31, 2023, using the search terms (“coronary CT angiog-
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Fig. 1. Basic terminology of artificial intelligence, machine learning, deep learning, and natural language processing.

raphy” OR “coronary computed tomography angiography”
OR “cardiac CT”) AND (“artificial intelligence” OR “ma-
chine learning” OR “deep learning” OR “computer-aided
diagnostic tools” OR “radiomics”) AND (“plaque” OR
“atherosclerosis” OR “coronary artery disease” OR “heart”
OR “cardiac” OR “cardio” OR “infarct”), with no language
restrictions. Recent applications of AI-assisted CT plaque
analysis are presented in Table 1 (Ref. [22–35]). We also
highlight existing problems and future directions before the
widespread implementation of AI can be adopted in daily
clinical practice.

2. Terminology and Techniques
AI is a computer science discipline that aims to per-

form tasks by simulating human intelligence tasks. It con-
tains several subfields, such as machine learning (ML) and
deep learning (DL). Fig. 1 summarizes the basic terminol-
ogy of AI and its relevant techniques.

ML is a branch of AI that involves a growing num-
ber of algorithms. ML can be classified into supervised
learning, unsupervised learning, and reinforcement learn-
ing [36]. Supervised learning, including regression anal-
ysis, supports vector machines, and random forest, which
refers to learning from labeled data to predict a known out-
come. In contrast, unsupervised and reinforcement learn-
ing perform unlabeled learning to predict unknown asso-
ciations. Principal component analysis and clustering are
examples of unsupervised learning.

DL is a further subbranch ofML, which uses multilay-
ers of artificial neural networks to automatically learn from
raw data [37]. Convolutional neural networks (CNNs) are
the most commonly used DL algorithms in medical image
analysis. CNNs are composed of 3 major layers: convolu-
tion layer, pooling layer, and fully-connected layer. CNNs
have been widely used for object detection, classification,
and segmentation from images.

Radiomics is the process of extracting high-
dimensional quantitative radiological imaging features
indiscernible to the human reader [38]. These features
characterize the complex spatial relationship between
voxels within the region of interest. ML methods can then
be combined with radiomics to identify valuable imaging
markers to make predictions.

Natural language processing (NLP) methods are ad-
vanced AI technologies designed to understand and pro-
cess human language [39]. In the medical field, NLP can
help extract meaningful information from large amounts of
data during health care processes, which may reduce clini-
cians’ workloads and support treatment decisions. Another
emerging application of NLP is image analysis [40]. Trans-
former network is most commonly used in NLP for image
processing, such as image detection, segmentation, and re-
construction. NLP can be performed with ML or DL to an-
alyze complex multimodal information.
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Table 1. Overview of AI applications for plaque analysis in CCTA studies.
Study Input data Methods Remarks

Detection of plaque stenosis

Hong et al. [22] 156 CCTA scans CNN The DL method had a strong correlation with experts for stenosis measurements.
Choi et al. [23] 232 CCTA scans CNN AI-based software (Cleerly CORONARY, Cleerly Healthcare, New York, USA) showed high diagnostic

performance compared with expert readers.
Griffin et al. [24] 303 CCTA scans CNN AI-based software (Cleerly CORONARY, Cleerly Healthcare, New York, USA) showed high diagnostic

performance compared with quantitative coronary angiography.
Liu et al. [25] 165 CCTA scans CNN AI-based software (CoronaryDoc, ShuKun Techonolgy, Beijing, China) improved radiologists’ diagnostic

performance, especially for inexperienced readers.

Quantification of plaque

Zeleznik et al. [26] 1636 CAC scans CNN The DL algorithm showed good agreement with expert manual scoring in both ECG-gated and non-gated CT.

Velzen et al. [27]
7240 cardiac CT

CNN
The DL algorithm enabled the quantification of coronary and thoracic calcium with good agreement with

manual scoring in varied CT protocols and populations.and chest CT
Lin et al. [28] 921 CCTA scans ConvLSTM network The DL system had excellent agreement compared with expert readers and IVUS for plaque volume

measurement.
Jávorszky et al. [29] 894 CCTA scans Attention U-net The DL algorithm had an excellent agreement with expert plaque segmentation.

