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Abstract

Bicuspid Aortic Valves (BAV) are associated with an increased incidence of thoracic aortic aneurysms (TAA). TAA are a common aortic
pathology characterized by enlargement of the aortic root and/or ascending aorta, and may become life threatening when left untreated.
Typically occurring as the sole pathology in a patient, TAA are largely asymptomatic. However, in some instances, they are accompanied
by aortic valve (AV) diseases: either congenital BAV or acquired in the form of Aortic Insufficiency (AI) or aortic stenosis (AS). When
TAA are associated with aortic valve disease, determining an accurate and predictable prognosis becomes especially challenging. Patients
with AV disease and concomitant TAA lack a widely accepted diagnostic approach, one that integrates our knowledge on aortic valve
pathophysiology and encompasses multi-modality imaging approaches. This review summarizes the most recent scientific knowledge
regarding the association between AV diseases (BAV, AI, AS) and ascending aortopathies (dilatation, aneurysm, and dissection). We
aimed to pinpoint the gaps in monitoring practices and prediction of disease progression in TAA patients with concomitant AV disease.
We propose that a morphological and functional analysis of the AVwith multi-modality imaging should be included in aortic surveillance
programs. This strategywould allow for improved risk stratification of these patients, and possibly newAVphenotypic-specific guidelines
with more vigilant surveillance and earlier prophylactic surgery to improve patient outcomes.
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1. Introduction
With an incidence of 7.6 per 100,000 persons, thoracic

aortic aneurysms (TAA) are a common aortic pathology,
and the 19th leading cause of death in the United States
[1–3]. Traditionally defined as dilatation of the aorta to
≥1.5 times its normal diameter, TAA are largely asymp-
tomatic and often diagnosed as incidental findings on un-
related routine imaging procedures. Over time, TAA can
lead to adverse aortic events (AAE), which are often lethal
complications such as dissection and rupture. Genetic pre-
disposition, hypertension, hemodynamic forces, smoking,
atherosclerosis, and pregnancy are all contributing risk fac-
tors of TAA pathophysiology [4]. While most TAA occur
as isolated pathologies, they can develop as a consequence
of aortic valve (AV) disease; either acquired Aortic Insuffi-
ciency (AI) and/or aortic stenosis (AS), or congenital, with
the most common being Bicuspid Aortic Valves (BAV).

Aortic insufficiency, or regurgitation, occurs when
AV integrity is compromised due to inadequate leaflet clo-
sure. Characterized by diastolic blood flow reversal from
the aorta into the left ventricle (LV), AI leads to progres-
sive LV dilation and eventual heart failure if left untreated.

Frequently encountered with TAA involving the aortic root
[5–7], AI is a relatively common condition with a 13%
male and 8.5% female prevalence [8]. In contrast, AS
pathophysiology resembles atherosclerotic disease (lipid
accumulation, inflammation, fibrosis, and calcification),
where leaflets progressively stiffen, reducing blood efflux,
causing pressure overload and LV myocardial hypertrophy
[9,10]. Affecting 3–5% of people >65 years of age, AS
severity and prevalence increases with age [11]. Compared
to normal or sclerotic AV (early stage AS), AS is associ-
ated with an increased incidence of dilated ascending aortas
[12].

BAV occur in 1–2% of the population, carry a 3:1male
predominance [13], and are the most common congenital
heart defect [14]. Until recently, there has been no consen-
sus on the nomenclature and classification of different BAV
types, with numerous heterogeneous classification systems
causing confusion [15,16]. With international consensus,
congenital BAV are now classified into one of 3 major types
(Fused BAV, 2-Sinus BAV, and Partial-fusion BAV), each
with specific phenotypes (Fig. 1, Ref. [15]). As a con-
genital condition with strong genetic ties, BAV are associ-
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Fig. 1. Schematic of the three major BAV types with associated phenotypes. BAV types as seen by short-axis transthoracic echocar-
diogram. (Top Row) Fused BAV type is the most common with 3 phenotypes named according to cusp fusion pattern. A raphe may not
always be visible or present, however all fused BAV have 3 distinguishable aortic sinuses, with the non-fused cusp typically being the
largest. (Middle Row) 2-sinus BAV is uncommon, does not have a raphe, and is characterized by 2 cusps of nearly equal size and shape,
each occupying 180° of the circumference and has only 2 distinguishable aortic sinuses. Relative cusp orientation dictates phenotype
as either latero-lateral or anteroposterior. Coronary arteries arise from each cusp (1 and 2A) or both from the anterior cusp in the AP
phenotype (2B). (Bottom Row) Partial-fusion BAV (or forme fruste) is characterized by the presence of a short cusp fusion (<50%) at
the base of a commissure in an otherwise normal appearing tricuspid aortic valve with 3 symmetrical cusps. Abbreviations: A, anterior;
BAV, bicuspid aortic valve; IAS, interatrial septum; L, latero-lateral; LC, left coronary cusp; NC, non-coronary cusp; P, posterior; RC,
right coronary cusp; RV, right ventricle; TV, tricuspid valve. Reproduced and modified with permission from the authors [15].

ated with manifestations in tissues beyond the AV, includ-
ing: aortopathies, aortic valvulopathies (AS and/or AI), ad-
ditional congenital cardiovascular abnormalities, coronary
anomalies, and other genetic disorders [17,18]. Specifi-

cally, mutations associated with BAV development also im-
pact aortic architecture, increasing susceptibility to TAA
formation and dissections, while altered hemodynamics
across bicuspid shaped AV further contribute to aortic di-
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Fig. 2. Repair-oriented functional classification of AI with disease mechanism and repair techniques. Abbreviations: AI, aortic
insufficiency; FAA, functional aortic annulus; STJ, sinotubular junction; VAJ, ventriculoaortic junction. Reproduced and modified with
permission from the authors [36].

latation. AV disease also develops much earlier in BAV,
with AS occurring most frequently (>70%), followed by
AI (15–30%), and mixed AI/AS (20%) [15,18].

