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Abstract

Catheter ablation (CA) is considered as one of the most effective methods technique for eradicating persistent and abnormal cardiac
arrhythmias. Nevertheless, in some cases, these arrhythmias are not treated properly, resulting in their recurrences. If left untreated,
they may result in complications such as strokes, heart failure, or death. Until recently, the primary techniques for diagnosing recurrent
arrhythmias following CA were the findings predisposing to the changes caused by the arrhythmias on cardiac imaging and electro-
cardiograms during follow-up visits, or if patients reported having palpitations or chest discomfort after the ablation. However, these
follow-ups may be time-consuming and costly, and they may not always determine the root cause of the recurrences. With the introduc-
tion of artificial intelligence (AI), these follow-up visits can be effectively shortened, and improved methods for predicting the likelihood
of recurring arrhythmias after their ablation procedures can be developed. AI can be divided into two categories: machine learning (ML)
and deep learning (DL), the latter of which is a subset of ML. ML and DL models have been used in several studies to demonstrate
their ability to predict and identify cardiac arrhythmias using clinical variables, electrophysiological characteristics, and trends extracted
from imaging data. AI has proven to be a valuable aid for cardiologists due to its ability to compute massive amounts of data and detect
subtle changes in electric signals and cardiac images, which may potentially increase the risk of recurrent arrhythmias after CA. Despite
the fact that these studies involving AI have generated promising outcomes comparable to or superior to human intervention, they have
primarily focused on atrial fibrillation while atrial flutter (AFL) and atrial tachycardia (AT) were the subjects of relatively few AI studies.
Therefore, the aim of this review is to investigate the interaction of AI algorithms, electrophysiological characteristics, imaging data, risk
score calculators, and clinical variables in predicting cardiac arrhythmias following an ablation procedure. This review will also discuss
the implementation of these algorithms to enable the detection and prediction of AFL and AT recurrences following CA.

Keywords: artificial intelligence; atrial fibrillation; atrial flutter; atrial tachycardia; atrial arrhythmias; post ablation; catheter ablation;
machine learning; deep learning

1. Introduction
Atrial arrhythmias are abnormal heart rhythms that oc-

cur in the upper right and left cardiac chambers. Typically, a
normal sinus rhythm begins with an impulse generated at an
optimal discharge rate in the sinoatrial node. The impulse
then travels through the atrioventricular node, the bundle of
His and to the left and right bundle branches before reaching
the Purkinje fibres. Any generated impulse that discharges
either too quickly, too slowly or out of order contributes
to the emergence of an arrhythmia [1]. Arrhythmias can
be categorised as either slow or fast heart rhythms, the sig-
nificance of which can be accentuated by the presence of
a structural heart disease. This can lead to severe compli-
cations such as worsening arrhythmias, stroke, heart fail-
ure, or even death [2]. Therefore, treatment of cardiac ar-
rhythmias is of paramount importance. Typically, pharma-
cological methods or catheter ablation (CA) are used. Ev-
idence suggests that CA employing heat (radio frequency)
or cold (cryoablation) techniques to create scars in the heart

to block abnormal impulses is superior to standard pharma-
ceutical treatments [3,4]. Ablation is successful when no
arrhythmias causing symptoms persist for more than 30 sec-
onds following the procedure [5]. However, in some cases,
these arrhythmias may persist or worsen after CA, necessi-
tating another ablation procedure.

In a post-ablation setting, physicians deal with three
recurrent arrhythmias: atrial fibrillation (AF), atrial flut-
ter (AFL), and atrial tachycardia (AT) [6–8]. These recur-
ring arrhythmias are often detected after the ablation proce-
dure, either through follow-up visits or patient complaints
of chest pain or palpitations. To detect any significant
changes that may predispose to recurring arrhythmias, pa-
tients must undergo a multitude of tests and examinations,
including electrocardiogram (ECG), cardiac imaging tests
such as transesophageal echocardiography (TEE), transtho-
racic echocardiography (TTE) and cardiac magnetic res-
onance (CMR), laboratory testing such as NT-pro B-type
Natriuretic Peptide (NT-proBNP), and calculated risk score
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evaluations. This, in turn, leads to a significant number of
follow-up visits. These visits can be time consuming and
costly, particularly if the causes of the arrhythmias are ob-
scure, challenging to detect, or unidentified.

In order to deal with these recurrences, it is vital to pre-
dict potential recurrences following any ablation treatment.
Arrhythmia patterns on ECG, specifically p-wave morphol-
ogy, have been demonstrated to be predictive of future ar-
rhythmia recurrence [9,10]. Changes observed on cardiac
imaging modalities such as atrial enlargement and impaired
function have also been linked to the development of these
arrhythmias [11–13]. Risk calculators were developed and
implemented to assess the likelihood and prediction of these
recurring atrial arrhythmias using a combination of data ac-
quired from cardiac imaging and electrophysiological stud-
ies, as well as easily acquired variables such as age, gen-
der, smoking status, hypertension and other comorbidities
[14–17]. Computational or manual interventions have been
used to establish a relationship between these features using
a flowchart approach and the likelihood of recurrence using
statistical testing [18]. However, there are an array of draw-
backs to physically examining these traits in order to iden-
tify or predict any potential risks of arrhythmia recurrences,
including (i) omitting some important parameters, (ii) not
using enough data to accurately produce a conclusive re-
sult, and (iii) failing to identify ECG changes or changes
on imaging modalities that predispose to the development
of an arrhythmia. This ultimately prompted the search for
a better substitute for these computational or observational
methods, which led to the development of AI.