Characterization of vulnerable plaque

Kolossváry et al. [30] 25 CCTA scans Radiomics Radiomics had superior performance compared to the best conventional CT metrics for the detection of
vulnerable plaque.

Al’Aref et al. [31] 46 CCTA plaque features in 124 patients XGBoost The ML algorithm outperformed a model containing diameter stenosis, lesion length, plaque volume, plaque
burden, and HRP to predict culprit lesions.

Lin et al. [32] 120 CCTA scans
Radiomics Radiomics offered incremental value for identifying culprit lesions when added to a model including HRP

and plaque volumes.Clustering

Chen et al. [33] 299 CCTA scans
Radiomics Radiomics showed moderate to good diagnostic performance in identifying vulnerable plaques associated

with an increased risk of MACE.XGBoost

Prediction of future adverse CAD events

Motwani et al. [34] 25 clinical and 44 CCTA features in 10,030 patients LogitBoost The ML model showed better risk prediction value compared with the Framingham risk score, segment
stenosis score, or segment involvement score for 5-year all-cause mortality.

Nakanishi et al. [35] 46 clinical and 31 CT variables in 66,636 patients LogitBoost The ML model outperformed ASCVD risk, segment stenosis score, or segment involvement score in the
prediction of both CVD and CHD death.

Notes: AI, artificial intelligence; CCTA, coronary CT angiography; CNN, convolutional neural network; DL, deep learning; CAC, coronary artery calcification; HRP, high-risk plaque; MACE, major adverse cardiac
events; ECG, electrocardiogram; IVUS, intravascular ultrasound; ConvLSTM, convolutional long short-term memory; ML, machine learning; ASCVD, atherosclerotic cardiovascular disease; CVD, cardiovascular
disease; CHD, congenital heart disease; XGBoost, extreme gradient boosting; CAD, coronary artery disease; CT, computed tomography.
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3. Detection of Obstructive Stenosis
Current CCTA reporting is based on the visual es-

timation of stenosis severity [41]. Accurate assessment
of the degree of stenosis is critical to guide treatment de-
cisions by CCTA, including whether to perform invasive
coronary angiography. However, there is substantial inter-
observer variability among independent readers in real-
world practice. A subanalysis of the Prospective Multicen-
ter Imaging Study for Evaluation of Chest Pain (PROMISE)
trial demonstrated that expert interpretation at the core lab-
oratory reclassified 41% fewer patients with obstructive
plaques (defined as stenosis ≥50%) compared to interpre-
tation at local sites [42]. These results have generated great
interest in improving accuracy and reproducibility.

AI-powered techniques have shown promising ad-
vances in detecting obstructive CAD. Several AI methods
have been developed for automatic coronary artery segmen-
tation and stenosis detection. Kang et al. [43] proposed
an ML algorithm to automatically detect >25% stenosis
in a sample of 42 patients, achieving a high sensitivity of
93% and specificity of 95% compared to expert readers.
Additionally, Hong et al. [22] trained a CNN to quan-
tify coronary stenosis in 156 patients and found DL mea-
sures had an excellent correlation with expert readers (r =
0.957). Recently, the CLARIFY (CT EvaLuation by ARti-
ficial Intelligence For Atherosclerosis, Stenosis and Vascu-
lar MorphologY) study analyzed a Food and Drug Admin-
istration (FDA)–approved cloud-based software (Cleerly
CORONARY, Cleerly Healthcare, New York, USA) to de-
tect obstructive plaques [23]. This study showed that AI-
based CCTA had high diagnostic performance in detecting
>50% stenosis with a sensitivity and specificity of 80% and
97%, respectively, when compared to results from expert
readers. The authors also reported AI and expert readers
generated a Coronary Artery Disease Reporting and Data
System (CAD-RADS) score that was in agreement within
one category in 98.3% of examinations at the per-patient
level. The analysis time was about 10 minutes per pa-
tient. In a subsequent study by Griffin et al. [24], AI-based
software (Cleerly CORONARY, Cleerly Healthcare, New
York, USA) was evaluated and compared with quantitative
invasive angiography in a multicenter cohort of 303 stable
patients. The study found that the automated stenosis as-
sessment had sensitivity and specificity of 94% and 68%
for detecting obstructive stenosis. However, this software
is performed on the cloud, which is a limitation for use in
clinical practice. On-site deployment is preferred to meet
the demands of various clinical settings, including the man-
agement of acute chest pain [44].