Given the asymptomatic nature of TAA, serial surveil-
lance after diagnosis using various imaging techniques like
echocardiography, computed tomography (CT), and mag-
netic resonance imaging (MRI) is crucial. However, accu-
rately predicting disease progression and the risks of AAE
in TAA patients, especially when there is concurrent AV
disease, remains exceedingly challenging. Currently, there
is no comprehensive approach in managing patients with
AV disease and TAA that incorporates all imaging tech-
niques and necessary knowledge concerning AV disease-
TAA pathophysiology; an approach essential to providing
accurate disease prognosis and appropriate monitoring in
these patients.

This review aims to summarize the latest scientific
knowledge on the link between AV disease (AI, AS, BAV)
and aortopathies of the proximal aorta (root/ascending), as
well as identifying current gaps in the management of TAA
patients with AV disease. We hope the manuscript will set
the stage for further research to better address these com-
plex conditions that existing clinical tools and methodolo-
gies fail to do.

2. Connecting Aortic Valve Pathology with
Thoracic Aortic Aneurysm

Themost proximal portion of the aorta is known as the
aortic root, starting with the anatomical crown-shaped an-
nulus of the AV cusp insertion points or virtual basal ring,
followed by the ventriculoaortic junction, the AV leaflets
housed within the sinus of Valsalva, and ending with the
sinotubular junction (STJ). From there, the ascending tubu-
lar aorta begins and courses until the aortic arch, defined
as the takeoff of the innominate artery. Normal mean aor-
tic root diameters range from 3.50 to 3.91 cm (smaller in
women) and taper in the ascending aorta to 2.7 and 3.0
± 0.4 cm in women and men with tricuspid aortic valves
(TAV) respectively. By convention, an arterial aneurysm is
defined as any artery dilated to at least 1.5× its expected
normal diameter [19], and although this definition works
for aneurysms of the descending and abdominal aorta, we
now know it fails when defining aneurysms of the root and
ascending aorta [20].

When determining if an aortic root or ascending aorta
is aneurysmal, the most important consideration to account
for is the natural history of abnormal aortas in these loca-
tions, specifically the relationship between aortic diameters
(+/– presence of BAV) and the incidence of adverse aor-
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Fig. 3. Proposed Spectrum of TAA formation risk in the presence of AV disease. Abbreviations: AV, aortic valve; AI, aortic
insufficiency; AS, aortic stenosis; BAV, bicuspid aortic valve; TAA, thoracic aortic aneurysm; TAV, tricuspid aortic valve.

tic events, as guideline recommendations for surgical inter-
vention are based on this. By evaluating the risk of type A
dissections below the traditional 5.5 cm threshold for pro-
phylactic aortic repair, Paruchuri et al. [21] found that when
compared to control aortic diameters of<3.4 cm, aortic di-
ameters between 4 and 4.4 cm conferred an 89-fold increase
in relative risk of dissection, and those ≥4.5 cm carried a
6000-fold increase. Consequently, the most recent 2022
American College of Cardiology (ACC)/American Heart
Association (AHA) Guidelines for the Diagnosis and Man-
agement of Aortic disease now define dilatation of the root
or ascending aorta as diameters between 4.0–4.4 cm and
aneurysms as those with diameters≥4.5 cm [20]. This def-
inition is also now consistent with that proposed by the 2014
European Society of Cardiology aortic disease guidelines
[22].

For patients whose height and weight are significantly
different from the average population (≥1–2 standard de-
viations ± mean), it is important to normalize aortic di-
ameters in order to accurately differentiate between nor-
mal and dilated/aneurysmal aortas. Various normalization
methods exist, including aortic size index (ASI) and height
index (AHI), where the ratio of aortic diameter to body sur-
face area (ASI) or height (AHI) is calculated [23,24]. An-
other commonly used method utilizes the cross-sectional
area (CSA) of the aorta, rather than aortic diameter, to
normalize aortic size to height [25]. These measures are
frequently used in clinical practice for adult patients with
TAA, as they have been shown to be more reliable predic-
tors of AAE than diameter alone [21–23]. Consequently,
the most recent ACC/AHA guidelines recommend using in-
dexed aortic measures, including ASI ≥3.08 cm/m2, AHI
≥3.21 cm/m, and CSA to height ratio ≥10 cm2/m, as new
thresholds for surgical intervention [20].

The formation and particular location of an aneurysm
can both influence and be influenced by AV morphology

and pathology. In AS, altered blood flow through a stenotic
valve leads to a forceful ejection jet, altered hemodynam-
ics, and mechanical stresses on the aortic wall distal to the
stenosis. This is ultimately associated with proximal aor-
tic dilation and aneurysm formation, in a concept known
as post-stenotic dilation [26–28]. The extent of this rela-
tionship is even more apparent in patients with BAV and
AS, so much so, that this phenomenon is defined as BAV–
associated aortopathy. BAV–associated aortopathy most
commonly affects the tubular ascending aorta, occurring
in up 60–70% of BAV patients [29,30], and is greatest
with right-left (RL) coronary cusps are fused, followed by
right-non (RN) coronary cusp fusion [31,32]. Interestingly,
within the BAV population, aortic dilation is present in 40%
of patients regardless of the presence of AI/AS, raising the
possibility of genetic or pathological changes related to the
development of BAV that also lead to aortic wall weak-
ness and aneurysm formation [29,33,34]. The relative con-
tribution of hemodynamic forces and genetics to the de-
velopment of BAV-associated aortopathy remains debated
[29,35], with both factors likely contributory.

Conversely, aneurysms involving the STJ, sinuses of
Valsalva, and/or aortic annulus often result in the develop-
ment of AI (Type 1a-c), where the AV leaflets are pulled
apart and no longer able to coapt (Fig. 2, Ref. [36]). Since
AI is associatedwith aortic dilation, a vicious cycle of wors-
eningAI and aneurysmal degeneration can ensue. With pro-
gressive dilatation of the aortic root, the AV leaflets become
stretched and irreversibly damaged, leading to leaflet fen-
estrations, cusp prolapse [36–39], and worsening AI.

