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Abstract

The incidence of cardiovascular disease has been continuously increasing. Because cardiomyocytes (CM) are non-renewable cells, it is
difficult to find appropriate CM sources to repair injured hearts. Research of human induced pluripotent stem cell (hiPSC) differentiation
and maturation into CM has been invaluable for the treatment of heart diseases. The use of hiPSCs as regenerative therapy allows for
the treatment of many diseases that cannot be cured, including progressive heart failure. This review contributes to the study of cardiac
repair and targeted treatment of cardiovascular diseases at the cytological level. Recent studies have shown that for differentiation and
maturation of hiPSCs into CMs, fatty acids have a strong influence on cellular metabolism, organelle development, expression of specific
genes, and functional performance. This review describes the recent research progress on how fatty acids affect the differentiation of
hiPSCs into CMs and their maturation.
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1. Introduction

Human induced pluripotent stem cell (hiPSC) can self-
renew and, under specific conditions, can differentiate into
various kinds of cells. These cells are a current focus of
stem cell research. All cell types in the body can differen-
tiate into hiPSCs, which in turn form all tissues and organs.
Therefore, the study of pluripotent stem cells has great
potential for applications in organ regeneration and repair
as well as disease treatment. Culturing hiPSC under cer-
tain conditions, such as CM maturation medium with fatty
acids, applying different electrical stimulation [1,2], and
applying mechanical stretch [3], can improve hiPSC-CM
maturation in some fields, such as developing sarcomere
organization, improving contractility of hiPSC-CMs, and
enhancing CM maturation-related gene expression [4]. In
addition, as a result of metabolic maturation in low glucose
solutions and high oxidative substrate media; hiPSC-CMs
becomes susceptible to cellular damage, which is crucial to
developing valid in vitro cardiac ischemia models [5]. CMs
are the basic cells that form heart tissue [6]. They form car-
diac fibers and are a part of the striated muscle with the
ability to excite and contract. Fatty acids include three ele-
ments: oxygen, hydrogen, and carbon, which are the main
ingredients of neutral fats, phospholipids, and glycolipids.
Fatty acids’ role in the development of hiPSCs into CMs as
a significant source of energy metabolism or as an indepen-
dent exogenous source is irreplaceable. Different types of

fatty acids, differences in the contents of fatty acids, as well
as differences in the metabolism of fatty acids affect the
differentiation and maturation of hiPSCs into hiPSC-CMs
via different mechanisms [7–9]. By compiling, analyzing,
and reviewing the recent literature, we present the influence
of various fatty acids on the differentiation of human stem
cells.

2. The Effect of Fatty Acids on Stem Cell
Differentiation into Mature CMs

HiPSC-CMs are a useful source of cells to model dis-
eases and regenerate myocardium. However, they exhibit
fetal CM-like characteristics in terms of both cellular and
metabolic functions and differ from adult CMs. During
CM maturation, the function of mitochondrial oxidative
enzymes is enhanced, and the source of energy for CMs
converts progressively from glycolysis to β-oxidation of
fatty acids. During the differentiation of hiPSC into CMs,
the purity and maturation of hiPSC-CMs using fatty acids
as the primary metabolic substrate has been demonstrated
as follows. First, the presence of CM-specific markers,
such as troponin T and sodium-potassium channels, indi-
cates that the cells exhibit mature adult CM-like character-
istics, as demonstrated by real-time quantitative polymerase
chain reaction (RT-qPCR), immunoblotting, immunofluo-
rescence, and electron microscopy. Second, cellular en-
ergy metabolism profiles are obtained by the XF96 Cell Ex-
trapolation Analyzer, which determines the rate of oxygen
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consumption (ORC, pmol/min/ug protein) and extracellu-
lar acidification (ECAR, mpH/min/g of protein) to evalu-
ate mitochondrial oxidation and glycolysis. These methods
have demonstrated that CMs derived from hiPSC, in which
fatty acids were the primary metabolic substrate, exhibit in-
creased elongation, an increased number of mitochondria,
more neatly aligned Z-lines, and developed expression of
adult-like CM-associated genes [10]. These data suggest
that a medium containing fatty acids enhances hiPSC-CM
maturation. In addition, oxygen consumption rates asso-
ciated with basal respiration, production of ATP, maximal
respiration, and reserve respiratory ability (representingmi-
tochondrial function), improve in hiPSC-CM using fatty
acids as the primary metabolic substrate. Mature hiPSC-
CMs exhibit greater changes in basal and maximal respi-
ration because of the use of extrinsic fatty acids (palmin)
in comparison with immature controls [1]. Fatty acid treat-
ment improves metabolic maturation of hiPSC-CMs, pri-
marily by increasing their number and mitochondrial ox-
idative function [1,11].