4. Quantification of Atherosclerotic Plaque
There is increasing evidence demonstrating that the

measurement of plaque volume and composition increases
the prognostic value of patients who are at higher risk for
future CAD events [45–47]. In a subanalysis of the Scottish

Computed Tomography of the HEART (SCOT-HEART)
trial, the investigators found that patients with low attenua-
tion plaque (LAP) burden>4% were 5 times more likely to
suffer myocardial infarction with a 5-year follow-up [48].
Similarly, the Incident Coronary Syndromes Identified by
Computed Tomography (ICONIC) study showed that pa-
tients who experienced ACS had a significantly higher bur-
den of LAP compared to those who did not [49]. To date,
several semi-automated research software have been devel-
oped and shown good concordance of plaque volume and
composition compared with gold standard techniques (i.e.,
IVUS) [50,51]. However, these semi-automated quantita-
tive plaque analysis software often require substantial man-
ual adjustments, a major hurdle for its routine use in clinical
practice [52].

AI algorithms that aim to enhance the automation
of quantifying plaques have, therefore, been developed
[24,28,29]. Liu et al. [53] trained a vessel-focused 3DCNN
to automatically segment coronary plaques with 25 patients.
They found the proposed algorithm achieved dice scores of
0.73, 0.68, and 0.83 for noncalcified plaques, mixed calci-
fied plaques, and calcified plaques, respectively. In a sim-
ilar study, Jávorszky et al. [29] used a 3D U-net model to
segment plaques with 308 patients’ 894 CCTA scans. The
results showed the DL model had good agreement with ex-
pert analysis to quantify total (intra-class correlation [ICC]
= 0.88), noncalcified (ICC = 0.84), and calcified (ICC =
0.99) plaque volumes. Recently, Lin et al. [28] developed
and validated a novel DL algorithm to automatically seg-
ment coronary plaques in a multicenter cohort of 921 pa-
tients. The DL system showed excellent agreement with
IVUS (ICC = 0.95) for total plaque volume measurements
at a much shorter analysis time than for expert manual anal-
ysis (5.65 ± 1.87 s vs. 25.66 ± 6.79 min per patient).
Further, the developed DL-based automated plaque mea-
surements could be used to stratify the risk of CAD events
in the SCOT-HEART trial. These studies showed that the
DL-based approaches had the potential to reduce the post-
processing time with good agreement compared to expert
readers. Nevertheless, these AI models are not fully au-
tomated solutions for plaque quantification. One or more
preprocessing procedures, such as the extraction of coro-
nary artery centerlines, are still needed.

Newer quantitative AI-based algorithms are under de-
velopment, which aims to eliminate manual and labor-
intensive processes. Recently, an AI-assisted CCTA plaque
software (Cleerly CORONARY, Cleerly Healthcare, New
York, USA) has received FDA approval, which uses a se-
ries of CNNs to automatically finish coronary artery seg-
mentation, lumen and arterial wall determination, stenosis,
and plaque quantification [24]. Initial validation studies
have shown that the software had high diagnostic perfor-
mance in detecting >50% and >70% stenosis compared to
expert readers or quantitative invasive angiography. How-
ever, a direct comparison of plaque quantification between
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Fig. 2. An example case of plaques assessed using AI-assisted CCTA software (CoronaryDoc, ShuKun Techonolgy, Beijing,
China). A 41-year-old male with a history of exertional chest pain had a non-calcified plaque with 100.4 mm3 in the proximal and
middle segments of the left anterior descending coronary artery on CCTA. mLAD, middle segment of left anterior descending artery;
CCTA, coronary computed tomography angiography.

the AI-assisted software and IVUS has not yet been re-
ported. An example of a fully automatic quantification of
an atherosclerotic plaque on CCTA is shown in Fig. 2.

5. Characterization of Vulnerable Plaque
Vulnerable plaque rupture is a leading cause of ACS

[54]. Histologic and intravascular imaging findings have
demonstrated that plaque features associated with cul-
prit lesions at ACS are a large lipid-rich necrotic core,
a thin fibrous cap, micro-calcification, positive remodel-
ing, chronic inflammation, and neovascularization [55].
The early identification of vulnerable plaques is important
for individualized risk assessment and clinical treatment
[6,56,57].