3. Clinical Patterns of TAA Depend on
Valvular Dysfunction

The natural history and risk profile of an aneurysm
change drastically whether associated with TAV or BAV, as
well as the presence of AS or AI. On one end of this spec-
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trum, TAV-AS aneurysms tend to be slow-growing with
more stable aortic walls, whereas, on the other extreme,
BAV-AI aneurysms are particularly aggressive (Fig. 3). Be-
tween these, less is known about the effects of TAV-AI and
BAV-AS on TAA development, and while not as danger-
ous as BAV-AI, both are prevalent and remain dangerous
[27,37–42].

3.1 Tricuspid Aortic Valves and TAA

Several key clinical studies have examined the impact
of AS/AI in BAV/TAV on aortic aneurysm formation and
progression. The aortic wall of TAV-AS patients remains
relatively stable in contrast to those with BAV-AS, with
aortic dilation occurring at slower rates in TAV-AS patients
[40,41]. After undergoing aortic valve replacement (AVR)
for severe TAV-AS in patients without aortic aneurysms,
aortic growth rates were found to be significantly slower at
0.09 mm/yr, whereas BAV-AS patients demonstrated pro-
gressive aortic dilation of up to 0.36 mm/yr (p < 0.001)
[41]. Additional studies have further suggested a protective
effect to AVR on aortic dilation when performed in patients
with TAV-AS, with patients demonstrating no further aor-
tic dilation post AVR [40]. This however was not demon-
strated in BAV-AS patients, with BAV patients showing
similar progressive dilation irrespective of AVR.

The impact of AI in TAV patients on the development
of TAA or risk of AAE remains to be thoroughly explored.
A recent small study (n = 36) by Balint et al. [43] examin-
ing this relationship demonstrated that the presence of AI in
TAV patients was significantly associated with medial de-
generation of the ascending aortic wall (even in the presence
of normal-sized aortas), when compared to TAV patients
without AI. Using histological and immunohistochemical
analyses, the authors further demonstrated more pathologi-
cal aortic remodeling in TAV-AI patients compared to TAV-
AS patients, including: increased mucoid extracellular ma-
trix accumulation, elastin loss and fragmentation, and de-
creased fibrillin and collagen expression. As such, TAV-AI
patients appear to be at increased risk of TAA formation
compared to both TAV and TAV-AS patients, which is con-
sistent with what is observed in patients with BAV and AI
vs AS [37,44,45].

3.2 Bicuspid Aortic Valves and TAA

Unlike TAV disease, aneurysms associated with AI vs
AS in patients with BAV have been well studied. With a
higher prevalence of aortic dilatation, more severe patho-
logical aortic remodeling, and a higher probability of ad-
verse aortic events, BAV-AI patients possess the worst clin-
ical course compared to BAV-AS and functionally normal
BAV [37,39,42,44,45]. This is due to a combination of (i)
increased hemodynamic burden secondary to the increased
stroke volumes in AI, and (ii) intrinsic abnormalities found
in the aortic walls of BAV patients leading to fragility [27].
Patients with BAV-AI are more often male and younger

than BAV-AS [37,46], and usually associated with root di-
lation (root phenotype) compared to predominantly tubu-
lar ascending aortic dilation in BAV-AS patients [38,47,48].
Echocardiography data from the early 1990s showed BAV-
AI was associated with a higher prevalence of aortic annu-
lar (59% vs 9%) and sinuses of Valsalva dilatation (78% vs
36%) when compared to BAV-AS, while 60–65% of both
groups had ascending aortic dilation [48].

Similarly, Sievers et al. [38] also demonstrated asso-
ciations of BAV-AI with root/ascending dilation and BAV-
AS with eccentric ascending aortic dilation. Notably, even
BAV patients with only trace AI were still significantly as-
sociated with root/ascending aortic dilatation, emphasizing
themore aggressive aortopathy phenotype found in BAV-AI
[38]. Expanding on this, Della Corte et al. [47] poignantly
showed BAV-AI to be predictive of root dilation (odds ratio
(OR) 3.9), while BAV-AS was predictive of mid-ascending
aortic dilation (OR 23.8) and protective of root dilation (OR
0.26). Furthermore, the frequency of aortic replacement at
time of BAV surgery is significantly higher with BAV-AI
patients when compared to BAV-AS patients (35% vs 17%,
(p < 0.001) [37,38].

Interestingly, the configuration of BAV cusp fusion
has also been shown to influence resultant valve dysfunc-
tion type (AI vs AS) and aortopathy phenotype. Using the
Sievers classification system for BAV phenotype, Sievers
et al. [38] demonstrated stenotic BAV (type 0 and type 1
RL) to be significantly associated with more localized aor-
tic dilatation (ascending only), whereas insufficient BAV
type 1 RL tended to involve the root and showed more ex-
tended aortopathy (root and ascending aorta). Categoriz-
ing BAV type based on orientation of the free edge of the
cusp, Kang et al. [49] foundAI significantlymore prevalent
in anterior-posterior vs RL configuration (anteroposterior
(AP) 32.3% vs RL 6.8%, p < 0.0001), while AS was more
common in RL vs AP (66.2% vs 46.2%, p = 0.01). Com-
paring aortopathies, these authors found BAV-APwas more
common in normal aortas or aortic root dilation (type 0/1
aortopathy), and BAV-RLwith ascending or ascending/arch
dilation (type 2/3 aortopathy) (Fig. 4, Ref. [49]). Com-
pleting this interconnected triangle, AI was significantly
more common in type 0/1 aortopathy (32.9% vs 10.2%, p<
0.0001), and AS with aortopathy type 2/3 (64.8% vs 44.3%,
p = 0.002) [49]. Since, RL fusion as defined by Sievers
(type 1 RL) was included in Kang et al.’s [49] AP group,
andRN (Sievers type 1RN)was part of their RL group, both
studies correlate well and show a strong clinical connection
between BAV cusp configuration, valvular pathology, and
aortopathy phenotype.