Utilisation of artificial intelligence in clinical investi-
gations is no longer uncommon. It has been used to anal-
yse massive data sets consisting of health records, medical
imaging, population data, and clinical trial data to uncover
correlating patterns, predict outcomes, and provide better
patient management strategies [19]. Implementing AI for
screening cardiac disease is a subject of intense debate in the
medical and clinical research communities. The standard
methods for the screening for atrial arrhythmias are costly,
time-consuming, and a financial strain to patients. Con-
sequently, machine learning (ML) and deep learning (DL)
(the latter also known as artificial neural network [ANN]),
two major subfields of AI, can be utilized for this purpose
because they are non-invasive, faster and more effective
than conventional methods. This makes AI an appealing
option to both the patient and the physician.

As more data in hospitals is gradually being digital-
ized, the role of AI is growing. AI can access hospital and
web databases, learn from them, and employ appropriate
algorithms to calculate outcomes from any abnormalities
that they have previously analysed or detected in a real-
world clinical setting. ML and ANN have been shown to
effectively and simultaneously analyse electrocardiograms,
imaging findings, and variables from risk score calculators
in detecting and predicting atrial arrhythmias, producing re-

sults comparable to those of a human expert [20–23]. Their
post-ablation use for predicting recurring arrhythmias is un-
der intensive investigation due to their ability to detect sub-
tle changes that a typical physician may overlook or find
incomprehensible [24–26]. This review examines and dis-
cusses AI technology that has been used in prior studies for
the detection and prediction of atrial arrhythmias following
CA, based on parameters from electrophysiology, medical
imaging, and variables from risk score calculators to target
specific post-ablation recurrences of AF as well as AFL and
AT, both of which have been previously overlooked.

2. Types of AI Algorithms Involved in
Medical Studies

AI uses advanced computerised methods to perform
tasks capable of rivalling human intelligence. They can be
used for visual interpretation, speech recognition, decision-
making, and translation of languages. Medical tasks are
associated with clinical decisions and imaging analysis to
search for medical data that benefit healthcare outcomes.
AI methods principally consist of ML and ANN.

ML is based on algorithms that develop automatically
through a gradual process of learning from data, visualising
patterns, and making judgments [19]. It parses and learns
from input data using a combination of computational and
statistical methods to produce an output that is not visible
by conventional statistical techniques. There are two types
ofML inmedical science: supervisedML and unsupervised
ML. A general overview on the differences between the two
variants of ML has been illustrated in Fig. 1. Supervised
ML is distinguished by how it trains computers to clas-
sify data accurately or predict outcomes using labelled (ar-
ranged) datasets. The algorithms involved in this ML deal
mostly with classification or regression purposes. Standard
algorithms include Support Vector Machine (SVM), Lo-
gistic regression, Least Absolute Shrinkage and Selection
Operator (LASSO) regression, Naive Bayes, Random For-
est, and k-nearest neighbour (k-NN). In medicine, super-
vised ML has been widely used, particularly to determine
which features can help doctors make correct diagnoses of
diseases they suspect. A study was conducted with a su-
pervised ML algorithm trained with several ECG features
to distinguish AFL from other atrial arrhythmias, and the
ML algorithm performed very well in this task [27]. Unsu-
pervised ML uses unlabelled input data to infer patterns by
extracting features from raw data without the need to rear-
range the data. The most common purpose of unsupervised
ML consists of clustering or association issues. Its ability to
process results from data that has not been labelled makes
it more and more important in medicine, primarily image
analysis. K-means clustering is the most employed method
of unsupervised ML in clinical studies [28,29].

ANN or DL, is a subset of ML, inspired mainly by
the human nervous system. These types of AI models con-
sist of three primary layers: an input layer, a hidden layer,
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Fig. 1. The basic differences between a supervised ML and an unsupervised ML.ML, machine learning.

and an output layer, with each layer consisting of several
nodes. The input layer deals with data input, such as vari-
ables, signals, or images, while the hidden layer is involved
in altering weights during training based on accurate or in-
correct judgments as it processes the input data. The output
layer will display the processed data, which consists of the
best-estimated value or probability [19,30]. A slight dif-
ference between DL and ANN is that DL has more hidden
layers than ANN. However, both entities may exist as feed-
forward neural networks and backpropagation. A feedfor-
ward neural network occurs when data is fed to all the nodes
in the next layer rather than circulating within the layer. In
backpropagation, data circulates within the same layer or is
sent back to the previous layer [31]. DL can be also split
into supervised and unsupervised DL. Supervised DL uses
labelled data, such as clinical variables, images, or signals,
to perform data processing and calculations while unsuper-
vised DL involves extracting features from an unlabelled
dataset without human intervention.

Convolutional Neural networks (CNN) and Recurrent
Neural Networks (RNN) are the common forms of DLmod-
els used inmedical science. CNN is a supervisedDLmodel,
which has been recognized for image and signals analysis,
such as ECG signal analysis and cardiac imaging [32–35].
RNN is most suited for data sequencing and is primarily
used in time series analysis, handwriting recognition, and
machine translation, making it useful for studies involved in
prediction or prognosis [36]. This type of DL algorithm can
exist as supervised and unsupervised. Autoencoders are un-
supervised DL algorithms primarily associated with medi-
cal studies [37]. The key differences of DLmodels overML
models include their ability to learn high-level features from
data and eliminate pre-processing of data involved withML
models. However, these models require large datasets to
produce acceptable results.

The field of ML and DL techniques is vast. For a bet-
ter understanding of these methods, the various supervised
and unsupervised ML and DL algorithms that are currently
being employed in studies, using AI in medicine, have been
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compiled. Table 1 (Ref. [19,38–49]) provides a brief sum-
mary of the names of commonly used AI algorithms used
in medical studies, along with their advantages and disad-
vantages. This may aid in understanding why some AI al-
gorithms are better suited for particular types of investiga-
tions.