CCTA can not only identify both calcified and non-
calcified plaques but also characterize specific high-risk
plaque features. The major high-risk plaque features in-
clude positive remodeling, LAP, the napkin ring sign, and
spotty calcification [41]. Multiple studies have shown that
the presence of high-risk plaque (HRP) on CCTAwas asso-
ciated with subsequent major adverse cardiovascular events
[58–60]. However, these HRP features are generally as-
sessed visually and only have a modest interobserver agree-
ment, even among expert readers (Kappa = 0.15–0.69)
[59,61]. This highlights the need for improved automated
methods for assessing HRP and standardized reporting.

However, studies on the applications of AI for identi-
fying vulnerable plaques are scarce. In a sub-study of the
CLARIFY trial, an AI-based software was evaluated to de-

tect HRP features (including positive remodeling and LAP)
in 232 patients [62]. Unfortunately, the results showed
that AI had poor agreement with 3 expert readers, with a
weighted Kappa coefficient of 0.22, 0.17, and 0.26, respec-
tively. To date, automatically quantifying HRP features us-
ing AI remains a great challenge.

Radiomics techniques might be feasible to solve
these challenges. Several studies have demonstrated that
CCTA-based radiomics methods may help detect vulnera-
ble plaques both in vivo and ex vivo [30,32,63]. Kolossváry
et al. [63] trained a radiomics-based MLmodel to diagnose
histologically verified atherosclerotic lesions on 95 coro-
nary plaques in 7male donors. The results found that the ra-
diomics model outperformed multiple conventional models
(visual assessment, histogram-based assessment, and aver-
age Hounsfield unit) in identifying advanced atheroscle-
rotic lesions. In a subsequent study, Kolossváry et al.
[30] applied CCTA-based radiomics to identify vulnerable
plaques in 44 plaques in 25 patients. The study showed that
radiomics was superior to conventional CCTA parameters
in identifying IVUS-validated attenuated plaques, OCT-
defined thin-cap fibroatheroma, and increased NaF18-PET
uptake lesions (area under the curve [AUC]: 0.72 vs. 0.59,
0.80 vs. 0.66, 0.87 vs. 0.65, all p< 0.001). However, these
studies involved a relatively small sample size, and the clin-
ical implications of radiomics were not validated. Recently,
our team [33] developed a CCTA-derived radiomics model
to detect vulnerable plaques defined by IVUS in 299 pa-
tients. We found the proposed radiomics model offered
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incremental value for identifying vulnerable plaques when
added to a model including HRP and plaque volumes. We
further tested the prognostic value of the radiomics model
in an independent prospective cohort of 708 patients over
a 3-year follow-up period and found the radiomics model
was associated with a higher risk for future adverse cardiac
outcomes (adjusted HR, 2.01; p = 0.005). However, the ex-
traction of radiomic features in these studies was uniformly
followed by semiautomated plaque segmentation. Further
development of AI-based automatic software that integrates
automated plaque segmentation, radiomics, and ML anal-
yses to identify vulnerable plaques is expected in clinical
practice [64].

In addition, coronary inflammation can be measured
on CCTA using deep learning methods, and it has been
developed as a biomarker named the fat attenuation index
(FAI) [65]. The perivascular FAI around culprit lesion pre-
cursors increases significantly in patients with ACS com-
pared to non-culprit lesions [66]. FAI was also reported
to be associated with NaF18 coronary uptake on PET-CT,
which is considered the gold standard for mapping plaque
inflammation in vivo [67]. FAI might be adopted as a new
marker for determining vulnerable plaques in the future
[68].

6. Early Identification and Monitoring of
Plaque Progression

It has been thought that most ACS results from the
rupture of nonobstructive plaques on angiography months
to years before the event [69–72]. Serial invasive an-
giography studies showed that nonobstructive lesions can
progress rapidly before the acute event occurs [71–73]. In
addition, natural history studies using intravascular imag-
ing also found plaques with high-risk features, including
lipid-rich plaques, positive vessel remodeling, and thin-
cap fibroatheroma, had a higher probability of progress-
ing [74,75]. Prior CCTA studies demonstrated that in pa-
tients with plaque progression, ACS events are substantially
higher compared to patients without progression (14.3% vs.
0.3%, p< 0.0001) during 3.9± 2.4 years of follow-up [60].
Therefore, it has been proposed that plaque progression
may be a necessary step between subclinical atherosclerosis
and plaque rupture [76]. These findings suggest that iden-
tifying and halting plaque progression may reduce future
adverse CAD events.