Current criteria for concomitant aortic replacement
when undergoing surgery for AV dysfunction is 4.5 cm, ir-
respective of AV anatomy or dysfunction type, holding a
Class 2a recommendation for both TAV and BAV [20]. As
such, this recommendation fails to account for the increased
risks of TAA formation and adverse aortic events seen with
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Fig. 4. MDCT images representative of BAV aortopathy phe-
notypes. Bicuspid aortopathy phenotype is dependent on the pat-
tern of BAV dysfunction, including both anatomical BAV config-
uration and the presence of AI or AS. Three distinct phenotypes
have been identified, including: Type 0—normal aorta, Type 1—
dilated aortic root only, Type 2—involvement of the tubular por-
tion of the ascending aorta, and Type 3—diffuse involvement of
the entire ascending aorta and transverse aortic arch. Reproduced
and modified with permission from the authors [49]. Abbrevia-
tions: AI, aortic insufficiency; AS, aortic stenosis; BAV, bicuspid
aortic valve; MDCT, multi-detector computed tomography.

BAV patients, as well as type of valve dysfunction present.
This recommendation was largely based on a small study
of 200 patients by Borger et al. [50], where they demon-
strated a significantly increased risk of aneurysm, dissec-
tion, or sudden death (p< 0.001) in BAV patients with aor-
tic diameters between 4.5 to 4.9 cm, compared to those with
aortas <4.5 cm at 15 years following AVR. However, this
study did not assess the associations of AI or AS on these
outcomes.

With the same 4.5 cm recommendation for prophylac-
tic aortic replacement as TAV, a significant cohort of al-
ready at risk BAV patients with dilated aortas are left be-
hind, whomay be at even higher risk depending on the pres-
ence of BAV-AI. Comparing BAV-AI to BAV-AS patients
post-surgical AVR, BAV-AI patients showed faster rates of

aortic dilation (0.29 mm/yr vs 0.18 mm/yr, p < 0.001) and
increased occurrence of adverse aortic events (15.5% vs
4.5%, p = 0.018) [39]. BAV-AI is an independent predic-
tor for adverse aortic events even after AVR, with patients
showing a 10-fold higher risk of dissection than BAV-AS
patients post AVR (2.8% pooled estimate of dissection rate
vs 0.2%), with increasing risk seen with smaller aortic di-
ameters in BAV-AI patients [42]. Despite these findings,
both groups demonstrated similar long-term survival [51],
likely due to the overall low numbers of observed adverse
aortic events.

4. Hemodynamic Changes in the Ascending
Aorta in the Setting of AS/AI, TAV/BAV, and
Impact on the Aortic Wall Remodeling

Altered blood flow through aneurysmal aortas cause
hemodynamic changes that affect the aorta, even in the ab-
sence of AV disease (AS, AI, or AS/AI) or abnormal AV
morphology (BAV). With the advent of 4D MRI, a great
deal of research in fluid dynamics has been produced, as
blood flow through the heart and great vessels over an en-
tire cardiac cycle can now be evaluated [52]. As expected,
4D MRI of TAV-TAA patients has demonstrated wall shear
stress (WSS) reduced by 21% to 33% across most regions
of dilated aortic walls relative to non-dilated aortas [53].
Holding stroke volume constant, mean velocity gradients
are reduced in the presence of an enlarged vessel, which
in turn reduces WSS [54]. The reduced pressure gradi-
ent is secondary to aberrant flow within the dilated aorta,
where the incidence and strength of supraphysiologic he-
lix and vortex flow correlates with increased ascending aor-
tic diameter [55]. Moreover, systolic time to peak velocity
and extent of retrograde flow both increase with increasing
aortic diameter, leading to reduced flow efficiency in TAA
[56].

Several studies have demonstrated altered flow dy-
namics in AS to impact the aortic wall [53,57]. Bauer et al.
[57] compared patients with BAV-AS to those with TAV-
AS, and demonstrated no differences in aortic root diame-
ter between groups, however the peak systolic wall velocity
in the anterolateral region of the aortic wall was higher in
BAV-AS than TAV-AS [36]. Within BAV-AS, velocity was
higher in anterolateral than the posterolateral location [57].
However, these authors did not have a BAV group with no
stenosis, so it remains unclear whether this difference was
due to BAV phenotype alone. To isolate these confound-
ing factors, van Ooij et al. [53] analyzed BAV and TAV
patients with and without AS. In mild stenosis, TAV pa-
tients with TAA go from decreased WSS to increased WSS
along the outer portion of the ascending aorta. As stenosis
progresses to moderate or severe, impaired valve opening
leads to more pronounced high velocity jets with marked
increase in regional WSS.

Remarkably, differences in WSS location between
BAV and TAV dissipated when the degree of AS was mod-
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Fig. 5. Computational FSI analysis for inner and outer maximum WPS in ATAA patients with TAV and BAV. Both TAV and
BAV patients demonstrate higher inner WPS compared to the outer aortic wall, with local maxima of WPS occurring just above the STJ
(inset image). BAV patients display slightly higher stresses than TAV patients (36.5 N/cm2 vs 29.4 N/cm2), suggesting a greater risk
of aortic dissection. Reproduced and modified with permission from the authors [61]. Abbreviations: ATAA, ascending thoracic aortic
aneurysm; BAV, bicuspid aortic valve; FSI, fluid structure interaction; N/cm2, newton per centimeter squared; STJ, sinotubular junction;
TAV, tricuspid aortic valve; WPS, wall principal stress.

erate/severe, implying AS as the now dominant factor gov-
erning hemodynamics, as well as it being a contributing fac-
tor in TAA formation [53]. How this altered flow affects
aortic growth over time would require longitudinal imaging
studies, which have yet to be performed. In addition, flow
dynamic studies assessing TAA formation in the presence
of AI are lacking in both TAV and BAV patients [58].