The hypoxia-inducible factor (HIF)-la-lactate dehy-
drogenase Axon Axon A axis alterations in hiPSC-CMs
prevents metabolic maturation. However, the addition of
fatty acids shifts the primary metabolic mode of hiPSC-
CMs by reducing aerobic glycolysis to promote oxidative
phosphorylation and inhibit hypoxia inducible factor-1α
(HIF-1α). Hypoxia inducible factor-1β (HIF-1β) inhibition
promotes oxidative phosphorylation while inhibiting aer-
obic glycolysis, resulting in an increase in the number of
mitochondria as well as cellular ATP content, which im-
proves CM gene expression as well as sarcomeric length
and contractility [12]. Conversely, unlike adult CMs in
vivo, hiPSC-CMs in standard culture medium maintain an
immature phenotype [13]. Supplementation of palmitate
or oleate, which are fatty acids, in the hiPSC medium sig-
nificantly enhances mitochondrial remodeling, the rate of
oxygen consumption, as well as the production of ATP.
Metabolomic analysis after fatty acid supplementation has
demonstrated that fatty acid oxidation increases ATP, which
is consistent with the presence of the linkage complex,
intercalated discs, t-tubule-like structures, and adult car-
diac troponin T isoforms [14]. On the contrary, day-30
CMs, which are maintained by glucose, show an imma-
ture ultrastructure and undeveloped bioenergetics, which
are affected by poorly developed mitochondria. In hiPSC-
derived CMs, the advanced metabolic phenotype that prior-
itizes fatty acids was achieved, whereby fatty acid-driven-
oxidation sustained cardiac bioenergetics and respiratory
capacity, contributed to ultra-structural and functional char-
acteristics similar to healthy adult-like CMs [14].

3. Different Types of Fatty Acids have
Different Roles in the differentiation of
Pluripotent Stem Cells into CMs
3.1 Effect of Palmitoyl Lipids on the Differentiation of
hiPSC into CMs

Induced differentiation and maturation of hiPSC into
exogenous, palmitoylated fat-treated CMs results in sig-
nificant changes in basal and maximal respiration [1,11].
HiPSC-CMs were sequentially cultured for a week and in
maturation medium with fatty acids but no glucose for 3–7
days after differentiation from hiPSCs for 5 days. In amatu-
ration medium containing palmitoyl lipids as the fatty acid,
fatty acid oxidation can support ATP production, mimick-
ing the metabolic substrate usage of adult ventricular CMs
[4]. The results show that the function of mitochondrial ox-
idation can be improved and the high capacity of using fatty
acids, which is considered as an energy source, can be ev-
idence to infer that metabolic maturation of hiPSC-CMs is
enhanced by fatty acid treatment. This contributes to the
morphology and structure of cells, the expression of genes
and proteins, and the metabolism of cells of hiPSC-CM cul-
tured in the fatty acid-contained medium [1].

3.2 The Effect of the Mixture of Linoleic Acid and Oleic
Acid on the Differentiation of hiPSC into CMs

The D-glucose-containing medium supplemented
with lactate facilitates the purification of hiPSC-CMs. Re-
placing lactate with linoleic acid-oleic acid-albumin from
the beginning of cell culturing is beneficial since free fatty
acids are toxic to CM [15,16] and can be improved by
applying the culture medium with Bull Serum Albumin
(BSA). This has been shown to bind the free fatty acid,
which could be transported to the intracellular space [17,
18]. Fatty acids have similar purification effects to lactate.
CMs’ have the ability to use fatty acids and lactate with high
efficiency to produce enough association of tennis profes-
sionals (ATPS) while non-cardiomyocytes (especially stem
cells) could not utilize fatty acid efficiently [19]. Fatty
acids also improves the electrophysiological properties of
hiPMC-CMs after supplementation of linoleic acid-oleic
acid-albumin and 3,3’,5-triiodo-I-thyronine (T3), which is
used to potentiate this process [20]. HiPSC-CMs has an
enhanced maximal upward velocity of action potentials, ac-
tion potential amplitude, and repolarization at 50% and 90%
of the action potential duration [21]. The treated CMs have
greater sensitivity and lower value-added activity to isopro-
terenol. Expression profiles have shown that various ion
channels and myocardial-specific genes are also elevated
in CMs, resulting in more mature CMs [19].