CCTA enables earlier identification of atherosclerosis
and the monitoring of dynamic changes in plaque composi-
tion [50]. However, since the composition of each coronary
plaque is so diverse, conventional qualitative and quantita-
tive baseline CCTA analysis might be limited in detecting
plaques at risk of rapid progression. Han et al. [77] ap-
plied anML framework incorporating clinical variables and
qualitative and quantitative CCTA plaque features to iden-
tify individuals with a higher risk of subsequent plaque pro-
gression. The ML model showed higher diagnostic perfor-

mance in predicting individuals with rapid plaque progres-
sion compared to clinical and laboratory models. It should
be noted that in this study, plaque progression analysis was
based on per-patient level, which pooled the plaque vol-
umes across the major arteries. However, prior studies have
shown that the patterns of plaque progression are variable
among the major coronary arteries [78]. The identification
of specific signatures for predicting plaque progression at
a per-lesion level on CCTA is more optimal and has been
investigated in many intravascular studies [4,5,79]. Novel
techniques, such as radiomics, perivascular adipose tissue
density, and hemodynamics combined with ML, may pro-
vide a better understanding of plaque progression.

Intravascular imaging modalities have been estab-
lished as the gold standard for assessing the clinically rel-
evant progression of atherosclerosis [80,81]. Several large
clinical trials evaluating the dynamic changes in coronary
plaques in response to various treatments have made use
of these invasive techniques [82,83]. However, the target
populations in these studies were limited to the inclusion of
patients at higher risk. The utility of CCTA in evaluating
plaque volume and high-risk features has made it possible
to extend its application to monitor the response of various
therapies in lower-risk groups.

Several cohort studies and a few randomized con-
trolled trials (RCTs) have been performed to assess tem-
poral changes in plaque volumes with serial CCTA. In a
prospective observational study of 121 psoriasis patients,
Elnabawi et al. [84] found biologic treatment was associ-
ated with a significant reduction of noncalcified plaque bur-
den compared to non-biologic treatment at 1-year follow-
up CCTA. The international PARADIGM (Progression of
Atherosclerotic Plaque Determined by Computed Tomo-
graphic Angiography Imaging) trial evaluated the use of
statins-induced changes in CCTA-based plaque analysis
among 1255 patients [85]. The authors found that statin
therapy was related to rapid progression of calcified plaque
volume but slower progression of overall plaque volume
[85]. Budoff et al. [86] conducted an RCT to explore the
impact of icosapent ethyl on plaque characterization using
CCTA. Eighty patients were randomized to receive either
icosapent ethyl or placebo. After 18 months of follow-up,
LAP volume was reduced by 17% in the icosapent ethyl
group, while the placebo group experienced an increase in
LAP volume (109%; p = 0.0061) [87]. These data suggest
the possibility of applying CCTA in monitoring dynamic
changes in plaques over time. With the development of fu-
ture fully automated plaque analysis software, plaque vol-
umes, and high-risk features could be easily compared be-
tween serial scans. CCTA may help to provide more accu-
rate treatment decisions in daily clinical practice.
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7. Prediction of Future Adverse Cardiac
Events

Current CAD prevention guidelines recommend the
use of population-based risk calculators, such as the Pooled
Cohort Equations and SCORE 2, to estimate a 10-year risk
of cardiac events [87,88]. However, predicting outcomes
among patients on an individual level remains challenging.

