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Abstract

Despite significant progress in the field of therapy and management, chronic heart failure (CHF) still remains one of the most common
causes of morbidity and mortality, especially among the elderly in Western countries. In particular, frequent episodes of decompensation
and, consequently, repeated hospitalizations represent an unsustainable burden for national health systems and the cause of worsening
quality of life. CHF is more prevalent in elderly women, who often have “peculiar” clinical characteristics and a more preserved ejection
fraction caused by endothelial dysfunction and micro-vessel damage. At the moment, noninvasive technologies that are able to remotely
monitor these patients are not widely available yet, and clinical trials are underway to evaluate invasive remote sensors. Unfortunately,
implantable devices for identifying decompensation are not the most practical solution in the majority of of patients with chronic heart
failure. In particular, they are hypothesized to have the possibility of monitoring patients by pro-B-type natriuretic peptide, ventricular
repolarization variability, and bioimpedance cardiography at the first point of care, but new technology and clinical trials must be planned
to address the development and spread of these emergent possibilities.
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1. Introduction

Chronic heart failure (CHF) is becoming a real so-
cial emergency both in Western countries and in those with
emerging economies. In fact, with the progressive increase
in population aging, the prevalence of CHF in elderly pa-
tients is higher than 10% [1]. It is interesting to empha-
size in the COVID-19 pandemic era that re-acutizations in
CHF are frequent and the deadliest comorbidities [2]. Al-
though enormous progress has been obtained in CHF treat-
ments in the last two decades, and despite optimal medi-
cal therapy or the use of the most modern implantable de-
vices, decompensated CHF is a critical health system issue.
For example, the in-hospital mortality rate is about 4%, and
after discharge, mortality tends to worsen; in fact, the 30-
day, 1-year and 5-year mortality rates are 10%, 22%, and
42%, respectively [3]. To stratify the mortality and mobil-
ity risks, the research is currently focused on new, simple,
noninvasive, easily repeatable, and inexpensive markers of
the decompensation of CHF, but above all, it is necessary
to validate them in homogenous groups of CHF patients.
To obtain these data, recently, the European Heart Society
[4], following the indications of other scientific societies
[5], redefined this syndrome, historically based on systolic
function. From this point of view, it is possible to dis-
tinguish three pathophysiologic, hemodynamic conditions
with different systolic functions based on the left ventric-

ular ejection fraction (LVEF): symptomatic subjects with
heart failure with heart failure with reduced ejection frac-
tion (HFrEF), those with heart failure with mildly reduced
ejection fraction (HFmrEF), and finally, symptomatic sub-
jects with heart failure preserved ejection fraction (HFpEF).
The ejection fractions are ≤40% in subjects with HFrEF,
between 41 and 49% in the HFmrEF subjects, and ≥50%
in those with HFpEF [4,5]. Likely, the initial mechanism
in HFpEF patients is a predominant diastolic dysfunction
induced by left ventricular hypertrophy and/or chronic my-
ocardial ischemia; nevertheless, the precise mechanisms
still remain controversial.

This redefinition aims to obtain more homogeneous
data to improve the risk stratification of mortality and mor-
bidity and to promote comparable therapeutic clinical trials
able to induce an increased knowledge in this field. In fact,
almost all clinical trials have focused on treatment for pa-
tients with systolic severe dysfunction, especially even with
worse LVEF ≤35%; moreover, all of the available studies
on patients with LVEF >40% are mostly incomparable for
the different classifications of CHF [4].

Previously, four stages to classify the CHF was pro-
posed as stages A, B, C, and D, from risk of heart failure
(HF) (stage A), to advanced HF (stage D) [6].
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Before this classification into four stages, the func-
tional class of the New York Heart Association (NYHA)
was introduced, based on the severity of symptoms [7].

Therefore, the aim of this review is to evaluate non-
invasive markers that are able to identify early possible re-
exacerbations in patients with advanced CHF.

2. Pathophysiological and Clinical Aspects of
Chronic Heart Failure

As is known, CHF is a progressive disease charac-
terized by a close pathophysiologic relationship between
systolic and diastolic dysfunction because of the increase
in the left ventricular end-diastolic pressure (LVEDP), also
known as filling pressure. In HFrEF or HFmrEF, the in-
crease in LVEDP originates mostly after an acute myocar-
dial infarction or, less often, from other cardiomyopathies.
On the other hand, the HFpEF is a direct consequence of left
ventricular hypertrophymost frequently due to systemic hy-
pertension or hypertrophic cardiomyopathy. In HFpEF pa-
tients, the left ventricular end-diastolic volume (LVEDV)
can be normal; conversely, among HFrEF and HFmrEF pa-
tients, it is mildly or severely increased. The major con-
sequences of an increase in LVEDP are atrial enlargement,
pulmonary congestion, renin–angiotensin–aldosterone sys-
tem imbalance and sympathetic activation. As result, fluid
retention with edema, sinus tachycardia or atrial and ven-
tricular arrhythmias (palpitations), and dyspnea (Fig. 1)
could occur. Then, dyspnea and edema of the lower ex-
tremities are the direct consequences of pulmonary conges-
tion and fluid retention, respectively; typical consequences
of reduced systolic function and peripheral hypoperfusion
are fatigue, weakness (asthenia), lightheadedness, and noc-
turia.

