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Abstract

Myocardial fibrosis, a common pathophysiological consequence of various cardiovascular diseases, is characterized by fibroblast ac-
tivation and excessive deposition of extracellular matrix (ECM) collagen. Accumulating evidence indicates that myocardial fibrosis
contributes to ventricular stiffness, systolic and diastolic dysfunction, and ultimately leads to the development of heart failure (HF).
Early detection and targeted treatment of myocardial fibrosis is critical to reverse ventricular remodeling and improve clinical outcomes
in patients with cardiovascular diseases. However, despite considerable progresses made in understanding molecular mechanisms of
myocardial fibrosis, non-invasive imaging to assess myocardial fibrosis and guide clinical treatment is still not widely available, limit-
ing the development of innovative treatment strategies. This review summarizes recent progresses of imaging modalities for detecting
myocardial fibrosis, with a focus on nuclear medicine, echocardiography and cardiac magnetic resonance (CMR).
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1. Introduction

Myocardial fibrosis, defined as an excessive accumu-
lation of extracellular matrix (ECM) proteins, results in
pathological ventricular remodeling and, eventually leads
to heart failure (HF) [1]. Myocardial fibrosis can be di-
vided into several subtypes including: replacement fibro-
sis, reactive interstitial fibrosis, endomyocardial fibrosis
[2] and infiltrative interstitial fibrosis. Reactive intersti-
tial fibrosis is an adaptive, non-specific response distin-
guished by a scattered microscopic distribution in the my-
ocardium, occasionally accompanied by local peripheral
distribution of blood vessels [3], with sustained activa-
tion of pro-fibrotic growth factors including transforming
growth factor-β (TGF-β) (Fig. 1), fibroblast growth factor-
2 and connective tissue growth factor [4]. Such interstitial
form of fibrosis is typically secondary to long-term pres-
sure and volume overload, resulting in hyperactive renin-
angiotensin-aldosterone system and adrenergic system, as
presented in valvular heart disease [5], chronic hyperten-
sion [6], and cardiomyopathies such as hypertrophic car-
diomyopathy [7], dilated cardiomyopathy [8] and diabetic
cardiomyopathy [7], but also in distal non-infarcted my-
ocardium following myocardial infarction [9]. Early mild
replacement interstitial fibrosis is reversible with specific
treatment [10]. Infiltrative myocardial fibrosis is caused by
excessive storage of misfolded, insoluble, aggregated pro-

teins (amyloidosis) [11] or globotriaosylceramide (Fabry
disease) [12] in the extracellular matrix. Replacement my-
ocardial fibrosis often occurs after acute myocardial infarc-
tion (AMI), where necrotic myocardial cells are replaced by
collagen fibers, forming fibrous cardiac scar, which ensures
the integrity of the heart from rupture in the early stages
of myocardial infarction [13]. On the other hand, if left
untreated and overburdened post-AMI, the fibrotic tissue
can spread to the non-infarcted myocardium, resulting in
decreased tissue compliance and cardiac dysfunction [14].
In addition, the excessive deposition of ECM damages the
mechanical-electrical coupling of myocytes, impairing my-
ocardial contractility and raising the incidence of malignant
arrhythmias and sudden death [15]. In addition, epidemio-
logical studies and clinical trials have shown that myocar-
dial fibrosis is an independent risk factor of adverse car-
diac events such as AMI, HF, arrhythmia and cardiovascu-
lar death [7].

Myocardial fibrosis can be detected by a variety of
methods in clinical practice. Traditionally, endomyocardial
biopsy is the gold standard for determining myocardial fi-
brosis, despite its invasive and inconvenient properties. In
addition, the diagnosis of myocardial fibrosis by endomy-
ocardial biopsy can be challenging due to its low diagnos-
tic yield, especially for diffuse myocardial fibrosis [16,17].
In the past, imaging examination such as electrocardiogram
and echocardiography were applied to observe cardiac elec-
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Fig. 1. Cellular process of myocardial fibrosis after myocardial infarction. Repairing macrophages are recruited to engulf apoptotic
neutrophils, and release inhibitory transmitters such as transforming growth factor-β and other potent inflammatory inhibitors. These
factors can induce the activation of resting fibroblasts with higher expression of fibroblast activation protein (FAP), and trigger the
profibrotic process. While cardiac scar tissue maintains the structural integrity and pressure-generating capacity, persistent myocardial
fibrosis leads to adverse changes in the structure and compliance of the ventricles, resulting in the progression of heart failure (HF).