Aside from genetic components implicated in the de-
velopment of BAV-associated aortopathy, altered hemody-
namics play a large role in TAA formation in both TAV
and BAV patients. These effects are more pronounced in
BAV patients and also vary depending on the presence of
AI or AS. In contrast to TAV, where a central flow jet di-
rects blood flow parallel to the aortic wall, BAVusually pro-
duce eccentric outflow jets [53,59–61] which is consistent
with the asymmetric aneurysmal formations characteristic
of BAV [62]. Compared to TAV, averaged WSS is elevated
in BAV irrespective of aneurysmal formation or valvular
pathology [59,63]. Flow displacement (eccentric jets) is
higher in BAV and is predictive of aortic growth rate, with
dilation rates up to 1.2 mm/yr in patients with markedly ec-
centric flows relative to 0.3 mm/yr in BAV patients with les
flow displacement [64,65]. BAVhave decreased cusp open-
ing angles (a measure for BAV opening restriction), which
causes systolic flow deflection toward the right anterolat-
eral ascending wall [66]. This measure also independently
predicts ascending diameter and growth rate in non-dilated
aortas.

Like wall shear stress, the concept of wall principal
stress (WPS) is an important factor in understanding the
mechanical behavior of TAA, and also differs between BAV
and TAV. In contrast to WSS, WPS denotes the location of

maximum aortic wall shear stress, and is perpendicular to
the direction of blood flow rather than parallel [58,61,67].
Irrespective of AV type, WPS is greater along the inner aor-
tic wall when compared to the outer wall, with local WPS
maxima occurring just above the STJ (Fig. 5, Ref. [61])
[68]. It is at this location that an aortic wall is mostly
likely to tear or rupture, secondary to the discontinuities
in stress at the interface between aortic layers [61]. This
is supported by clinical observations noting this location as
the most common origin site of type A dissections [61,69].
Lastly, with respect to valve type, BAV aneurysms exhibit
higher severityWPS at all locations when compared to TAV
[61], which may account for the increased risks of dissec-
tion among patients with BAV [33,70].

Further complicating the hemodynamic role in BAV is
the recognition that cusp fusion phenotype changes the out-
flow jet orientation and flow abnormalities, impacting the
aorta and the WSS parameters [53,60,71]. The two most
common cusp fusion types found in BAV is RL fusion, fol-
lowed by RN coronary cusp fusion. Blood flow through
BAV-RL occurs as right-handed helical flow, with right-
anterior flow jets, whereas right-non-coronary (R-NC) has
more severe flow abnormalities, and gives rise to a left
helical flow and left-posterior or right-posterior flow jet
[60,71,72]. These differences lead to different areas of aor-
tic WSS. BAV-RL aortas have peak WSS along the right-
anterior ascending aorta [59,60], or increased WSS at the
root and along the entire outer curvature of the aorta [53].
In contrast, BAV-RN leads to peak WSS along the right-
posterior aorta [60], or increased WSS at the distal portion
of ascending aorta [53]. These differences correlate well
with clinical presentations associated with cusp fusion phe-
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notype, namely RL fusion being associated with a root dila-
tion phenotype, and RN with distal ascending aorta dilation
and often root sparing [53].

Flow alterations are more pronounced, and different
from each other, when assessing the combined effect of
BAV and the presence of AS or AI. Shan et al. [59] ob-
served that compared to control BAV, BAV-AI patients had
universally elevated WSS and correlated with stroke vol-
ume. BAV-AS patients had elevated flow eccentricity, as
the accelerated flow velocity from the AS exacerbated the
already eccentric flow found with BAV. However, the lo-
cation of peak WSS at the right-anterior ascending aorta,
was similar regardless of AI or AS, as was the associated
aortopathy, mainly type 2. Since this study focused solely
on BAV R-L patients, the location of peak WSS was likely
due to this phenotype rather than AI or AS [59]. As such,
further studies correlating the effects of valve dysfunction
type (BAV-AI and/or AS) on altered hemodynamics and not
just cusp fusion phenotype are needed. In addition, longi-
tudinal imaging studies comparing the impact of AI and AS
flow dynamic on the aortic wall are needed to help explain
the observed differences in natural histories of aortopathies
in the presence of AI vs AS.

5. Understanding the Impact of Aortic Valve
Morphology and Function on the Integrity of
the Ascending Aorta

With an abundance of evidence, it is clear that AV
structure and function greatly influences the integrity of the
aorta. The association between AS and TAA, as well as AI
and TAA in the setting of TAV or BAV has been thoroughly
confirmed. However, the exact mechanisms through which
each valvular anomaly contributes to aortic dilation and
aneurysm formation remain unclear. While examinations
of AV and aortic anatomy, have revealed similarities in cel-
lular and extracellular matrix compositions, the extent to
which TAA pathogenesis in the setting of AS/AI is caused
by genetic alterations (heritable gene mutations causing
aortic wall fragility), or altered hemodynamics (WSS), or
both, continues to be a debate.

5.1 Aortic Valve and Aortic Embryology and Anatomy
The AV arises from the semilunar cushions, struc-

tures that form early on during embryonic heart devel-
opment. These cushions consist primarily of myocytes
(neural crest origin, secondary-heart field origin), endo-
cardial/endothelial cells, and a hyaluronic acid-rich matrix.
Through cell proliferation, differentiation, and matrix re-
modeling, the semilunar cushions give rise to the mature
AV, which consists of three layers. The fibrosa layer is lo-
cated on the ventricular side of theAV and is rich in collagen
providing tensile strength and flexibility. The middle layer,
or spongiosa, contains less collagen with a high abundance
of proteoglycans and water retention, creating a more com-
pressible matrix to the AV. Lastly, the ventricularis layer is

adjacent to blood flow in the aorta and largely composed of
elastin providing flexibility to the AV leaflets [73].