Notably, it should be emphasized that some authors
have demonstrated that pulmonary artery wedge pressure
(PAWP) is more closely related to outcome in HFpEF than
LVEDP [8]. In the study by [8], the authors observed that
the carbon monoxide-diffusing capacity (DLCO) was the
only parameter that was independently correlated to the
pressure difference between the PAWP and the LVEDP,
concluding that both low DLCO and the pressure gradient
between the PAWP and the LVEDP reflect thickening of
the alveolar–capillarymembrane due to chronic congestion.
Therefore, according to the authors, both parameters are as-
sociated with the disease severity and should be addressed
in future large-scale studies [8].

In this pathological situation, sympathetic overstim-
ulation is not counterbalanced by sufficient vagal activa-
tion. As a result, the vagal sinus control is reduced and
the baroreflex sensitivity is blunted [9–11]. This phe-
nomenon has been used to stratify the mortality risk in post-
myocardial infarction [12–16] and CHF [17] patients. In
fact, it is possible to observe a reduction in the heart rate
variability in all of the electrocardiographic (ECG) spec-
tral components [9,18,19] and an increase in the temporal

dispersion of left ventricular repolarization in both post-
myocardial infarction and CHF [19–24]. However, the final
result was a reduction in vagal sinus control, and the vagal
nerve activity recorded directly from the left thoracic vagal
nerve increased in experimental CHF [25,26], as shown in
Fig. 2. In this figure, changes in baroreflex sensitivity are
reported based on the phenylephrine method (BSphe) (Panel
A), grouping patients by age tertiles. The relationship be-
tween age and baroreflex sensitivity (Panel B) is shown, as
is the relationship between age and α low-frequency (α LF)
(Panel C) orα high-frequency (αHF) (Panel D), namely the
sympathetic or vagal components of baroreflex sensitivity
calculated by power spectral analysis.

Probably, CHF prevents the conversion of vagal nerve
activity in a reduced chronotropic response at the sinus node
level [25,27]. In other words, CHF reduces the vagal nerve
capacity to modulate the respiratory oscillation of the heart
rate at the sinus node level. Normally, in fact, the auto-
nomic nervous system modulates the heart rate respiratory
oscillation, also known as “respiratory sinus arrhythmia”.
On the contrary, during CHF, the autonomic nervous sys-
tem becomes unable to modulate the heart rate variability,
and the loss of this physiological property is associated with
the severity of symptoms, sympathetic hyperactivity, and
an increase in cardiovascular mortality and the risk of sud-
den death.

2.1 Acute Exacerbation of CHF
Despite the progress of knowledge and the use of new

drugs and devices, as previously emphasized, CHF remains
a progressive, clinical syndrome with recurrent acute de-
compensations and severe prognoses. In fact, the hospital
readmission rates of CHF patients are about 24%, 30%, and
50% within 30 days, 3 months, and 6 months, respectively.
The major causes of these rehospitalizations are character-
ized by respiratory symptoms or fluid retention and pul-
monary congestion, with the worsening of pre-existing dys-
pnea and/or systemic edema [3]. The precipitating fac-
tors of acute decompensated CHF are numerous, but the
most important factors are concurrent infections, atrial fib-
rillation, uncontrolled arterial hypertension, acute coronary
syndrome, and low compliance with the drugs or dietary
prescriptions; however, at least 50% of cases remain un-
known, and, in most cases, multiple factors can be identi-
fied [28,29]. Some studies have reported that the mortality
rate is related to the frequency of decompensated episodes
[30,31]. It was hypothesized that each acute episode in-
creases the mortality rate because the pre-existent structural
heart disease tends to worsen. This phenomenon seems to
be associated with an acceleration of pathologic remodel-
ing (Fig. 3), demonstrated by a transient increase in ultra-
sensitive troponin I and extracellular matrix turnover (ma-
trix metalloprotease 2, matrix metalloprotease 1, and pro-
collagen type III N-terminal peptides) [32,33].
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Fig. 1. Pathophysiology of chronic heart failure. AMI, acute myocardial infarction; SCD, sudden cardiac death; LVH, left ventricular
hypertrophy; LVEDV, left ventricular end-diastolic volume; LVEDP, left ventricular end-diastolic pressure. The arrows mean “increase”.

Especially in acute decompensation, a key role could
be played by the inflammatory state. For example, in
some clinical trials on CHF, the prevalence of inflamma-
tion was about 57% [34], which became more and more
relevant with the aging process [35], systolic or diastolic
dysfunction [36], and decompensation severity [35]. For
instance, some authors recently reported that in a cohort
of in-hospital elderly (median age of 85 years) patients
with decompensated CHF [37], the prevalence of the in-
flammatory state was about 86% (median high sensitiv-
ity C reactive proteine (hsCRP): 3.46 mg/dL). Regarding
the pathophysiologic mechanism, it was reported that the
pro-inflammatory cytokine interleukin-1 and tumor necro-
sis factor-α (TNF-α) were able to induce systolic and dias-
tolic dysfunction, and TNF-α was specifically able to pro-
mote pathological myocardial remodeling (Fig. 3) [38]. De-
spite these experimental data and a reduction in blood in-
flammatory biomarkers, the administration of anti-cytokine
and anti-inflammatory therapies in CHF patients reported
unsatisfactory results [37]. This could suggest that immune
involvement should be considered as an epiphenomenon
rather than a central pathophysiologic mechanism of CHF.

2.2 CHF: The Gender Matter

As already stated, HF is among the most frequent
causes of hospitalization in the medical and cardiology de-
partments in European Countries [39], presenting a mortal-
ity rate of 40% within 1 year after the first hospitalization

and a 5-year survival rate between 25 and 38%, based on
sex, age, comorbidities, and the severity of the HF itself.