The results provided by these AI algorithms are typ-
ically presented using metrics such as area under curve
(AUC), area under receiver-operator characteristic (AU-
ROC), concordance statistics (C-statistics), sensitivity,
specificity or accuracy. Accuracy depicts the ability of the
model to correctly identify positive cases from a dataset.
Sensitivity aims to measure the amount of positives present
while specificity targets the amount of negatives in the sam-
ple. AUC denotes the degree or measure of separability and
is calculated by calculating the area under the curve in a
graph of sensitivity [y-axis] against ‘1-specificity’ [x-axis].
An AUC of 1 stipulates that the model can categorise obser-
vations into classes perfectly while that of 0.5 performs no
better than a model using random determinations [50,51].
The C statistic calculates the likelihood that a randomly se-
lected subject who received the result would have a higher
predicted probability of receiving the result than a randomly
selected subject who did not receive the result and is simi-
lar to AUROC. As in AUC, a value of less than or equal to
0.5 denotes poor performance, and a value of 1 denotes the
ideal model [52,53].

3. Detection and Prediction of Atrial
Arrhythmias by Artificial Intelligence
3.1 Electrophysiology

ECG is the cheapest technique employed to confirm
the presence of any atrial arrhythmia. Computerized ECG
interpretation models have enhanced the physician’s ability
to read ECGs more rapidly. These models are universally
used in all hospitals, although they tend to be inaccurate,
and over-reliance on them may lead to a wrong treatment
strategy and unnecessary testing [54]. A symptomatic di-
agnosis of AF is confirmed by the absence of P waves and
the presence of multiple fibrillatory waves between vary-
ing R-R intervals [55]. As these electrocardiographic fea-
tures are sometimes absent in patients who are either at high
risk of developing AF or have recurrence from a previous
CA, it was crucial to develop a method which might de-
tect changes that could indicate a high risk of recurrent AF.
P wave morphology, amplitude, duration and P-R interval
were identified as probable predictors of AF on ECGs and
were subsequently used to detect and predict risks of de-
veloping AF [9,10]. Even if the physician is able to use
these electrophysiological features to correctly predict the
likelihood of AF in high-risk patients, the ECG changes are
occasionally subtle and imperceptible.

AI methodologies, on the other hand, have demon-
strated the ability to identify or predict the likelihood of
AF in high-risk patients by detecting very subtle changes

in ECGs that may be overlooked or dismissed as a normal
finding [25,33,56–58]. These studies paved the way for fur-
ther research into the predictors of recurrent AF following
CA. Tang et al. [59] investigated the ability of a DL model
trained on a standard 12-lead ECG to predict AF recurrence
one year after CA. In identifying subtle ECG changes that
could be predictive of recurrent AF after CA, the model
achieved an AUROC of 0.767, a sensitivity of 0.812, and
a specificity of 0.770. AF drivers, which are responsible
for sustaining arrhythmias, are usually targeted and termi-
nated on CA [60]. While ECGs are usually performed af-
ter the procedure to assess their efficacy, subtle signal vari-
ations may still be present, indicating that the AF drivers
have not been completely ablated. Luongo et al. [61] used
ML techniques on a standard 12-lead ECG to distinguish
between pulmonary veins (PV)-related AF drivers and non-
PV drivers. Their ML classifier was able to identify subtle
variations in PV driver patterns that might result in an AF
recurrence after CA with a sensitivity of 73.9% and a speci-
ficity of 82.6%. Although the origin of these AF drivers can
be mapped during non-invasive mapping [62], AI technol-
ogy can benefit surgeons with its in-depth ability to detect
very small changes that may indicate a recurrent focus for
an arrhythmia, allowing surgeons to reconsider their abla-
tion strategies.

Although the majority of AI-related studies have used
standard 12-lead ECG modalities, their capabilities on con-
tinuous ECG recording devices, also known as ambula-
tory devices such as implantable cardiac monitor (ICM)
or Holter monitoring devices, have also been evaluated
[34,63]. These devices can measure heart rate variability
(HRV), including both episodes of arrhythmias and sinus
rhythm, which has been identified as a useful method for
predicting post-ablation arrhythmia recurrences [64]. The
capabilities of AI methodologies were then investigated for
predicting AF recurrences after ablation. Saiz-Vivo et al.
[65] used ML techniques on HRV features collected from
an ICM to predict AF recurrences in CA patients. The AUC
of the ensemble classifier they used was 0.85, indicating
that HRV features like R-R interval variability and discrep-
ancies were predictors of post-ablation AF recurrence. The
authors utilised clinical variables in addition to ECG param-
eters. In another study, Zvuloni et al. [66] used ML mod-
els on HRV features on a conventional but continuous 12-
lead ECGmonitor used throughout the procedure to analyse
features on pre- and post-ablation ECGs to predict AF re-
currence after CA. Using HRV features indicative of post-
ablation AF recurrence, the model achieved an AUROC
of 0.60 and 0.67 in pre- and post-ablation ECGs, respec-
tively. The authors noted that the inclusion of demograph-
ics had raised their AUROC to 0.64 and 0.74, respectively,
for pre- and post-ablation ECGs. Both studies showed that
AI methodologies can detect subtle ECG changes in HRV
predictive of future AF recurrences, which can be easily
overlooked or dismissed as normal sinus rhythms.
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Table 1. A summary of the benefits and limitations about the types of supervised and unsupervised machine and deep learning algorithms mostly employed in medical studies.
Types of AI AI algorithms Benefits Limitations References

Supervised ML SVM Strong generalisation ability with a good discriminative power Low competence when dealing with large samples [38]
Logistic Regression Easy to implement and utilise Only two outcomes are possible [19,39]
LASSO Regression Can avoid overfitting of data Randomly selects few highly correlated covariates with the re-

sult and shrinks the rest to 0
[40]

Naive-Bayes Requires a small amount of training data Attribute independence is assumed but is often incorrect [41]
Random Forest Can handle both classification and regression tasks Computationally time demanding [42,43]
k-NN Can deal with noisy data, provided it has a large k value Slow runtime [44,45]