In contrast, development of the proximal aorta begins
as a single tract outflow structure arising from the right and
left ventricles, eventually dividing into two separate vas-
cular channels (aorta and main pulmonary artery) with the
formation of the aorticopulmonary septum [74]. Once fully
developed, the ascending aorta also contains threemain lay-
ers: (i) the innermost layer is known as the tunica intima and
is in direct contact with blood. Made up of a single layer of
endothelial cells this is also the weakest layer, (ii) the tu-
nica media makes up the middle layer of the aorta and con-
tains >50 layers of alternating smooth muscle cells, elas-
tic fibers, and collagen type I/III, providing strength and
distensibility to the aortic wall, lastly (iii) the outermost
layer or tunica adventitia is made of a thin layer of colla-
gen, houses the vasa vasorum, and considered the strongest
layer of the aorta, possessing the greatest tensile strength.

5.2 Fluid Shear Stress in Vasculature
Aforementioned, although the exact mechanisms (and

contributions of each) underlying aortic aneurysm forma-
tion have yet to be fully elucidated, the concept of fluid
shear stress has been implicated as another important con-
tributing factor, and links both aortic valve and aortic wall
pathological changes [58,67,75,76]. Both fluid and WSS
are two related, but distinct concepts in the field of cardio-
vascular physiology and biomechanics. While WSS refers
to the force exerted on the inner wall of a blood vessel by the
fluid flowing through it, fluid shear stress results from fric-
tion between the fluid and the surface of the blood vessel,
and plays an important role in maintaining normal healthy
vascular biology and cardiovascular physiology [58,67,76].

As a consequence of similar anatomy, the endothelial
linings and extracellular matrix components of both the aor-
tic valve and aorta are affected by fluid shear stress. While
the effects of fluid shear stress (FSS) at the cellular level
on these components and their role in exacerbating disease
progression are still being researched, it is widely recog-
nized that the physical forces produced by fluid shear stress
play a significant role in the development and progression
of aortic aneurysm formation [75,77]. Furthermore, fluid
shear stress may also lead to changes in the mechanical
stress on aortic valve tissue, potentially resulting in patho-
logical changes, such as valve stenosis or regurgitation, as
well as structural valve degeneration [75,78]. Lastly, the
location and magnitude of these forces depend on factors
such as pre-existing aortic aneurysms, the presence of AS
or AI, and the morphology of aortic valve, specifically BAV
[60,79].

5.3 What We Know So Far?
To date, most human studies evaluating the effect of

AV disease on the ascending aorta have only been descrip-
tive histological studies, with no mechanistic interroga-
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tions on the pathogenesis of AV dysfunction causing aor-
topathies. While animal models to study TAA and valvular
pathologies exist, they are limited and unable to replicate
all the different phenotypes observed clinically.

Miura et al. [80] compared AV with AS and AI in
elderly patients, using scanning acoustic microscopy and
immunohistochemistry analysis. AS valves presented thick
nodular leaflets with active fibrosis and calcification, and
a stiff fibrosa layer lacking collagen I but rich in collagen
III. AI valves were thin but stiffer, contained collagen type I
and III in the fibrosa, as well as progressive accumulation of
advanced glycation end-products, which are non-enzymatic
modifications of proteins [81] that strongly contributes to
structural and functional degeneration in various native tis-
sues and diseases [82] and contribute to stiffness [83,84].

Given the incidence of ascending aortopathies in-
creases in the presence of valve anomalies, it would seem
logical to evaluate the AV and the ascending aorta as one
single entity. Aforementioned, Balint et al. [43] previously
demonstrated an increased risk of ascending aortic dilation
and rupture in TAV patients with AI and non-dilated aortas
using this methodology. These results were further con-
firmed in a larger, more recent study by Sequeira Gross et
al. [85] that examined the association of valve dysfunc-
tion (AI vs AS) and valve morphology (TAV vs BAV) on
aortic remodeling in 131 patients referred for AVR. Results
from this study uncovered an increased expression of all
medial degeneration and inflammatory markers in the aor-
tas of the AI group when compared to AS-aortas. Patients
with BAV-AI were significantly younger than those with
BAV-AS, but not microstructural differences were noted be-
tween BAV-AS and BAV-AI. Within the AI group, markers
for medial degeneration, were increased in TAV-AI versus
BAV-AI [85]. The clinical ramifications of these findings
remain unknown.

Whether the presence/type of valvular abnormality
has a direct effect on TAA formation/progression or not,
and whether or not interventions on TAA should be under-
taken when present or depending on type of AV dysfunc-
tion, during AV surgery remains highly debatable. A study
to examine this by Roberts et al. [45], evaluated the re-
lationship between AV structure and excised portions of
aneurysmal ascending aorta in surgical patients with AS
(±AI) vs patients with pure AI. The AV was congenitally
malformed in 98% of AS patients (unicuspid or bicuspid),
and 60% of AI patients (bicuspid). Unadjusted analysis of
these patients showed a significantly higher likelihood of
ascending aortic medial elastic fiber loss (EFL) in AI pa-
tients when compared to AS and control valves, strongly
suggestive that type of AV dysfunction may aid in predict-
ing loss of aortic medial EFL in patients with AV disease
and concomitant TAA [45]. EFL has also been assessed in
the setting of BAV, comparing patients with AS and AI un-
dergoing AVR and simultaneous replacement of the proxi-
mal aorta for aortic diameters≥50 mm [44]. Results of this

study also demonstrated higher rates of moderate/severe
aortic EFL was associated with BAV-AI when compared to
the BAV-AS [44].

6. Future Research Perspective
Despite remarkable progress in the past few years in

the understanding of the pathophysiology of TAA, the exact
causes and pathways underlying the phenotypic differences
observed in AS/AI and TAV/BAV TAA patients remain un-
defined. This is likely due to the multifactorial nature of
such diseases, where genetic and hemodynamic factors to-
gether dictate the fate of disease progression.