Notoriously classified on the basis of left ventricu-
lar function [4], HF is often a consequence of coexisting
ischemic, hypertensive, diabetic, or other heart disease,
which has resulted in profound changes in the contractile
capacity of the heart and in the patient’s hemodynamics
[40–43]. As evidenced by many recent studies, symptoms
of HF in women are often vague and unfortunately not
recognized as “typical” [44,45]. The physiopathology of
the damage is profoundly different; endothelial dysfunc-
tion, micro-vessel damage [46], and comorbidities (e.g.,
diabetes mellitus, systemic arterial hypertension, autoim-
mune diseases, and drug cardiotoxicity) are, in women, fre-
quently associated with a more preserved ejection fraction
than in men [40]. If the main cause of HF in men is is-
chemic heart disease caused by obstructive coronary artery
disease, in women, significant microcirculation and small
vessel ischemic damage (myocardial infarction with no ob-
structive coronary arteries, myocardial infarction with non-
obstructive coronary arteries (MINOCA)) is more com-
monly observed [47,48]. For this reason, symptoms, clini-
cal course, and prognosis are peculiar, as is the therapeutic
response [49]. Symptoms of HF in women are often vague
and considered “atypical”, with frequent delays in diagno-
sis and belated arrival to the doctor’s attention. For this rea-
son, women are often much older at the time of diagnosis,
and they usually show a higher degree of co-pathology and
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Fig. 2. Changes in baroreflex sensitivity by the phenylephrine method (BSphe). Subjects grouped for tertiles of age (ANOVA and
Bonferroni tests). (A) Relationship between age and baroreflex sensitivity with phenylephrine method. (B) Relationship between age and
α low-frequency (LF). (C) Age and apha high-frequency (HF). (D) Age and sympathetic of vagal etc. AVOVA, ANalysis Of VAriance.

polypharmacy than men, with a higher risk of the drug’s
side effects and poor adherence to therapies [40]. In this sit-
uation, female patients are highly exposed to the risk of ia-
trogenic damage, poor compensation, and therapeutic fail-
ure. Age is also often a limiting factor for enrollment in
clinical trials, which, therefore, frequently has a gender bias
[40].

It has also been shown that female patients with heart
failure, while significantly benefiting from the implantation
of devices (pacemakers and implantable defibrillators) or
resynchronization therapy, rarely receive an indication for
this type of intervention [50].

Prognostic evaluation is also particularly difficult in
the female population affected by heart failure. The Heart
Failure Survival Score [51], Seattle Heart Failure Model
[52], Meta-Analysis Global Group in Chronic Heart Fail-
ure [53], andMetabolic Exercise CardiacKidney Index [54]
Score, used for the risk stratification of death or the need
for the urgent cardiac transplantation of patients suffering
from heart failure, do not allow for a sex-specific evalua-
tion, even though substantial discrepancies between the two
sexes have been identified in some studies [55,56]. In fact,

compared to scores describing severe disease, women often
have better prognoses. This could depend on the underly-
ing differences in the pathophysiology of cardiac damage
that determine a serious and more disabling clinical presen-
tation, which may not correspond to an equally poor prog-
nosis.

However, it should be reiterated that HF   in elderly
women causes an extremely significant proportion of re-
peated hospitalizations (“revolving door”), with episodes of
acute HF (dyspnoea, acute pulmonary edema) at increas-
ingly shorter intervals, until death [57]. This not only re-
sults in high management costs but also has a severe impact
on the quality of life.

Advanced age at diagnosis and the difficulty of strat-
ifying the risk for the decompensated patient are reasons
why female patients are historically less eligible for heart
transplantation [58].

This evidence clearly demonstrates how a gender-
specific approach to this particularly complex condition
is absolutely indispensable and necessary [45] in order to
guarantee target diagnoses, treatments, and therapies to re-
duce morbidity, mortality, and management costs (Table 1).
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Fig. 3. Pathophysiology of acute decompensated chronic heart failure. The arrows mean “increase”.

Specific diagnostic and therapeutic interventions, to-
gether with an education program to enhance clinicians’ and
women’s awareness, are desirable [59]. These would make
it possible to reduce repeated hospitalizations in the health
sector, reduce mortality and morbidity, and, at the same
time, improve the quality of life in the female population,
which, historically, has been and is considered protected
from cardiovascular disease and its consequences.

2.3 Common Biomarkers of CHF
All biomarkers should be designed, experimented, and

implemented to simplify the diagnostic process. In fact,
the essential features of biomarkers are the highest levels
of specificity, sensitivity, and predictive values. Clearly,
these characteristics are not enough nowadays. In fact, a
specific and modern CHF biomarker should also present
other features: rapid measurement, noninvasive, inexpen-
sive, easily collectible, repeatable, and reproducible. Fi-
nally, it should be able to improve the diagnostic process,
monitor the progress of the disease during treatments, and
be a reliable prognosis tool at the same time.