trical conduction, cardiac structure, and function. In recent
years, novel imaging techniques have provided more evi-
dence for determining the characteristics of myocardial tis-
sue, such as single-photon emission computed tomography
(SPECT) and cardiac magnetic resonance (CMR). Differ-
ent imaging tests have their unique features. Since multi-
modality imaging plays an important role in the initial as-
sessment and diagnosis of myocardial fibrosis, here we dis-
cuss current available noninvasive imaging techniques and
their values in guiding clinical treatment and improving pa-
tient outcomes.

2. Echocardiography
Echocardiography, based on the principle of ultrasonic

ranging, is a preferred non-invasive technique to examine
the anatomical structure and function of the heart and great
vessels [18]. Echocardiography has outstanding advantages
such as convenience, rapidity, and non-invasively bedside
use. Fibrosis can be hinted when structural and functional
changes such as abnormal myocardial thickening, and sys-
tolic or diastolic dysfunction are observed [19]. The strat-
egy of integrated backscatter analysis (IB) in standard 2-
dimensional (2D) ultrasound images is the first attempt for
noninvasive evaluation of myocardial fibrosis after infarc-
tion using echocardiography [20]. It measures two param-
eters of ultrasonic tissue characterization: the amplitude of

the cardiac cycle-dependent variation of the backscatter in-
tegral signal (cdv-IB) and the mean value of IB [21]. IB
signal calibrated by the backscatter power from the peri-
cardium. Moreover, in patients with dilated or hypertrophic
cardiomyopathy, m-IB during a cardiac cycle was reported
to correlate with the severity of myocardial fibrosis [22].
The intensity of septal IB signal increases in patients with
hypertrophic cardiomyopathy (HCM). As a marker of inter-
stitial fibrosis, it is associated with a progressive increase in
Doppler parameters related to ventricular stiffness such as
pulmonary venous backward velocities and mitral peak ve-
locity at atrial contraction [23]. Losi and colleagues [23]
further showed that in HCM patients, the occurrence of
ventricular tachyarrhythmias was significantly associated
with higher IB signal rather than septal thickness. In addi-
tion, echocardiographic measurements based on backscat-
ter techniques include signal intensity coefficient (SIC),
which utilizes the greyscale signal intensity values gen-
erated at the myocardium-pericardium interface resulting
from interactions between the ultrasound signal and my-
ocardial tissue [24]. SIC produces measurable differences
between diseased and healthy myocardium. In populations
carrying genetic variants associated with HCM, SIC values
significantly correlate with left ventricular (LV) hypertro-
phy [24]. However, this observation is not applicable in
patients with coronary artery disease. Higher calibrated in-
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tegrated backscatter (cIB) was not confirmed as a marker
of increased myocardial fibrosis, but was associated with
higher soluble vascular endothelial growth factor receptor-
1 (sVEGFR-1) and soluble receptor for advanced glycation
end products (RAGE) plasma levels. Meanwhile, corre-
lation between cIB and myocardial fibrosis has not been
proven by histological examination and CMR evaluation
[25,26].