AI has the potential to provide personalized risk evalu-
ation using the integration of multiple quantitative imaging
and clinical variables [89]. Several studies have focused
on using AI to predict clinical outcomes in both asymp-
tomatic and symptomatic patients [34,35,90]. In a large
sample study of 66,636 asymptomatic patients, a compre-
hensive ML model incorporating 46 clinical variables and
31 non-contrast CT measurements was superior for the pre-
diction of 10-year coronary heart disease and cardiovascu-
lar disease deaths (AUC = 0.86) compared to the coronary
artery calcium score (AUC = 0.82), atherosclerotic cardio-
vascular disease (ASCVD) score (AUC = 0.83) and CT
variables alone (AUC = 0.83) (all p < 0.001) [31]. Sim-
ilarly, Motwani et al. [34] developed an ML-based algo-
rithm to predict 5-year all-cause deaths in 10,030 symp-
tomatic patients. In this study, the ML model containing 25
clinical and 44 CCTA variables showed higher prediction
values (AUC = 0.79) compared to the Framingham Risk
Score (AUC = 0.61) or CCTA severity scores alone (AUC
= 0.64). Individual patient-specific variables on the influ-
ence of the results could be explained using AI methods
such as Sharpley Additive Explanations (SHAP). The strat-
ification of important clinical variables, laboratory tests,
and imaging parameters could potentially guide intensified
therapy in high-risk patients or identify novel treatment tar-
gets to improve cardiac outcomes. However, the imple-
mentation of these advanced AI models in real-world clin-
ical practice remains minimal. Such implementations re-
quire linking multi-dimensional datasets, including clini-
cal, imaging, and laboratory data. NLP approaches, par-
ticularly transformers, enable dealing with these complex
multimodal data [40]. Recently, Zhou et al. [91] devel-
oped a transformer-based model using unified methods to
leverage multimodal information, such as structured or un-
structured clinical information and medical images for clin-
ical diagnostics. The result showed the unified model had
higher diagnostic performance compared to an image data
model and non-unifiedmodels for pulmonary disease detec-
tion and adverse clinical outcomes prediction of COVID-
19. These findings suggest transformer-based models may
contribute to facilitating patient care and helping to make
clinical decisions.

8. Opportunities and Challenges
In cardiovascular imaging, AI algorithms have the

potential to improve clinical workflow, accelerate post-
processing time, provide objective and accurate results, and
guide patient management [13]. Clinically available AI-

assisted software for assessing stenosis severity has been
shown to be accurate and fast. Integration of fractional flow
reserve derived fromCCTA (CT-FFR)will further guide the
subsequent interventional therapy. Fully automated plaque
quantification software is under development, which would
expand the potential for CCTA in the evaluation of pro-
gression and guide the treatment of atherosclerosis. Ra-
diomics, with automated plaque segmentation, feature ex-
traction, and ML analyses, may increase the diagnostic ac-
curacy and precision of high-risk plaque in routine clin-
ical practice. Finally, personalized AI-based risk scores
integrating a vast number of clinical and imaging metrics
will be calculated in real time, identifying high-risk patients
and providing long-term risk evaluation for future cardiac
events.

While AI holds great promise for improving current
atherosclerosis imaging, there are several barriers to be
addressed and resolved. First, the lack of transparency
impedes AI adoption in clinical decision-making. Expla-
nations regarding AI results need to be offered to clini-
cians and patients. The development of explainable AI ap-
proaches is an answer to this limitation [92]. For example,
SHAP uses a game theory approach to determine the overall
importance of variables and explain how the variables im-
pact individual predictions. Second, many current AI algo-
rithms are developed on small datasets with low variability
regarding both image acquisition and patient demographics.
These AI algorithms could performwell in the development
stage but not generalize well in other datasets. Robust val-
idation with external datasets and prospective, real-world,
varied datasets is desired before applyingAI tools in clinical
practice. Third, adequate evaluation of AI algorithms be-
fore adoption in clinical is critical [93]. Despite numerous
AI algorithms that have been developed and shown promis-
ing outcomes, there are few cardiovascular AI technologies
validated in current RCTs [94]. The human-AI interaction
and the effect of AI in the radiologic workflow are poorly
understood in current clinical studies. An RCT is the best
way to determine the actual clinical value of an AI system
in which one arm receives AI-assisted care and the other
receives usual care [95].

9. Conclusions
AI-assisted CCTA has the potential for a comprehen-

sive assessment of atherosclerotic plaque characterization
by minimizing human error and saving interpreting time.
AI can be also used to provide personalized risk stratifica-
tion for CAD patients by integrating multiple quantitative
imaging and clinical data. However, the explainability, ro-
bustness, and generalizability of AI need to be addressed
before its wide acceptance in the clinic. Future studies are
expected to validate the clinical impact of AI algorithms in
daily practice.
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