Every possible biomarker must have a solid patho-
physiologic basis and, as CHF is a complex syndrome,
many biomarkers have been proposed and tested (Fig. 4)
[60]. Although countless possible biomarkers based on dif-
ferent pathophysiologic substrates have been studied, na-

triuretic peptides have been the most extensively studied
[60,61]. Natriuretic peptides are a group of similar pep-
tides of atrial, ventricular, and endothelial origin, but the
most studied, as CHF markers, are B-type natriuretic pep-
tide (BNP) and its prohormone, namely, N-terminal pro-
B-type natriuretic peptide (NT-proBNP) (Fig. 5). The bi-
ological activity of natriuretic peptides is to increase di-
uresis, natriuresis, and vasodilatation and to inhibit the
renin–angiotensin–aldosterone and the sympathetic sys-
tem’s overactivity (Fig. 5). Both BNP and NT-proBNP are
produced bymyocytes as a consequence of myocardial wall
stretch and are specifically induced by a pathological in-
crease in LVEDV/P. NT-proBNP and BNP are cleaved from
pre-proBNP, and NT-proBNP is biologically inactive but
has a more stable status. In fact, the half-life of BNP is
20 minutes, while NT-proBNP has a half-life between 60
and 120 minutes [60–62], with a ratio higher than 1:6 [63].
The blood kinetics of BNP and NT-proBNP are influenced
by CHF exacerbation but also by aging, gender, renal func-
tion, obesity, genetic factors, comorbidities, obesity, and
LVEDV/P.

Iwanaga Y et al. [64] showed in a previous study
that plasma BNP levels reflect left ventricular end diastolic
wall stress (EDWS) more than any other parameter previ-
ously reported, not only in patients with HFrEF but also
in patients with HFpEF. The relationship of left ventricular
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Fig. 4. Potential biomarkers in the diagnosis and management of decompensated CHF. FABP, fatty acid-binding protein; hsCRP,
high-sensitivity C-reaction protein; IL, interleukin; MMP, matrix metalloproteinase; NGAL, neutrophil gelatinase-associated lipocalin;
ST2, suppressor of tumourigenicity-2; TNF, tumor necrosis factor; CHF, chronic heart failure; MR pro ADM, mid-regional proad-
renomedullin; IL-6, Interleuki-6.

EDWS to plasma BNP may be an important parameter to
consider in HFpEF patients, providing a better fundamental
understanding of the individual heterogeneity among BNP
levels and their clinical utility in the diagnosis and man-
agement of HF (especially in specific groups: e.g., elderly,
women).

Many clinical trials have assessed the role of BNP and
NT-proBNP in the diagnosis, management, and prognosis
of HF. The end-point of these studies was to assess the cor-
rect HF diagnosis in patients with breathlessness. Particu-
larly, the first studies conducted on these issues were the
Breathing Not Properly Study for BNP and the ProBNP
Investigation of Dyspnea in the Emergency Department
(PRIDE) for NT-proBNP [65,66]. In both, the natriuretic
peptides were the best significant predictors of the final di-
agnosis [65,66]. Although they have been considered in
the clinical practice guideline as Class I and level of ev-
idence A, some critical issues remain unresolved [4,67].
In fact, as abovementioned, some comorbidities (diabetes,
atrial fibrillation, obesity, renal insufficiency), gender, and
age have a not negligible role on the plasmatic levels of
both natriuretic peptides. For example, the International

Collaborative of NT-proBNP: Re-evaluation of Acute Di-
agnostic Cut-Offs in Emergency Department Study (ICON-
Reloaded) tried to dampen the age influence on natriuretic
peptides [38]. In fact, the authors stratified for age three
different NT-proBNP cut-offs (<50 years: <450 pg/dL;
50–75 years: <900 pg/dL; >75 years: <1800 pg/mL), but
even in this way, the sensitivity and specificities were re-
duced according to aging (sensitivities: <50 years: 85.7%,
50–75 years: 79.3%, and >75 years: 75.9%; specificities
<50 years: 93.9%, 50–75 years: 84.0%, and >75 years:
75.0) [68]. Thus, the cut-offs for the diagnosis of HF should
be increased with the function of age. Nevertheless, the
authors observed reductions in sensitivity and specificity,
likely due to renal insufficiency, which is frequent among
the elderly. In fact, a correction based on the glomeru-
lar filtration rate (GFR) was proposed: for a GFR <60
mL/min/1.73 m2 a cut-off of 1200 pg/mL, resulting in sen-
sitivity and specificity of 89% and 72%, respectively [68].
Obviously, among very old CHF patients, aging and a low
GFR can coexist, becoming confounding factors and nega-
tively affecting the diagnostic power of the NT-proBNP.
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Fig. 5. Pathophysiology of NT-proBNP and BNP. BNP, B-type natriuretic peptide; NT-proBNP, N-terminal pro-B-type natriuretic
peptide; AA, aminacyd.

Another serum biomarker, specifically studied for HF
diagnosis, was the highly sensitive troponin (hs-Tn). Tro-
ponins are proteins involved in skeletal and cardiac mus-
cle contraction. Specific cardiac isoforms were found to be
increased not only in myocardial necrosis but even in de-
compensated CHF, so they could be considered a marker
of myocardial necrosis in acute myocardial infarction and
also a marker of myocardial wall stress during acute de-
compensated CHF injury. In the Acute Decompensated
Heart Failure National Registry (ADHERE), the authors re-
ported an increase in in-hospital mortality risk associated
with higher levels of hs-Tn [69]. These data have been
confirmed in further trials on acute decompensated CHF,
about the global [70,71] and cardiovascular mortality [72].
Finally, other markers of hypertrophy, remodeling, and in-
flammation (Fig. 4) have been tested in many studies with
different end-points, demonstrating more usefulness for in-
terpreting the different pathophysiologic aspects than mak-
ing a diagnosis and risking stratification, so they are not
routinely used.