2.1 Pulse-Cancellation Echocardiography

In 2016, Dr. Gaibazzi and colleagues [19,27] at-
tempted to identify myocardial scar or fibrotic areas us-
ing “echocardiographic scar” (eScar). This technique com-
bined 2D ultrasound imaging with multipulse modulation
and inversion to achieve a higher spatial and temporal reso-
lution than 3D imaging. Compared with standard harmonic
imaging, eScar is designed to distinguish scars from normal
myocardium. Using the CMR-late gadolinium enhance-
ment (LGE) technique as reference, eScar has been proven
to be able to identify the presence and location of cardiac
scars in patients with ST-elevation myocardial infarction
(STEMI) [19]. While, sensitivity in apical myocardial seg-
ments, quality of image, and gain dependence are still note-
worthy problems for eScar echocardiography [19]. Never-
theless, eScar has been applied in the prediction of appropri-
ate implantable cardioverter-defibrillator (ICD) shocks in
patients after myocardial infarction [28]. Intriguingly, eS-
car also shows the ability to assess subclinical myocardial
involvement and predict disease activity in patients with
systemic lupus erythematosus (SLE), an autoimmune dis-
ease involving multiple systems throughout the body [29].
In this pilot study, eScar identified myocardial scars at the
inferoseptal myocardial segments in 19% of SLE patients
while in none of the controls. Therefore, as a rapid and in-
expensive technique, eScar can be routinely applied in rou-
tine clinical practice for cardiac monitoring in patients with
multi-organic diseases such as SLE [29].

2.2 Two-Dimensional and Three-Dimensional Speckle
Tracking Echocardiography

Myocardial strain including global longitudinal strain
(GLS), global circumferential strain (GCS), global radial
strain (GRS) and tangential strain (TS) from the scatter-
tracking technique have been applied to assess fibrotic my-
ocardium [30]. In general, GLS are recommended as the
most sensitive myocardial deformation parameter, which
reflects impaired subendocardial fibres [31]. Using CMR
as a reference, echographic GLS is significantly related to
the estimated degree of fibrosis in patients with HCM [31],
and Anderson-Fabry disease [32,33], and heart transplant
recipients [34]. However, similar correlations were not ob-
served between GCS, GRS and myocardial fibrosis.

Patients with advanced heart failure prominent present
with right ventricular (RV) enlargement, increased myocar-
dial fibrosis and systolic dysfunction. Myocardial defor-

mation of the RV free wall is one of the most accurate
functional indicators and is associated with RV myocardial
fibrosis and functional capacity [35]. Longitudinal strain
from speckle tracking echocardiography has been proven
useful in assessing the severity of right ventricular fibrosis
[36].

Novel parameters including mechanical dispersion
and myocardial work are able to offer additional possibil-
ities for the evaluation of myocardial fibrosis. Both me-
chanical dispersion (the standard deviation of the time to
peak negative strain in LV segments) and myocardial work
(reflects the stroke work of the pressure-strain circuit by
combining LV deformation and afterload information) have
been reported in pilot studies as stronger predictors of LV
myocardial fibrosis compared to GLS [37,38].

3. Cardiac Magnetic Resonance (CMR)
CMR has become the preferred imaging modality for

evaluating myocardial fibrosis due to its ability in soft tis-
sue characterization. T1-weighted images for scar and T2-
weighted images for edema visualization are essential se-
quences to characterize soft tissue [39]. CMR imaging-
derived parameters, particularly by LGE and T1 mapping
sequences, are widely used to identify fibrotic myocardium.
LGE can depict local replacement myocardial fibrosis as
seen in large focal post-infarct scars, while T1 mapping has
the potential in detecting and quantifying diffuse myocar-
dial fibrosis, since it evaluates the T1 relaxation time of my-
ocardial tissue [40].

3.1 Late Gadolinium Enhancement
LGE is a clinically useful non-invasive CMR se-

quence for the detection of focal cardiac fibrosis. The re-
duced density of capillaries in the fibrotic myocardial tis-
sue leads to a higher concentration of the contrast agent re-
tained in the fibrotic region [41]. Graphically, fibrotic tis-
sue was significantly enhanced on LGE images compared
to normal myocardial tissue [42]. In patients with myocar-
dial infarction, a delayed contrast enhancement bymagnetic
resonance imaging (MRI) was recommended to distinguish
viable from non-viable myocardium throughout the infarct
healing process [43]. Furthermore, a significant correla-
tion was found between LGE and collagen deposition in
the myocardial tissue, which is an indirect indication of fi-
brosis severity as measured by extracellular matrix volume
[44,45].