Lineage tracing analyses using reporter genes, and
studies of conditional knockout animal models have re-
vealed the presence of common cellular origins contributing
to the formation of both the ascending aorta and the leaflets
of the AV (smooth muscle cells derived from the secondary
heart field and cardiac neural crest cells) [86–88]. Whether
this common cellular origin plays a contributing role in the
pathophysiology of TAA remains to be answered.

Endothelial cells represent the interface between
blood and the aortic wall and valve. As such, these cells
are the first to be exposed to shear stress generated by blood
flow. Changes in shear stress can lead to changes in en-
dothelial cell gene expression and function, with differ-
ent responses observed when laminar flow versus oscilla-
tory flow have been tested on these cells [89,90]. Interest-
ingly, laminar shear stress induced differential responses
in porcine endothelial cells derived from the aortic wall
to those derived from the AV [91] and transcriptional dif-
ferences have been highlighted between these two cellular
populations [92]. More research focusing on understand-
ing human endothelial cells and smooth muscle cells de-
rived from the aorta and the AV, as well as the implica-
tions of BAV genetic background, should be undertaken to
help explain the clinical variability that we see on imaging.
This knowledge will help bridge the gap and integrate our
clinical understanding with the findings from basic science
which may help in the management of patients with TAA
and AV disease.

Genetics of BAV and Associated Aortopathy
Human and genetic studies continue to shed new light

on the molecular pathogenesis and development of BAV.
Primarily inherited as an autosomal dominant trait, BAV in-
heritance displays incomplete penetrance and variable ex-
pressivity due to the complex genetic architecture of its nu-
merous interacting genes [93,94]. As such, BAV may also
arise in other genetic syndromes, particularly Turners syn-
drome [95] and connective tissue disorders (Loeys-Dietz,
Marfan, vascular Ehlers-Danlos) [94,96,97], all of which
are already linked to TAA formation [98].

As outlined in this review, the presence of a BAV is as-
sociated with serious long-term health risks including pro-
gressive aortic valve disease and thoracic aortopathy, with
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Table 1. Pathophysiology and Characteristics of TAA formation based on AV disease type.

Mechanistic

AS-TAA AI-TAA

TAV BAV TAV BAV

Altered blood flow/Hemodynamics Abnormal leaflet coaptation
Stretched/Damaged cusps

Clinical Patterns
Gender Male predominance
Age Older Young
Morphology of aneurysm Asymmetric Asymmetric Asymmetric
Position of dilation Tubular ascending aorta/

Eccentric
Aortic root (Annulus & SOV)

Aortic dilation rate Normal Fast Fastest

Aortic Valve Management AVR AVR VSAR replacement if non-
significant cusp disease
(most common) or AVR
(patient dependent)

AVR (most common) or VSAR
replacement if adequate quan-
tity and quality of leaflet tissue
(increasing frequency & sur-
geon expertise dependent)

Post-AVR Course
Aortic dilation/aneurysm Minimal/None Lifelong-surveillance (root

& ascending) despite AVR
if no intervention on aorta at
time of AVR

Lifelong-surveillance (root &
ascending) despite AVR if no
intervention on aorta at time of
AVR

AAE Risk Minimal/None Present 10× increase dissection risk
even with AVR

Hemodynamic Changes
Peak systolic wall velocity High in anterolateral region

of aortic wall, elevated flow
eccentrically

Elevated WSS

Abbreviations: AAE, adverse aortic event (dissection, rupture, death); AI, aortic insufficiency; AS, aortic stenosis; AVR, aortic valve replace-
ment; BAV, bicuspid aortic valve; TAA, thoracic aortic aneurysm; TAV, tricuspid aortic valve; VSAR, valve sparing aortic root replacement;
WSS, wall shear stress; AV, aortic valve; SOV, sinus of Valsalva.

approximately 30–40% of BAV patients undergoing TAA
repair [14,99]. When compared to TAV patients, BAV pa-
tients (with or without aneurysms) are at increased risk of
future aortic dilation and dissection [33,70], and display
faster rates of aneurysmal growth [20,51]. These associa-
tions are so strong that, even after aortic valve replacement,
BAV patients still require lifelong surveillance of the aorta
[20,51].

Given the significant genetic associations of BAV,
and the potential lethality of BAV-associated aortopathy
complications (dissection/rupture), current guidelines rec-
ommend screening of all first-degree relatives with trans-
esophageal echocardiogram (TEE) for the presence of a
BAV and/or proximal aortic dilatation for BAV patients
with associated aortopathy (Class I) and without (Class IIa)
[20,99]. In contrast, no established protocols for providing
genetic counseling to individuals and families affected by
BAV exist. This is a result of the current poor understanding
of BAV genetic etiology [100,101], which is further com-
plicated by a complex coexistent genetic association with
diseases of the aorta and cardiac development [100,102].
As such, intense work on the genetic origins underlying the

pathogenesis of BAV-associated aortopathy is currently on-
going [101], in the hope that genetic risk factors may be
identified for use in screening tools to not only help iden-
tify BAV patients at risk of complications but also in family
member prevention.

Multiple human chromosomal regions (18q, 5q, 13q
[103]) and gene mutations (GATA5 [104,105] and MATR3
[104]) have been identified in the pathogenesis of BAV,
with the most well-described being the NOTCH1 gene.
NOTCH1 codes for a transmembrane receptor involved in
organogenesis [106], promoting endothelial to mesenchy-
mal transition, and plays a critical role in cardiac valve de-
velopment and valve calcification [101,106]. Mutations in
NOTCH1 pathway related genes contribute to left ventric-
ular outflow tract (LVOT) obstructive phenotypes such as
BAV development [93] and accelerated calcium deposition
of the aortic valve [106]. NOTCH1 is also associated with
non-syndromic BAV in a limited number of familial cases
and ~4% of sporadic cases [14,105].