Finally, the possibility of obtaining the dosage of a
marker from the capillary blood test is of great clinical rel-
evance (as the glucose from the fingertip in diabetic pa-
tients). In other words, this could allow for the analysis
of the biomarker in different settings: at the point-of-care

or at the patient’s home, to avoid or choose hospitalization.
In fact, nowadays, specific instruments are commercially
available to measure NT-proBNP [73] and troponin [74–
76], which are detected from a capillary blood sample using
a single-use test strip. Similar to capillary glucose test, the
blood drop test should be performed by the patients them-
selves. This hypothetical procedure could allow for the pa-
tient’s follow-up at home (Fig. 6).

2.4 Possible Electrical CHF Markers

The greatest challenge in CHF in modern medicine
is patient management. In fact, the acute symptom re-
exacerbations and the consequent rehospitalizations are a
serious concern for the health system. As CHF mortality
has been reduced and life expectancy has increased, the
prevalence of failing to heal has grown. Moreover, themore
the survival rate increases, the more re-exacerbations, re-
hospitalizations, and healthcare costs will do. At present,
despite new promising drugs and devices, acute decompen-
sated CHF remains an unsolved issue. Thus, to avoid re-
peated hospitalizations, telemonitoring CHF patients could
be a key point. This monitoring should be available espe-
cially at home, with possible remote access by physicians.
In this way, the drug therapy could be changed and adapted,
possibly avoiding re-exacerbation, rehospitalization, and
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Table 1. Peculiarities of chronic heart failure among women.
Specific characteristics of chronic heart failure in women

Different pathophysiology Endothelial dysfunction; micro-vessel damage (diabetes, arterial hypertension, estrogen depletion
after menopause)

Most common symptoms More severe weakness; reduced exercise tolerance; diaphoresis; more pronounced dyspnea; precor-
dial palpitations

Diagnostic delay determining a
later-in-life diagnosis

High degree of polypathology, polypharmacy, and iatrogenic damage; reduced access to the heart
transplant; exclusion from clinical trials

Difficult prognostic evaluation Scores/risk charts formulated on male models, and therefore, not designed and studied for women; no
score currently takes into account sex-specific risk factors

High “revolving door” risk High costs for health systems; reduced patient quality of life

Fig. 6. Flowchart of possible CHF patient management at
home. ECG, electrocardiogram; RR, wave interval; QT, QT inter-
val; Tpe variabilities, Tpeak-end variabilities; SVI, stroke volume
index; CI, cardiac index; PR, pulse rate; LVEDV, left ventricle end
dyastolic volume; EF, ejection fraction; NT-proBNP, N-terminal
pro-B-type natriuretic peptide; hs-Tn, high sensitivity Troponine.

mortality (Fig. 6). The ideal candidates among noninva-
sive CHF markers are electrical signals, offering standard
electrocardiographic and hemodynamic (bioimpedance car-
diography) information with numerous advantages. In fact,
they are simple to detect, but also repeatable, transmissible,
and inexpensive. It is possible to distinguish two kinds of
signals: those based on an ECG in twelve leads and those

based on the RR interval or repolarization variabilities. Ob-
viously, a standard ECG is essential in the early diagnosis
of arrhythmias and myocardial ischemia or necrosis, but it
could offer other significant benefits [77]. All considered,
an ECG serial analysis based on the variability of different
QRS intervals could offer new insight into CHF exacerba-
tion phenomena. In particular, short-period RR variability
[18,25,78], available with many interpretative algorithms
and methods, could be used to evaluate the changes in au-
tonomic control during and before a CHF decompensation,
leading to drug therapy changes, in order to reduce sympa-
thetic overdrive [11,20,79–81]. A more modern alternative
to RR variability is represented by the QT variability. Ob-
tained by different formulas [20], this is a short-termmarker
of the temporal dispersion of left ventricular repolarization.
Calculated by 5-minute ECG recordings, it expresses the
temporal inhomogeneity of myocardial repolarization and,
especially in post-ischemic [82] or primitive dilative car-
diomyopathy [20,83], it is a marker of sudden cardiac death
or cardiovascular mortality [20,21,84]. In particular, the
most used repolarization marker is the QT variability in-
dex (QTVI). QTVI was introduced by Berger in 1997; the
author stated the QTVI as the logarithm of the ratio between
QT variability (QT variance/QT mean2) and RR variability
(RR variance/RR mean2) [85]. Other studies have consid-
ered only a numerator of the aforementioned formula (QT
variance/QTmean2) [20,21,86] or the standard deviation of
the mean of QT intervals (QTSD) [20,86–90].