The use of LGE is rapidly expanding to assess my-
ocardial fibrosis in cardiomyopathies [46]. Several patterns
of LGE that are distinct from ischemic cardiomyopathy
have been identified. However, these patterns are not spe-
cific enough to be used as diagnostic criteria [47]. Around
one third of patients with dilated cardiomyopathy presented
non-ischemic LGE pattern (mid-lateral or subepicardial),
which is also a predictor of adverse cardiovascular events,
including heart failure, ventricular arrhythmias, sudden car-
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diac death (SCD) and all-causemortality [48]. Patchy fibro-
sis in the mid-ventricular layer is the typical pattern charac-
terized by LGE in patients with HCM [49]. Epidemiologi-
cal study has shown that HCM-related myocardial fibrosis
is closely related to arrhythmia, and is remarkably associ-
ated with subsequent SCD after adjusting for other risk fac-
tors [49]. Moreover, a recent meta-analysis demonstrated
LGE as the single best imaging marker to predict adverse
outcomes in HCM patients [50].

In addition to risk prediction, the severity of myocar-
dial fibrosis assessed by LGE CMR can be used to guide
clinical treatment, such as optimization of the timing of ICD
implantation [51]. In addition, LGE CMR-based assess-
ment of myocardial fibrosis plays an important prognostic
role in aortic stenosis, Eisenmenger’s syndrome, hyperten-
sion and diabetes mellitus [52,53].

Despite increasing applications of LGE CMR, the set-
ting of intensity threshold for cardiac fibrosis by LGE imag-
ing is still not clear in clinical practice [44]. Scarred my-
ocardium is defined as higher signal intensity than nor-
mal myocardium in LGE, and official guidelines advocate
a threshold of 2-standard deviation (SD) [54]. However,
other techniques also can be applied, including the 3, 4, 5,
or 6 SD method, manual quantification (mapping the re-
gion of interest around the scar), and the full width at half
maximum (FWHM) technique that uses half of the maximal
signal within the scar as a threshold. LGE volume varied
substantially depending on the quantification method used.
The 2-SD technique produced a 2-fold higher LGE volume
than the FWHM, 6-SD and manual techniques, while the
FWHM technique displayed the best reproducibility [55].

Additionally, since the LGE interpretation is based on
the difference of contrast agent distribution among tissues,
the application in diffuse myocardial fibrosis detection was
not feasible. Also, the increased extracellular matrix due to
inflammation and edema may lead to interpretation errors
in the assessment of fibrotic myocardium [44].

3.2 T1 Mapping

T1 mapping technique has the advantage in detecting
diffuse myocardial fibrosis resulting from valvular disease
or various cardiomyopathies. In contrast to LGE, T1 map-
ping does not depend on the contrast between normal and
scarred myocardium. It provides a quantitative assessment
of the tissue characterization based on a fully quantitative
pixel analysis. In combination with hematocrit, these data
allowed the quantification of extracellular volume (ECV)
to evaluate myocardial fibrosis. ECV fits well with the his-
tological extracellular space. Both T1 mapping and ECV
has shown high reproducibility in detecting and quantify-
ing histological collagen volume fractions [56].

Alternative fibrosis often occurs after myocardial in-
farction, and T1 mapping sequence can dichotomously
identify infarct areas as a potential tool for measuring in-
farct size [57], which showed good agreement between

native T1 mapping and LGE imaging modality [58]. In
patients with severe aortic valve disease, diffuse myocar-
dial fibrosis assessed by anterior septal-basal ECV corre-
lates with histological myocardial fibrosis. Prolonged T1
value and elevated ECV can also be detected in dilated car-
diomyopathy suggesting the presence of myocardial fibro-
sis occurrence [59]. T1 and ECV in detecting fibrosis have
also been studied in hypertrophic cardiomyopathy. Even in
the absence local LGE and hemodynamic obstruction, pro-
longed myocardial T1 and increased ECV suggest diffuse
myocardial fibrosis in patients with HCM, which is also as-
sociated with left ventricular hypertrophy [60]. Native T1
and ECV quantification show high diagnostic performance
for cardiac amyloidosis and can be used as non-invasive
markers to assess disease severity and prognosis [61,62].
The location and pattern of fibrosis favor the separation be-
tween healthy and fibrotic myocardium [63] and can dis-
tinguish hypertrophic cardiomyopathy from other hyper-
trophic heart diseases such as hypertensive heart disease
[64].