Unsupervised ML k-means Clustering Can deal with a large amount of data Requires advance specification on the number of data clusters [46]

Supervised DL CNN Detects features without human supervision Training requires a large amount of data [47]
Black box functionality (cannot understand the decision pattern
behind outcomes)

Supervised and unsupervised DL RNN Can be used to represent the relationship between data and time Training is difficult [48]
Gradient vanishing and exploding problems

Unsupervised DL AutoEncoders Reduces the dimensionality of the data used Performance can be adversely affected if the properties of the
training data is not similar to those of the testing data

[49]

SVM, Support Vector Machine; LASSO, Least Absolute Shrinkage and Selection Operator; k-NN, k Nearest Neighbour; CNN, Convolutional Neural Network; RNN, Recurrent Neural Network; ML,
machine learning; DL, deep learning; AI, artificial intelligence.
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AFL and AT, in addition to AF, can result in morbid-
ity and mortality. The presence of inverted F-wave patterns
in leads II, III, and a VF, as well as an upright F wave in
lead V1, usually confirms the diagnosis of AFL [67]. For
ATs, an ectopic P wave preceding a narrow QRS complex,
with a clear baseline confirms the diagnosis [68]. ML and
DL techniques have been applied to predict these atrial ar-
rhythmias, includingmorphological and durational changes
in P waves, and unusual changes in cycle length [69,70],
in order to identify and predict their likelihood in high-risk
patients. Luongo et al. [27] used ML techniques to iden-
tify the locations of the three main AFL mechanisms (CTI-
dependent, peri-mitral, and other LA classes) using a stan-
dard 12-lead ECG, achieving an accuracy of 76.3% and a
sensitivity of 89.7%, 75%, and 64.1% in identifying the re-
spective classes of AFL. Besler et al. [71] found that lead
V5 displayed ECG changes that could predict the likelihood
of AFL in high-risk patients with an accuracy of 98% us-
ing ML techniques. Other AI studies have focused only on
classifying or detecting the different classes of arrhythmias,
which include both AFL andAT, among others [72–75]. All
of these studies mention the possibility of AI models iden-
tifying and detecting subtle ECG changes in patients at risk
of AFL or AT.

However, AI studies predicting recurrences of AFL
and AT have remained elusive and uncertain. This could
be due to a lack of predictors that can predispose to AFL
and AT, or to their low recurrence rate when compared to
AF recurrence. Wang et al. [76] used an ML model on 158
patients who had previously undergone CA to detect sev-
eral classes of atrial arrhythmias such as AFL, AF, and AT,
and identified QT dispersion and ventricular rate as impor-
tant ECG features to achieve an AUC of 0.798, a sensitivity
of 77.27%, and a specificity of 84.29%. They also incor-
porated demographic and baseline variables into their AI
model in order to improve its prognostic accuracy. Given
how well these atrial arrhythmias can be classified and de-
tected, it may be possible to develop AI methodologies that
can forecast their recurrences after being CA. By making
the necessary adjustments, such as alterations to the ECG
patterns andwavemorphologies that are specific to these ar-
rhythmias, the same principles used for AF prediction may
be applied to AFL and AT.

3.2 Cardiac Imaging Modalities

Cardiac imaging modalities have allowed physicians
to assess the extent of structural and functional changes as-
sociatedwith atrial arrhythmias. Echocardiographicmodal-
ities such as TTE (transthoracic echocardiography), TEE
(transoesophageal echocardiography), or Doppler imaging
are typically performed at the first visit [77]. TTE is used
to assess cardiac anatomic structure and function, whereas
TEE is typically used to evaluate blood vessels. Doppler
echocardiograms measure and evaluate blood flow through
the chambers and valves of the heart. Advanced modalities

such as cardiac computer tomography (CCT) and CMR, are
reserved for detecting more subtle changes or when clearer
imaging is required. The majority of cardiac anatomic and
functional changes seen on medical imaging that are asso-
ciated with an increased risk of AF include increased left
atrial (LA) size and volume, structural heart disease, de-
creased Ejection Fraction, decreased LA strain, and dias-
tolic dysfunction [12,78,79]. Analysing these changes takes
time and requires a thorough knowledge of both cardiac
anatomy and the locations of key cardiac imaging land-
marks.

Given their ability to imitate human abilities in
analysing cardiac imaging modalities to identify structures
of interest, regardless of which imaging modalities they
were applied to, AI models, in particular DL models, have
recently been introduced into clinical practice. Not only
do they have the ability of integrating and processing large
amounts of images, but they can also learn from intricate
patterns and recognise them on these imaging methodolo-
gies much more efficiently than can humans [80,81]. AI
methodologies have shown promise in identifying relevant
structural changes, especially LA size, LA volume and LA
strain and atrial fibrosis, on cardiac imaging modalities that
could predispose to the development of AF [32,35,82,83].
Their abilities to identify structural modifications that could
predict a recurrence of AF after CA have also been in-
vestigated. Miao et al. [84] used DL techniques on
echocardiographic images to identify imaging features that
could predict AF recurrence after circumferential CA. Their
model demonstrated that echocardiographic features such
as changes in LA volume and LAA (LA appendage) emp-
tying velocity were predictors of AF recurrence risk with
a validation AUC of 0.878. Hwang et al. [85] combined
speckle-tracking echocardiography (STE) with DL tech-
niques to identify imaging modality features that might be
predictive of a post-CA AF recurrence. STE has the poten-
tial to quantitatively assess regional and global myocardial
function, irrespective of cardiac translation and anatomic
angles [86]. Their best DL model achieved an accuracy of
83.8%with a sensitivity of 85.3% and a specificity of 82.4%
in classifying outcomes after AF ablation upon examining
atrial strain and strain rate, both of which are measures of
myocardial contractility.