A meta-analysis based on almost 2000 healthy sub-
jects indicated that the normal QTVI and QTSD values were
–1.6 and 3.3 ms, respectively; meanwhile, in ischemic dis-
ease, these values grew to –0.6 and 7.3 ms, respectively
[20]. Finally, in CHF patients, the QTVI increases because
of aging [18,22,23], the NYHA class [85], systolic func-
tion reduction [18], left ventricular hypertrophy [91] and
sympathetic over-activation [87], but it has been reduced
during β adrenergic block [25,92,93]. In particular, in an
experimental study, an increase in the QTVI during sym-
pathetic stimulation only in congestive HF, but not in nor-
mal conditions, was observed [25]. Although the QTVI
and QTSD have been studied to identify patients with a
high risk of malignant ventricular arrhythmias and sudden
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cardiac death, these two electrical markers have never en-
tered clinical practice nor even specific scientific society
guidelines. However, previously, a large prospective study
called “Muerte Subita en Insuficiencia Cardiaca” was able
to demonstrate that the QTVI was predictive for cardiovas-
cular mortality but not for sudden cardiac death in patients
with CHF [93]. In other words, the QTVI should be consid-
eredmore as a nonspecific marker of cardiovascular mortal-
ity rather than a noninvasive electrophysiologic risk marker
of sudden cardiac death. More recently, researchers’ atten-
tion has been focused on the last part of ECGmyocardial re-
polarization instead of the entire QT interval. In fact, many
authors have studied the total and sudden cardiovascular
mortality risk related to the T peak–T end interval duration
(Tpe), that is, the interval between the peak and the end of
the T wave [94,95], even in animal models [96]. In partic-
ular, in 2016, some authors published a large retrospective
study in almost 140,000 individuals over fifty years old in
the Copenhagen area, regarding mortality and Tpe duration
[97]. In this study, the authors reported for subjects with a
Tpe between 110 and 140 ms (95th percentile) a higher risk
for all-cause mortality, cardiovascular death, atrial fibril-
lation, and HF. In addition, in a meta-analysis, conducted
on 33 studies and in almost 160,000 subjects, the authors
reported that a prolongation of a Tpe higher than 103 ms
was a predictive marker not only for malignant ventricu-
lar arrhythmias and sudden and non-sudden cardiac death
but also for all-cause mortality [98]. Finally, our group re-
cently observed that the longer the Tpe in decompensated
CHF subjects, the higher the in-hospital and 30-day mor-
tality was [86,87,89]. In particular, the value of Tpe was
obtained as the mean of the Tpe intervals in 5-minute EGG
recordings. Moreover, in the abovementioned studies, a
value of Tpe equal to or greater than 116 ms was a risk
factor for 30 days total and cardiovascular mortality [85].
Obviously, in the Copenhagen study [97] and in the T peak–
end’s length meta-analysis [98], the standard measurement
of Tpe was calculated on a small number of QRS-T com-
plexes. However, with 5-minute ECG recordings, it was
possible to calculate the dispersion of the short-term tempo-
ral variability of the Tpe intervals, also reported as the stan-
dard deviation of the mean (TpeSD). Therefore, the TpeSD
was significantly related to the NT-proBNP (r: 0.471; p <

0.001) in decompensated CHF subjects [88,90]. In conclu-
sion, Tpe could be also considered amortality marker that is
more accurate than the QT or RR variability, and the TpeSD
could be a marker of decompensation that could be used as
a surrogate for NT-proBNP in the point of care, especially
in a remote position, such as at home or on the way to the
hospital (Fig. 6).

3. Remote Hemodynamic Monitoring
The possibility to remotely monitor the hemodynamic

status of CHF patients was studied with different im-
plantable devices, and it was also offered as an optional

feature in pace-makers, resynchronization therapy, and im-
plantable converter defibrillator devices. Nevertheless, the
usefulness of these devices is still debated regarding the
potential mortality risk reduction; on the contrary, they
seemed more useful to individuate an increased risk of re-
hospitalization [99,100].

Historically, many studies have investigated the possi-
bility of using intrathoracic bioimpedance measurements as
a method of evaluating patients at high risk for exacerbation
of heart failure or cardiovascular events over time [101–
103]. The fundamental assumption, underlying the remote
monitoring of CHF patients, is that before decompensation
and rehospitalization, a period from days to weeks occurs
in which the left ventricular end-diastolic or filling pressure
increases [104]. In other words, by optimizing the therapy,
rehospitalizations and re-exacerbations could be avoided
[105]. Thus, how to obtain a measure of the left ventricular
end-diastolic pressure to anticipate the symptoms of decom-
pensation is an open issue. At present, these parameters are
invasively acquired. During the last two decades, three dif-
ferent possible invasive technological solutions have been
developed. The first device was able to continuously moni-
tor the right ventricular pressure with an implantable sen-
sor; the pressure in this cardiac chamber is considered a
surrogate for PAWP and LVEDP. This device, similar to a
pacemaker and named the Chronicle implantable hemody-
namic monitor (IHM) (Medtronic, Inc, Minneapolis, Min-
nesota), can be subcutaneously implanted in the pectoral
muscle area. It is provided with a lead with a pressure sen-
sor near the tip and placed in the right ventricular outflow
tract or septum. A randomized prospective single-blind par-
allel trial was conducted to prove the efficacy of this device;
this study was named the Chronicle Offers Management to
Patients with Advanced Sign and Symptoms of Heart Fail-
ure (COMPASS-HF) [106]. The major aim of this study
was to prove if the Chronicle IHM in CHF patients provided
hemodynamic information useful for optimizing the ther-
apy and reducing mortality and rehospitalization risk. The
trial was conducted in 274 centers, enrolling III/IV NYHA
class CHF patients, and the follow-up was a period of six
months [106]. This trial reported a reduction of 21% of HF-
related events (hospitalization, emergency, or urgent visits
requiring intravenous therapy), but this result was not statis-
tically significant in comparison to the control group. How-
ever, a retrospective analysis demonstrated a significant re-
duction of 36% of rehospitalization in the group with acti-
vated Chronicle IHM. The group with activated Chronicle
IHM had 28%more adjusted therapies in comparison to the
control group. We also believe that some severe limitations,
such as, for example, the incompatibility with atrial pacing,
cardiac resynchronization therapy, and magnetic resonance
imaging induced early obsolescence of this device.