Although CMR is currently the recommended imag-
ing modality for clinical detection of myocardial fibrosis,
patients with metal implants or pacemakers are prohib-
ited to undergo CMR examination. Claustrophobic patients
who have difficulty in overcoming psychological barriers to
accept long time onboard examinations, and patients with
congestive heart failure are usually not able to tolerate pro-
longed lying down. Moreover, normal range of T1 thresh-
old is sensitive to the physical properties of contrast agent,
acquisition time, and renal function and hematocrit of pa-
tients [44].

4. Computed Tomography (CT)
Recently, animal and clinical studies have demon-

strated the feasibility of contrast enhanced CT in detecting
fibrosis by CT delayed enhancement (CT-DE). The prin-
ciple of CT-DE is similar to that of CMR LGE [65]. CT-
DE allows quantitative assessment of ECV to evaluate fi-
brosis. CT-based ECV quantification is effective in assess-
ing myocardial fibrosis, showing a strong correlation with
CMR findings. CT-ECV also displayed high diagnostic ac-
curacy in distinguishing LGE-positive from LGE-negative
segments [65]. Furthermore, previous study indicated that
CT was able to assess myocardial fibrosis in cases where
CMR is not available, which still requires verification by
further large-scale studies [66]. However, despite excellent
specificity, the clinical use of CT-DE is limited by its low
sensitivity. The study by Bettencourt et al. [65] showed a
sensitivity of 53% and a specificity of 98% in 105 patients
with suspected coronary artery disease.

Although higher volume of iodinated contrast agents
and lower energies improve spatial resolution, the contrast
difference between normal and infarcted myocardium de-
tected by CT-DE is suboptimal compared to CMR [67]. To
circumvent this limitation, dual-energy CT improves the
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Fig. 2. Multimodality imaging assessment of myocardial fibrosis. The multimodality imaging approaches that are able to assess
myocardial fibrosis in clinical practice. LGE, CMR-late gadolinium enhancement; PET, positron emission tomography; MRI, magnetic
resonance imaging; ECV, extracellular volume; CT, computed tomography; SPECT, single-photon emission computed tomography.

characterization of tissue composition and image quality by
using an X-ray source that emits 2 different spectra or by
employing a 2-layer detector to achieve continuous acqui-
sition of CT in different photon spectra [68].

5. Nuclear Medicine
Nuclear medicine a well-established advanced imag-

ing modality for the diagnosis, and evaluation of cardio-
vascular disease. The combination of radionuclide imaging
with biologically targeted molecules provides unique in-
sight into disease mechanisms at the molecular level, which
allows an early detection of damaged myocardium before
pathological changes occur.

Myocardial fibrosis is recognized as excessive depo-
sition of collagen. The collagen-targeted contrast agent
is the first targeted probe for the detection of myocardial
fibrosis after a heart attack. 99mTc-streptavidin-coupled-
collagelin and 99mTc-CBP1495 are two collagen-targeting
peptide tracers that have relatively high affinity for colla-
gen. Significantly increased uptake of these tracers was

observed in fibrotic tissues of rat models [69]. However,
collagen-targeted peptides can only show the late products
of myocardial fibrosis, and thus they are not sensitive for fi-
brosis detection at earlier stages of the disease. It is also not
possible to determine whether myocardial fibrosis is ongo-
ing. Velikyan et al. [70] recently reported a 68Ga-labelled
collagelin analogue, which showed promises for the detec-
tion of early active fibrosis by binding to monomeric col-
lagen before the collagen fibres mature. However, there is
still plenty of uncertainty for clinical application.