Intra cardiac echocardiography (ICE) is a type of
echocardiography that allows for the real-time visualisa-
tion and detection of structural changes in cardiac struc-
tures such as the PVs and interatrial septum. It is fre-
quently used during CA because it enables proper position-
ing of the circular mapping catheter, which helps to guide
the surgeon during the intervention, and serves as a mon-
itoring tool for adjusting the amount of energy delivered
to avoid tissue overheating, perforation, and lesion forma-
tion caused by the catheter tip [78]. This type of medical
imaging has recently been the subject of AI-related stud-
ies. Akerström et al. [87] investigated the feasibility of
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an ICE-based DL model in assisting with LA mapping and
ablation. With an accuracy of 69%, the model was able
to correctly identify all anatomical structures such as the
LA, LAA, and PVs. In a study by Schwartz et al. [88],
ICE was also used to build an AI algorithm capable of re-
constructing the anatomy of the LA for the CARTO™ sys-
tem, which is an advanced imaging technology that incor-
porates the electroanatomic map derived from ICE, as well
as real-time orientation and localisation of the catheter in
the heart, in addition to computer tomography angiogra-
phy (CTA). CTA is the gold standard for assessing the LA
prior to CA. With Kendall’s coefficients of concordance (a
non-parametric measure used for rank correlation) of 0.949,
0.926, and 0.940, respectively, the AI model was able to re-
construct the LA morphology, common ostia of PVs, and
the PV antrum. Both studies were able to demonstrate
that AI algorithms can aid in detecting real-time structural
changes associated with the risk of recurrent AF. Further
research on these modalities may help to validate the AI
models’ abilities to predict changes in real-time that may
be indicative of an AF recurrence after CA.

Advanced modalities such as CCT and CMR pro-
vide higher-resolution images that can isolate and visualise
the entire myocardium. These details make these imag-
ing modalities more suitable for detecting subtle changes in
the atrium and PVs, that may predict the risk of future ar-
rhythmias. Since computer tomography (CT) scans are rou-
tinely performed prior to an ablation procedure, structural
and functional irregularities in the heart may alert physi-
cians as to whether the patient is at high risk for the recur-
rence of arrhythmias. However, their main disadvantage
is that the patients are exposed to radiation, especially if re-
peated tests are required [89] as well as costly. With the use
of AI technology, only one test could be required, and al-
gorithms may be able to analyse the results in order to look
for structural changes that could predispose to a higher risk
for the recurrence of an arrhythmia. Liu et al. [90] used DL
techniques to develop a model to find AF triggers that are
not present in the PV from CT scans to help predict the re-
currence of arrhythmias following CA.When the variations
in the morphologies of the LA, RA, and PVs were used as
a criterion for judging which patients were at a high risk
of CA recurrence, the model’s accuracy was 82.4%, sen-
sitivity was 64.3%, specificity was 88.4%, and the AUC
was 0.82. Firouznia et al. [26] used ML techniques to
evaluate the morphologies of the LA and PVs of patients
undergoing CA to determine whether these characteristics
could predispose to an AF recurrence after CA. The AUC of
their best model, which combined both LA and PV changes,
was 0.87. Another study by Shade et al. [21], sought to
determine whether DL models on CMR, specifically late
gadolinium-enhanced CMR (LGE-CMR), could be used to
predict which patients are more likely to experience recur-
rence after CA prior to the procedure. Using a simulated
version of LGE-CMR, the DL methodology was able to ex-

tract characteristics indicative of a high risk of AF recur-
rence following CA, with a validation sensitivity of 82%, a
specificity of 89%, and an AUC of 0.82. These three stud-
ies demonstrated that AI methodologies have been able to
extract characteristics from cardiac imaging modalities to
assess the risks predisposing to the recurrence of AF. How-
ever, they have all been unable to identify those character-
istics that could actually predict the new onset of AF.

The future of using cardiac imaging techniques to de-
tect or predict AFL or AT is still uncertain. This is primarily
due to the fact that imaging characteristics that contribute to
AF are almost identical in AFL and AT. However, in some
cases, there are distinct structural and functional features
that distinguish AFL and AT from AF that have been de-
tected using these imaging methods. For example, right
atrial contractile and reservoir function, flutter movements
in the left posterior atrial wall, and loss of A wave on pulse
wave in Doppler imaging are functional features that are
characteristic of AFL [91–93]. A small study found that
a small LA size can increase the risk of AT [94]. Since
these studies only included on a small number of patients
and the characteristics were not consistently observed in
all patients experiencing these arrhythmias, more investi-
gations are necessary before cardiac imaging can be con-
sidered to be an effective method for identifying features
that may lead to the diagnosis of these atrial arrhythmias.
AI modalities may be useful in this context, but they will
need large datasets of images to uncover specific patterns
that may be unique to these arrhythmias.

3.3 Risk Calculators

Risk calculators are flowcharts that clinicians use to
determine the likelihood and severity of cardiovascular dis-
eases in patients [95]. Risk calculators in cardiac arrhyth-
mias are used to assess the likelihood of an arrhythmia oc-
curring and, to predict the patient demographics that pre-
dispose to recurring atrial arrhythmias. They are typically
composed of a combination of cardiac imaging data, elec-
trophysiological data, baseline demographic data such as
age and gender, as well as clinical variables like hyperten-
sion, smoking status, presence of comorbidities, and the
class of medications used by the patients. These risk cal-
culators are mainly based on patient health records, known
as electronic health records (EHR), because they have been
digitalised and preserved in databases that are easily acces-
sible [96]. A system of standardized data models has been
developed in order to significantly decrease the number of
factors to include the most important ones given the multi-
tude of variables currently present on available records [97].
This explains why EHR indices have been streamlined by
these data models, and why risk assessment tools primar-
ily utilize the vast majority of the data contained in these
electronic records. CHARGE-AF [98], FHS [15], HATCH
[16], and C2HEST [17] are a few examples of validated risk
assessment tools used to assess and predict the likelihood of
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Table 2. An overview of validated risk calculators and their attributes used for predicting AF in high risk patients.
Validated risk
calculators