A second, more advanced device was devel-
oped to directly and remotely monitor the pulmonary
artery pressures and to guide the therapy; the Cardio-
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Microelectromechanical system (CardioMEMS) (Abbott,
Sylmar, CA, USA) can be implanted via the femoral vein
during a right cardiac catheterization [105,106]. Once
implanted, this pulmonary wireless sensor is externally
powered by means of radiofrequency energy, and it was
designed to be permanently placed in the pulmonary artery.
CardioMEMS was studied in a large single-blind random-
ized trial named the US CardioMEMSHeart Sensor Allows
Monitoring of Pressure to Improve Outcomes in NYHA
Class III Heart Failure Patients (US CHAMPION). A total
of 550 III NYHA class patients were enrolled in this trial,
and the primary end-point was the rate of rehospitalization,
checked at an 18-month follow-up. Although the US
CHAMPION did not demonstrate a reduction in mortality,
the rehospitalization rate was significantly reduced by
37% [107,108]. Furthermore, during the following open-
label period, this device showed an additional reduction
in the rehospitalization rate (48%) [109]. Finally, the
CardioMEMS was approved by both the Food and Drug
Administration and the European Conformity. US and
European authors are studying a new device similar to the
CardioMEMS, but with more hemodynamic parameters,
named the CordellaTM (Endotronix Inc, Chicago, IL, USA)
[110], but data from randomized clinical trials are not
available yet [111].

Obviously, pulmonary pressure is not only related to
pulmonary congestion and the left ventricular end-diastolic
pressure but also to the pulmonary pre-capillary resistance;
for this reason, a sensor was designed to directly measure
the pressure in the left atrium.

In a recent paper [112], the authors emphasized the
need to study the longitudinal cardiovascular pressure–
volume relationships in the dynamic clinical environment
of HF. Their findings do indicate that pressure-based as-
sessment of congestion in ambulatory HF patients does
not accurately represent intravascular volume; neverthe-
less, they assumed that the pressure changes remain indica-
tive of HF exacerbations. Additional volume-based phe-
notyping may be required to guide decongestion strategies
in patients with HF. There is initial evidence that patients
with a low or normal volume (independent of peripheral ar-
terial disease (PAD)) are at the greatest risk for HF hospi-
talization [112]. Therefore, the third technology solution
involves the implantation of a sensor in the left atrium di-
rectly. The HeartPOD system (Abbot, formerly St. Jude
Medical/Savacor, Inc.Abbott Parl, IL, USA) is a sensor de-
signed to be implanted in the left atrium and to measure its
pressures [113]. This invasive device is implanted via the
femoral vein and by trans-septal puncture. It is powered and
measured by a wireless advisory module through the skin.
The results on its safety were disappointing because the
Left Atrium Pressure Monitoring to Optimize Heart Fail-
ure Therapy (LAPTOP-HF) study, designed to evaluate its
efficacy in guiding medical therapy, was interrupted early
due to an excess of procedure-related complications [114].

Despite this interruption, the results were evaluated in the
remaining 486 patients during twelve months of follow-up,
and the HeartPODwas capable of significantly reducing the
rehospitalization rate by 41% [114].

All in all, the possibility of monitoring the pressure in
the left atrium has certainly brought clinical advantages be-
yond the problems of implantation. In fact, the next gener-
ation of studied implantable devices is the V-LAP (Vectori-
ous Medical Technologies, Tel Aviv, Israel), and it could
represent a new tool for left atrium pressure monitoring
[115]. At present, a trial on its safety, usability, and effi-
cacy is still ongoing. Among the physiologic parameters,
the V-LAP will take into account the heart rate variability
and a new generation of decision-support software [116].
Obviously, the data unavailability in elderly and fragile pa-
tients, which is the category of subjects most affected by
CHF, remains a critical issue. Thus, ethical or rational is-
sues could arise proposing a diagnostic invasive device to a
fragile patient with many comorbidities.

A second critical point is represented by the device
costs. A cost-effectiveness analysis was published on the
CardioMEMS using the CHAMPION trial data. The Car-
dioMEMS showed an increase in the cost-effective ratio
in comparison to a standard approach also using the five-
year outcome data. In particular, the CardioMEMS cost-
effective ratio was USD 44,832 per quality-adjusted life-
year higher than the standard cure [117].

Currently, noninvasive measurement of the left
ventricular end-diastolic pressure is impracticable, but
bioimpedance cardiography could allow the noninvasive
evaluation of hemodynamic parameters (stroke volume and
cardiac output) and tele-monitoring should be possible. The
bioimpedance is based on the calculation of the systolic
and diastolic difference of electrical impedance by cuta-
neous leads; in fact, the thoracic water volume changes dur-
ing the cardiac cycle and it is able to influence the elec-
trical impedance. Obviously, the electrical neck-thorax
impedance difference is related to the systolic and dias-
tolic ventricular volumes, so, by appropriate algorithms,
the stroke volume (SV) and other hemodynamic noninva-
sive derived data could be collected [118,119]. Nowadays,
domestic hemodynamic self-monitoring by bioimpedance
cardiography devices is not possible and only available for
medical clinical research purposes [120]. In this era, the
biomedical technology industries could easily develop a
simple device for the self-monitoring of hemodynamic pa-
rameters so that the patients or their caregivers could eas-
ily learn to place six skin leads (two on the left base of the
neck—supraclavicular fossa, two at the midpoint of the tho-
rax, and two for the ECG), recording their own hemody-
namic data via a smartphone [118,119]. For example, the
PhysioFlow (Manatec Biomedical, Poissy, France) is able
to provide an interesting noninvasive systolic and diastolic
hemodynamic dataset [121,122]. The systolic parameters
are the SV, SV index (Svi), cardiac output (CO), cardiac in-
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Fig. 7. Bioimpedence PhysioFlow analysis. (A,B) two patients’ bioimpedance data (PhysioFlow) at the time of admission (#1) and
discharge (#2) to the hospital. Note the patient in Panel A had decreased LVEDV, but the same subject showed an increase in SVRi and
decrease in CI. The patient in Panel B had increased LVEDV at the time of discharge. In this subject, the risk of decompensation could
be higher. SV, stroke volume; SVi, stroke volume index; CO, cardiac output; CI, cardiac index; SVR, systemic vascular resistance; EF,
ejection fraction; CTI, contractility index; VET, left ventricular ejection time; LCWi, left cardiac work index; LVEDV, left ventricular
end-diastolic volume; EDFR, early diastolic filling ratio; SVRi, systemic vascular resistance index; HR, heart rate.