Molecular targets of activated fibroblasts at early dis-
ease stages are predictive of the extent and severity of car-
diac fibrosis. In a rat model of myocardial fibrosis, an-
giotensin II (Ang II) was highly expressed in activated
macrophages and myofibroblasts. Through acting on Ang
II type 1 receptors (At1R), Ang II induced the expression of
TGF-β, which is the growth factor most closely associated
with the development of tissue fibrosis [71]. Positron emis-
sion tomography (PET) experiments using 11C-KR31173
in a porcine myocardial infarction model suggested that the
radioactive probe detection of At1R is feasible. The appli-
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cation in human were safe, and showed detectable retention
of specific myocardial markers, but at lower levels than that
in pigs [72]. Cy5.5-Arg-Gly-Asp (RGD) imaging peptide,
a targeting marker for myofibroblasts, can also display in-
terstitial changes in myocardial remodeling and assess fi-
brosis in response to anti-angiotensin therapy [73]. In the
early post-myocardial infarction period, the range of tracer
uptake measured by 99Tc-RGD imaging after 3 weeks is
comparable to that of CMR imaging. The scar size shown
by 99Tc-RGD imaging predicts the eventual scar formation
after myocardial infarction.

Fibroblast activation protein (FAP) is expressed at
high levels in activated fibroblasts and shows low expres-
sion in most normal organs [74]. Radioactively labeled
fibroblast activation protein inhibitor (FAPI) is developed
to detect activated fibroblasts and initially shows great
promise in the diagnosis and treatment of cancer patients.
The application of FAPI in cardiovascular disease began
with the incidental observation of FAPI in cancer patients
by PET. A correlation between tracer uptake and reduced
ejection fraction has been observed by FAPI-PET imaging
in patients with metastatic cancer [75]. FAPI binds to FAP
and accumulates strongly in tissue with high fibroblast ac-
tivation, showing a high bright signal compared to normal
myocardium, with a low background signal. By exploiting
the molecular characteristics of myocardial fibrosis, where
fibroblasts are highly activated to produce collagen fibers,
FAPI can be used as a specific target for the management
and treatment of cardiovascular disease. More recently, it
has been utilized in murine models and in humans for the
assessment of myocardial fibrosis following myocardial in-
farction (MI) [76–78]. Serial imaging with 68Ga-FAPI in
a MI model established by coronary artery ligation showed
intense radiotracer uptake around the infarcted area, and the
uptake peaked at day 6 [76]. In the study by Zhang et al.
[79] aseline uptake volume (UV) was a powerful predic-
tor of LV remodeling at 1 year after STEMI in 26 patients
with ST-segment elevation myocardial infarction (STEMI)
who underwent Ga-DOTA-FAPI-04 PET (OR = 1.048, p =
0.011). Lyu et al. [80] found that FAPI imaging was able to
detect myocardial fibrosis in diabetic, obese and elderly pa-
tients, providing additional evidence for early intervention
and clinical decision-making in the management of patients
at elevated risk of CVD.

In addition, 68Ga-FAPI PET has been used in a rat
model of HF to visualize myocardial fibrosis and monitor
HF progression [79]. A study by Guokun Wang et al. [81]
showed that fibroblast activation in the heart and liver after
pressure overload could be monitored using 68Ga-FAPI-04
PET/CT and that this non-invasive technique was a better
predictor of subsequent worsening of heart failure. FAP ac-
tivity is heterogeneously increased in the myocardium of
patients with hypertrophic cardiomyopathy, and their PET-
measured FAPI uptake is a potential predictor for 5-year
risk of sudden death from cardiovascular causes [82].

However, the cost of test, the worries about radiation,
and the poor understanding of nuclear medicine have lim-
ited its use clinically. In the future, if these obstacles can be
overcome, it will open a new era of targeted treatment and
management of patients with myocardial fibrosis.

6. Conclusion and Future Perspective
Early detection and targeted treatment of myocardial

fibrosis is essential to improve clinical outcomes in patients
with cardiovascular diseases. Multimodality non-invasive
imaging approaches can directly or indirectly evaluate the
presence and severity of cardiac fibrosis, with advantages
and disadvantages of each technique summarized in Fig. 2.
In summary, CMR is the gold standard for noninvasive de-
tection and quantification of myocardial fibrosis in clinical
practice, whereas other techniques show promises as valu-
able alternatives. Molecular imaging is developing rapidly
and has been a promising technique not only for studying
pathological mechanisms, but also for investigating the ef-
ficacy of individualized therapeutic regimens to meet the
growing need for precision medicine. All the progresses
made in the development of novel radiopharmaceuticals tar-
geting specific cardiovascular molecules indicated that the
revolution in personalized medicine has only just begun.
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