Variables used Cohort size Results References

CHARGE-AF Age, ethnicity, height, weight, BP, smoking,
antihypertensive medication use, DM, HF, MI

111,475 C-statistics of 0.74 (95% CI:
0.73–0.74)

[98]

FHS Age, BMI, sex, PR interval, HF, murmur, systolic
BP, use of anti-hypertensive medication

49,599 Overall C-statistics of 0.734 (95%
CI: 0.724–0.744)

[15]

HATCH Hypertension, age, CVA/stroke, TIA, COPD, HF 692,691 AUROC of 0.771 (no 95% CI
provided)

[16]

C2HEST CAD, COPD, age, systolic HF, thyroid disease 1,047,330 AUC of 0.588 (95% CI: 0.585–591) [17]
AF, atrial fibrillation; BP, blood pressure; DM, diabetes mellitus; HF, heart failure; MI, myocardial Infarction; BMI, body mass index; CVA,
cerebrovascular accident; TIA, transient ischemic attack; COPD, chronic obstructive pulmonary disease; CAD, coronary artery disease; AUC,
area under curve; AUROC, area under the receiver operating characteristic; C-statistics, concordance statistics.

Table 3. A summary of the risk calculators mainly involved in assessing and predicting post-ablation recurrences of AF.
Risk calculators Variables used Cohort size Results References

CAAP-AF Age, LA size, type of AF, CAD, number
of previous antiarrhythmic drugs failed

1125 C-statistic of 0.691 (no 95% CI provided) [14]

APPLE Age, type of AF, impaired eGFR, LA
size, systolic LVEF

1406 AUC of 0.634 (95 % CI 0.600–0.668) [106]

SUCCESS Type of AF, no. of unsuccessful CA,
impaired eGFR, LA size, systolic LVEF

192 AUC of 0.657 (no 95% CI provided) [107]

ATLAS Age, sex, type of AF, smoking, LAV 1934 C-statistics of 0.75 (no 95% CI provided) [108]
AF, atrial fibrillation; LA, left atrium; CAD, coronary artery disease; CA, catheter ablation; LVEF, left ventricular ejection fraction;
eGFR, estimated glomerular filtration rate; LAV, left atrial volume; C-statistics, concordance statistics.

AF in high-risk patients. The general layouts of these risk
calculators are shown in Table 2 (Ref. [15–17,98]).

These patient records contain a plethora of informa-
tion, hence it was crucial only those vital demographics
to integrate into these cardiac risk calculators, as shown
above. The same procedure is not required for AI methods
as they have the capabilities of integrating and processing
a large amount of variables. Tiwari et al. [99] used an ML
approach to investigate 200 of the most common clinical
variables in EHRs to detect parameters suggestive of the
occurrence of AF. Utilizing demographics, comorbidities,
and other easily obtained clinical variables over a 6-month
period, the ML technique yielded an AUC of 0.79 for de-
tecting the occurrence of AF. In another study, Hill et al.
[100] applied AI methodologies on a cohort of 2.9 million
people to predict AF in a healthcare setting using data from
EHRs. Utilizing the same parameters as the former study
and adding time-varying factors such as blood pressure and
BMI, the latter model identified high-risk patients with an
AUROC of 0.827%. However, both authors acknowledged
that the omission of laboratory results in their investigations
may have contributed to the lower-than-anticipated predic-
tive values of their ML models.

Laboratory variables such as NT-proBNP, C-reactive
protein, and albumin have been shown to predict the de-
velopment of atrial arrhythmias [101–103]. Grout et al.
[104] found that adding a laboratory factor such as al-

bumin to their study resulted in better performance than
the above-mentioned previous studies, with their ML ap-
proach achieving a C-statistic value of 0.81 for predicting
AF in high-risk patients over a period of 2 years. Bundy
et al. [105] incorporated laboratory values, particularly
cardiac biomarkers, and used ML techniques to predict a
five-year risk of AF in high-risk patients. Although the
CHARGE-AF risk calculator was the main focus of the
study, other laboratory biomarkers such as troponin-T, NT-
proBNP, serum creatinine, and ECG were also taken into
consideration. The combination of the aforementioned
variables nevertheless achieved a C-statistic of 0.802 in pre-
dicting a five-year risk of AF in high-risk patients, despite
the fact that measurements of cardiac imaging modalities
such as CMR measurements of cardiac structures, which
can predispose to the development of an arrhythmia, had
been omitted. Nadarajah et al. [23] sought to develop a
risk calculator, FIND-AF, to detect and evaluate risk factors
that may be involved in predisposing to the development
of new AF from routinely collected data. This DL-based
risk score assessor used a total of 22 predictor variables, in-
cluding ECG features, laboratory variables, changes seen
on cardiac imaging, and baseline clinical variables, to pre-
dict AF in high-risk patients with an AUC of 0.827. These
three studies unequivocally demonstrate the importance of
incorporating imaging modalities and laboratory biomark-
ers into AI models for predicting the likelihood of develop-
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ing an arrhythmia. Incorporating these features into future
AI models may improve their ability to predict demograph-
ics that predispose patients to atrial arrhythmias.

On the basis of these tested risk calculators, a differ-
ent category of risk factor calculators was created specifi-
cally to predict the likelihood of AF recurrence after abla-
tion. Among them are the risk calculators CAAP-AF [14],
APPLE [106], SUCCESS [107], and ATLAS [108]. In ad-
dition to using data from EHRs similar to validated calcula-
tors, they also incorporate real-time variables. A summary
of those risk calculators is shown in Table 3 (Ref. [14,106–
108]).