dex (CI), systemic vascular resistance (SVR), systemic vas-
cular resistance index (SVRi), ejection fraction (EF), con-
tractility index (CTI), left ventricular ejection time (LVET),
and left cardiac work index (LCWi). Moreover, the dias-
tolic parameters are the LVEDV and early diastolic filling
ratio (EDFR). Briefly, the second derivative of impedance
(dZ/dt) measures the temporal variation of impedance, and
it is acquired for the calculation of the SV with the follow-
ing formula: SV = kꞏ[(dZ/dtmax)/(Zmax – Zmin)]ꞏW (thoracic
flow inversion timecal), where the k is a constant, W is a pro-
priety correction algorithm, and cal indicates that the value
was obtained during autocalibration [111]. The CO is calcu-
lated as SV· heart rate (Lꞏmin−1), and the SVR as 80·(mean
blood pressure-central pressure)/CO (dynꞏs−1·cm5). The
central venous pressure is, by default, set as 7 mmHg. Ob-
viously, the CO, SV, and SVR are indexed for the body sur-
face area, and they become CI, Svi, and SVRi, respectively.
The VET is the time between the opening and closing aortic
valve (ms) from the dZ/dt. The EF is calculated according
to the Caplan formula [123]: EF = 0.84 – (0.64ꞏpre-ejection
period)/left ventricular ejection time (LVET) (%). The pre-
ejection period is the intervals obtained from the Q wave
(ECG) and the opening of the aortic valve. The LCWi is
calculated as LCWi = 0.0144·CI· (mean blood pressure –
pulmonary artery occlusion pressure) (kg·m−1·m2). The
pulmonary artery occlusion is set as 10 mmHg by default.
The CTI is calculated with the following formula: CTI =
dZ/dtpeak.

Finally, the diastolic parameters are the diastolic end
diastolic volume (EDV) and the EDFR. The LVEDV is cal-
culated as SV/EF (mL), and the EDFR is obtained by the
dZ/dt as the ratio between the diastolic and systolic waves
[118,124]. The EDFR is correlated positively to the inte-
gral of the Doppler echocardiographic A wave and nega-
tively to age [125]. Two examples of noninvasive moni-
toring by bioimpedance (PhysioFlow) in two HFrEF hos-
pitalized patients are reported in Fig. 7A,B, at the time of
admission (#1) and discharge (#2) to the hospital. The pa-
tient (Fig. 7A) reduced the LVEDV by 31%; this datum
is confirmed by the reduction of the NT-proBNP by 55%
(from 2910 to 1320 pg/mL). On the other hand, the same
patient showed an increase in the SVRi and a decrease in the
CI (Fig. 7A). The other patient (Fig. 7B) had an increased
LVEDV by 41%, despite an increase in drug therapy, at the
time of hospital discharge. The same subject did not have
any changes in theNT-proBNP blood level in comparison to
the moment of admission. Probably, this patient could have
had a higher risk for future decompensation. Obviously,
bioimpedance cardiography could never replace the more
complex or invasive methods but could be used to mon-
itor patients in remote positions (at home or in a nursing
home) after discharge. For example, our preliminary data
indicated that the LVEDV obtained in hypertensive subjects
with a PhysioFlow and standard echocardiography are sig-
nificantly related (n.: 19; r: 0.676; p: 0.003) [118].
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Finally, some other techniques should be taken into
account in order to better quantify the decompensation de-
gree of CHF patients. Remote dielectric sensing (ReDS)
has been proposed for the telemonitoring of CHF patients
[126]. ReDS, which is a novel noninvasive wearable de-
vice to quantify the degree of pulmonary congestion easily
and quickly within a minute, would be a promising support-
ive tool to guide titration of the dose of diuretics in patients
with congestive heart failure in outpatient clinical follow-
up. ReDS detects acute heart failure similar to the lung ul-
trasound score and primarily identifies the acute heart fail-
ure patients who have congestion on a chest Computer To-
mography [126,127].

4. Conclusions
The continuous aging of the population and the recent

pandemic have highlighted the increasing need to promote
health and quality of life, particularly for patients affected
by chronic diseases. People and healthcare professionals
should increase awareness and knowledge about chronic
heart failure burden in the healthcare systems. An approach
specifically tailored to the patient’s characteristics (age,
sex/gender, comorbidities) must be improved. The possi-
bility of remotely monitoring chronic patients should be ap-
plied to all chronic heart failure subjects in order to guide
therapeutic choices and avoid exacerbations. Noninvasive
technologies specifically suitable for elderly and fragile pa-
tients with CHF are not widely available yet. Detection at
the point of care of humoral biomarkers and electrical sig-
nals able to select subjects with a higher risk of CHF ex-
acerbations should be pursued. Future research should aim
towards this new frontier and beyond the challenges of the
coming years.
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