Mutations in transforming growth factor-β signaling
pathway, such as transforming growth factor-beta (TGFB)
2 ligand and receptor that cause Loeys-Dietz syndrome
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Table 2. AV and TAA Histopathology associated with type of AV Disease.
Aortic Stenosis (AS) Aortic Regurgitation (AR)

Valve Structure Thick nodular leaflets + fibrosis + calcification Thin leaflets/Stiff
Fibrosa rich in Collagen III Fibrosa rich in Collagen I and III
Low AGE High diffused AGE/resistance to protease digestion

TAV-Aortas Ascending aortic remodeling, severe medial degenera-
tion, elastin loss and fragmentation, mucoid ECM ac-
cumulation
Decreased fibrillin and collagen
Decreased ENOS, subendothelial apoptosis

Evaluation in AVR patients Medial degeneration and inflammatory markers Increased medial degeneration and inflammatory
markers (especially AR-TAV)

Older AS-BAV patients Younger AR-BAV patients

TAA- Aortas EFL Increased EFL (especially BAV patients & proximal
aorta ≥50 mm)

Abbreviations: AI, aortic insufficiency; AGE, advanced glycation end products; AS, aortic stenosis; AV, aortic valve; AVR, aortic valve
replacement; BAV, bicuspid aortic valve; ECM, extracellular matrix; EFL, elastic fiber loss; ENOS, endothelial nitric oxide synthase; TAA,
thoracic aortic aneurysm; TAV, tricuspid aortic valves.

(TGFBR1, TGFBR2, TGFB2, TGFB3) have also been
shown to have a higher prevalence of BAV (4–15%) [15,
107]. ACTA2 and SMAD6mutations, which cause heritable
thoracic aortic aneurysms and dissections, have also been
identified in non-syndromic BAV (SMAD4 and SMAD6)
and TAA (ACTA2) [93]. Fibrillin1 (FBN1) mutations, re-
sponsible for the development of Marfan syndrome, have
also been found to be associated with BAV development
independent of Marfan [97]. Aneurysm formation in BAV
patients has also been linked to patients with polymor-
phisms in eNOS, angiotensin-converting enzyme (ACE),
matrix metalloproteinase (MMP) 9 andMMP2 [103,108].

While current evidence supports the involvement of
a genetic basis in the pathogenesis of BAV-associated aor-
topathy [61,94,101], due to complex heterogeneity, multi-
ple signal pathway involvement, and numerous mutations
in diverse genes [101], causative genes remain largely un-
known in most cases. Consequently, molecular testing
in BAV currently remains low yield. Although some ar-
gue genetic screening can lead to reduced healthcare costs,
by eliminating surveillance imaging negative patients [93],
this has not been validated and may have harmful conse-
quences. For instance, patients with BAV and a gene that
was not tested for could be wrongly denied care. Fur-
thermore, transthoracic echocardiogram (TTE) screening
of first-degree relatives of BAV patients to detect BAV
and aortopathy has already been demonstrated to be cost-
effective [109]. While genetic testing sounds promising,
until new BAV causing genes are discovered, specifically
those linked to the development of AV disease and/or aor-
topathy, genetic testing should be reserved for BAV patients
with features of genetic syndromes or heritable TAD [93],
and not used in family screening.

7. Discussion/Conclusions

Current guidelines for aortic replacement in TAA
do not account for the presence or type of AV dysfunc-
tion when determining aortic size thresholds for surgery
[20,110], and vice versa, with AV disease guidelines pro-
viding no recommendations for aortic interventions dur-
ing AV surgery depending on valve dysfunction type [111].
Specifically, prophylactic repair of TAA is recommended at
≥4.5 cm if undergoing AV surgery, irrespective of whether
the valve is bicuspid or tricuspid, regurgitant or stenotic
[20,112]. Developing a framework to understand the im-
pact of valvular dysfunction on TAA formation, with clin-
ical implications on surveillance, both before and after
surgery, and need for surgery itself, is critical. This review
clearly demonstrates epidemiological and clinical pheno-
types connecting AI in both TAV and BAV with major ad-
verse aortic events, as well as more rapid rates of TAA
growth. Patients with AI are at increased risks of devel-
oping aortopathy at younger ages, increased risks of root
dilation, rapid rates of TAA growth—both before and af-
ter AVR, and carry a greater risk of adverse aortic events
(Tables 1,2). These risks are further exacerbated in patients
with BAV-AI compared to TAV-AI. Furthermore, in addi-
tion to the already increased hemodynamic burden from AI
on the aortic walls, AI patients have universally elevated
WSS and more severe medial degeneration with elastin loss
and fragmentation, further weakening the aortic wall.

As such, AI patients (especially BAV-AI) should be
followed more aggressively, both preoperatively and post-
operatively following AVR for AI in the presence of mildly
dilated proximal aortas. It is clear after analyzing all avail-
able data in the literature, that AI patients with aortopathy
(dilation/aneurysms) represent a different risk group than
those with AS or normal functioning AV. Unfortunately,
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with no current guidelines recognizing this special at-risk
subgroup, these patients are improperly categorized into the
general AV/TAA pathology population who are at lower
risk of aortic dilatation and adverse aortic events.

Comprehensive aortic surveillance programs should
not only include longitudinal anatomic analysis of the aor-
tic root and ascending aorta via computed tomography
(CT)/MRI scan, but also morphologic and functional analy-
sis of the AV by echocardiography. Only then can we accu-
rately perform risk assessments with fully informed data for
these patients. Other non-invasive measures for improved
assessments of aortic wall integrity should also be sought,
with possible avenues of research to include biomarkers and
improved imaging techniques.

A paradigm shift in the management of patients with
AI irrespective of valve morphology is in order. Additional
longitudinal research examining how the degree of AI im-
pacts the risk of aortic dilatation and adverse aortic events
will help strengthen this new framework and should be the
first step. Longitudinal definition of the progression of AI
with focus on the ascending aorta in BAV vs TAV will pro-
vide clearer guidelines for surgical intervention. Finally,
further translational research will help identify the causes
and pathways leading to TAA formation as a consequence
of the distinct pathological AV phenotypes reported in this
review.
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