Numerous clinical factors have been identified as pre-
dictors of AF recurrence after ablation. To lessen physi-
cians’ workload, a method for identifying the most signifi-
cant predictors was necessary. This resulted in the creation
of the risk calculators shown in Table 3. However, as the
number of variables is reduced, the possibility of predicting
these events decreases. With AI technology, tailoring these
clinical variables is no longer necessary because these al-
gorithms can process, analyse and interpret a much larger
amount of data to predict a possible recurrence. Hung et
al. [109] used ML techniques to predict AF recurrence 30
days after CA. The ML model achieved an AUC of 0.91
by predicting AF recurrence using simple clinical variables
such as age, gender, length of stay, hospital discharge pro-
cedures, presence of chronic diseases, and a number of di-
agnoses. The authors did not use ECG, medical imaging, or
laboratory parameters, and they did not consider predicting
AF recurrences beyond one month. Therefore, more clini-
cal variables are needed to estimate post-ablation arrhyth-
mia recurrences following a longer time period.

In order to predict AF recurrence after CA over a
longer time period, more variables predictive of AF re-
currence after CA were included. Most AI models began
to incorporate electrocardiographic features, findings from
medical imaging techniques, and laboratory variables, in
addition to easily acquired clinical variables (baseline de-
mographic data such as age and gender, as well as clini-
cal variables like hypertension, smoking status, the pres-
ence of comorbidities, and the class of medications used
by the patients), to achieve a better result. The presence of
the aforementioned clinical variables in the post-ablation
risk calculators, as shown in Table 3, supports this asser-
tion. Researchers may utilize these risk calculators as a ref-
erence to improve the prognostic capabilities of their own
AI systems by incorporating more clinical parameters. For
instance, Lee et al. [24] assessed clinical variables made
up of clinical predictors obtained from these risk calcula-
tors usingMLmethodologies to pinpoint the characteristics
that indicate late recurrence after radiofrequency catheter
ablation (RFCA) in patients with AF. The addition of the
left ventricular mass index to their algorithm improved the
prognostic value of their algorithm, yielding an accuracy
of 0.768 and an AUROC of 0.766. In another study, Zhou

et al. [110] used a DL-based approach to predict one-year
AF recurrence after CA by adding other variables such as
NT-proBNP, left ventricular mass index, and left atrial ap-
pendage volume (LAAV) to the already validated predic-
tors of AF recurrence located on these risk calculators. This
improved the C-index (C-statistics) of the DL algorithm to
0.76. It can be inferred from the results of all the studies
that increasing the amount of laboratory, electrophysiolog-
ical, and clinical imaging data may increase the precision
with which risk calculators can identify characteristics that
predispose to post-ablation recurrent AF over a longer pe-
riod of time.

As a result of these findings, risk calculators that use
AI technology to predict features that predispose to post-
ablation arrhythmia recurrences were developed. For ex-
ample, the previously mentioned FIND-AF [23] risk calcu-
lator can be customized to predict post-ablation recurrence
of AF on a given timeline because it contains all the com-
ponents required to predict AF in high-risk patients. Other
ML-based risk calculators have been developed. Saglietto
et al. [111] created AFA-RECUR, an ML-based risk score
calculator, by combining 19 variables, including baseline
and simple clinical variables, laboratory, electrophysiolog-
ical, and clinical imaging data. In predicting a 1-year AF
recurrence after CA, the model had an AUC of 0.721. Fur-
thermore, they have implemented a system that quantifies
the likelihood of recurrence based on data input by patients
into the model, classifying it as low or high. STAAR, an-
other ML-powered risk score calculator developed by Park
et al. [112] produced AUCs of 0.935, 0.855, and 0.965 for
categorizing high-risk patients as having a low, medium,
or high probability of AF progression to permanent AF af-
ter CA. The assignment for the score criteria was deter-
mined by the severity of the factors that are suggestive of
AF. It is evident from these studies that combining clinical
factors increases the accuracy of predicting post-ablation
recurrences of AF, and how this will enhance AI models
and create more features suggestive of post-ablation recur-
rences, allowing the development of new risk calculators.

In comparison to AF, risk calculators involved in di-
agnosing and forecasting AFL and AT are more challeng-
ing. The determinants involved in identifying or predicting
the likelihood of AFL are comparable to those of AF be-
cause of the common risk factors they share. Aside from
the aforementioned electrophysiological changes, patients
with structural heart disease or respiratory disease are more
likely to develop AFL [113]. A few distinguishing features
that could separate these arrhythmias after CA have been
observed: amiodarone use prior to CA, deeper lesions fol-
lowing the ablation procedure, and a fluoroscopy time of
more than 50 minutes were found to promote post-ablation
AFL recurrence [114,115], while cardiac imaging revealed
a thicker isthmus myocardium, and abnormalities in the
right atrium and right coronary artery [91,114,116] post ab-
lation. In AT, a study found that patients with a smaller LA
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volume and no hypertension were likely to have recurrent
arrhythmias following CA [94]. However, these features
have not been unanimously reported in patients experienc-
ing these arrhythmias and have been observed only in small
cohorts. More precise clinical characteristics are needed to
properly distinguish AFL and AT from AF.

The scarcity of AI studies detecting and predicting the
likelihood AFL and AT from clinical data reflects the lim-
ited number of factors distinguishing them. However, be-
cause of the vast amount of clinical data available on EHRs,
researchers have opted for AI methodologies to detect fea-
tures that might predispose to the development of AFL or
AT. Kim et al. [117] found that combining patient history
data, ECG, and clinical imaging features to predict fea-
tures that could predispose to the development of AF and
AFL from asymptomatic atrial tachyarrhythmia detected by
cardiac implantable electronic devices with atrial sensing
(AHRE) resulted in an AUROC of 0.745. In a different
study by Hill et al. [118] neural networks were used to find
characteristics of high-risk patients in a cohort of 3 million
patients that were suggestive of AF and AFL. Their ML
technique produced an AUC of 0.907 using clinical data
from EHRs, as well as time-varying covariates like blood
pressure. However, both studies included AF rather than
an isolated study of AFL and AT. Hence, more independent
studies are needed.

Further investigations will be critical to determine
distinct clinical features that distinguish these arrhythmias
from AF before a risk calculator capable of identifying or
predicting the likelihood of AFL and AT is developed. AI
models have the capacity to process sizable amounts of clin-
ical data from EHRs, and as a result, they can assist in iden-
tifying traits that are more pronounced in those arrhythmias.
Therefore, ML and DL methodologies may be of great as-
sistance in this field.

4. Limitations of AI Studies
Although ML and DL models have successfully de-

tected and predicted atrial arrhythmias using baseline and
easily acquired clinical variables, electrophysiological fea-
tures, laboratory measures, and measurements obtained
from cardiac imaging, they still have several limitations that
require further investigation. The most significant limita-
tion, regardless of modality, was that many studies involved
small patient cohorts. The main reason for the drastic de-
crease in sample size is the exclusion of “imperfect data”,
which is raw data that does not appeal to researchers. As
a result, these models are unable to be validated in clinical
settings. To validate ML and DL models in a clinical set-
ting, larger-scale studies with a larger cohort, as well as the
inclusion of more clinical variables, should be considered.

There are restrictions that are exclusively associated
with the type of modalities in which the AI studies were
performed. Although studies have made use of raw ECG
signals, they tended to withdraw those with noise and arti-

facts. The removal of ECG signals with noise and artifacts
was done to allow for smooth signal analysis when AI mod-
els are used. However, ECG signals in a real-world setting
are accompanied by noise and artifacts which presents a sig-
nificant limitation for electrophysiological studies when AI
models are used. As a result, developing dynamic AI mod-
els that can consider such signals in order to mimic real-
life situations will be pivotal. Another limitation in these
studies is the generation of false-positive results [119]. To
counter this issue, a large number of ECG patterns can be
used to train the models, increasing their exposure to pat-
terns of interest. Continuous updates will increase their re-
liability and act as a self-audit. This will enhance the ability
to perform statistical analysis on previous data in which re-
sults were incorrectly reported.

In AI studies using cardiac imaging, the models had
to deal with image classification issues such the high di-
mensionality of data (huge quantity of features present on
images) and the lack of labelled data [120]. The models
are exposed to underfitting, in which insufficient data was
included in the algorithms to enable them to distinguish be-
tween normal and diagnostic images, or overfitting, where
too many characteristics were fed into the models but were
not discovered during image analysis, leading to incorrect
outcomes [121]. It may be difficult to overcome this prob-
lem due to the subjective nature of imaging unless standard-
ised imaging techniques and modalities can be maintained.
The lack of published detailed methods and quantitative re-
sults further restricts researchers from comprehending is-
sues related to overfitting or underfitting. However, accord-
ing to Feldner-Busztin et al. [120], the problem of high di-
mensionality may be resolved by decreasing, choosing, and
extracting (compacting features into a user-specified num-
ber of new features) the number of relevant features from
the total number gathered.

It must be acknowledged that recurrence following ab-
lation therapy is highly dependent on the surgeon’s skill
[122]. In cryoablation for AF, there is little variation in
treatment results between surgeons, unless it is during the
learning curve [123]. In contrast, radiofrequency (RF) ab-
lation success rates vary depending on the surgeon’s skill.
While AI algorithms have been shown to detect minute sig-
nal changes and subtle changes on cardiac imaging that are
indicative of atrial arrhythmias, they cannot determine the
surgeon’s skills. They can only recommend which abla-
tion strategy might be more effective based on the type of
atrial arrhythmia or the patient’s condition. A virtual reality
(VR)-based surgical skills training simulator with real-time
settings has recently been developed to assist surgeons in
learning these techniques [124]. As a result of VR, AI can
only interact with the surgeon to aid during CA but, it can-
not interfere with the skills of the surgeon.

One would argue that AF is the most pertinent atrial
arrhythmia among all, and there is a lack of discerning fea-
tures to distinguish between them, explaining why AI stud-
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ies on AFL and AT were limited. Nonetheless, the authors
of this manuscript have attempted to summarize several dis-
cerning features such as changes in ECG, characteristics
measured during cardiac imaging like loss of A-wave on
pulse-wave in Doppler imaging and contractility of the right
atrium, and a smaller LA (that is significant of AT) that
could differentiate AFL and AT from AF [7,67,68,93]. The
authors have outlined a few studies that used clinical vari-
ables and electrophysiological features to identify charac-
teristics that might be predisposing to AFL and AT [27,72–
76], and they have conjectured about how specific features
seen or measured on cardiac imaging might be useful in
artificial intelligence studies to identify features present in
high risk patients whomight develop such arrhythmias [91–
94]. This has led to the conclusion that electrophysiologi-
cal features are critical for differentiating the arrhythmias,
pointing out that most AI-related studies could explore this
field to predict post-ablation recurrence of these arrhyth-
mias. Studies involved in AFL and AT have collided with
the same limitations as those found in AF, implying that
further research will be necessary in order to achieve better
results.

5. Conclusions

As AI technology advances and our knowledge of its
uses expands, we can ascertain conclusively that AI will
become more significant in medicine and will unquestion-
ably become a great tool for doctors. Although these AI
models have limitations and are still in their early stages,
their capacity to analyse and interpret a large amount of data
to forecast atrial arrhythmias demonstrates great promise.
This suggests that additional investigation into developing
more effective strategies to get around these challenges is
required before their eventual deployment in a clinical en-
vironment. Additionally, it was mentioned that the combi-
nation of several traits can help forecast recurrences over
a longer period of time and more accurately. The authors
believe that the ability of these AI algorithms to detect and
predict AF, AFL, and AT will definitely be improved by the
integration of clinical variables, relevant imaging findings,
and electrophysiological data in the future.
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