3.3 Phosphatidylcholine’s Effect on hiPSC-CM
Differentiation

Phosphatidylcholine (PC) in fatty acids is important
for hiPSCs’ survival. Targeted proteomics has been used to
show that fatty acid biosynthesis-related enzymes, includ-
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ing ATP citrate lyase and fatty acid synthase, are expressed
in undifferentiated hiPSCs, which are different from those
expressed in hiPSC-CMs. Based on past research, in some
cell lines, the accumulation of ceramides (Cer), which are
regarded as proapoptotic lipids, after fatty acid synthase
(FASN) inhibition contributes to cell death [22]. Detailed
lipid analysis has shown that inhibition of FASN results
in an important reduction in sphingolipids and PC [23,24].
Furthermore, PC is a major ingredient of lipid bilayers such
as cellular membranes. It is produced via de novo FA syn-
thesis and increases during cytokinesis [25]. It is shown
in some studies that the effect of FASN inhibition can be
attenuated by exogenous PC, which demonstrates that the
decrease in PC is of great significance to cell death due to
FASN inhibition [23]. However, different from the lipid
profiles of hiPSCs, PC was not significantly changed in
hiPMC-CMs after treatment with orlistat. This suggests
that PC’s reduction in the undifferentiated hiPSCs depends
on de novo FA synthesis for proliferation, and demonstrates
the important role of PC production via de novo FA synthe-
sis in cytokinesis [25].

3.4 Effect of Nitro-Oleic Acid on the Differentiation of
hiPSCs into CMs

Nitro-oleic acid is a mediator of pluripotency and has
recently been described as an activator of signal transduc-
tion and transcriptional activator protein 3 activity [26].
Nitro-oleic acid may also be involved in the regulation of
differentiation. Exogenous nitro-oleic acid was added at
the beginning of hiPSC culturing. Nitro-oleic acid regu-
lates pluripotency in embryonic stem cells by modulating
Stat3 phosphorylation, which induces cardiac-specific gene
expression and suppresses cardiac differentiation [26].

3.5 Effect of Polyfluoroalkyl Substances on the
Differentiation of hiPSCs into CMs

Polyfluoroalkyl substances, including perfluorooc-
tane sulfonate (PFOS) and perfluorooctanoic acid (PFOA),
are common persistent contaminants in human blood. At
non-cytotoxic concentrations, PFOS and PFOA strongly af-
fect CM differentiation, with perfluoro-1-octane sulfonyl
fluoride (PFOSF) beingmore potent than PFOA. Transcrip-
tional analysis of CM mRNAs has shown that adding ex-
ogenous PFOS to the cell culture medium increases the ex-
pression of the early cardiac marker islet 1 (ISL1), while
decreasing the expression of the CM marker myosin heavy
chain 7 (MYH7). This suggests that PFOS, as well as per-
fluorooctanoic acid, interfere with CM differentiation by
disrupting molecular pathways like those induced during
embryonic development [27].

3.6 Valproic Acid’s Effect on hiPSC Differentiation into
CMs

Valproic acid induces global histone H3 acetylation.
Core histone modifications induce a significant increase

in nucleosome stability and enrichment of sites associ-
ated with cytoskeletal organization and cell morphogenesis.
Changes in chromatin accessibility are evident at several
important genomic loci, including the pluripotency factor
Lefty, cardiac troponin Tnnt 2, and homologous structural
domain factor Hopx, which play a major role in the dura-
tion of CM differentiation [28]. Additionally, valproic acid
increases the ability of pluripotent stem cell-derived meso-
dermal progenitor cells to form myotubes [29]. The thera-
peutic roles of essential fatty acids and their metabolites in
coronary heart disease and hypertension, in addition to their
ability to inhibit inflammation, may be related to their capa-
bility to proliferate embryonic stem cells and differentiate
CMs [30].

4. Oxidation of Fatty Acids also Affects the
Differentiation and Maturation of hiPSCs
into CMs
4.1 CMs Metabolic Properties in Adults

The continuous rhythmic contraction of cardiac mus-
cle cells requires a large amount of energy expenditure. Due
to insufficient energy reserves, the heart has to constantly
produce ATP at a high rate [31]. Under normal conditions,
the CM prefers fatty acid oxidation as a source of energy
[32]. In a healthy adult heart, mitochondrial oxidative phos-
phorylation accounts for approximately 95% of ATP pro-
duction, with fatty acid oxidation accounting for 40%–70%
[33–35]. The fatty acid metabolic profile is unique in em-
bryonic stem cells that drive CMs. The ability of hiPSCs to
self-renew is linked to specific metabolic pathways.

4.2 Fatty Acid Metabolism is Important in the
Differentiation of hiPSCs into CMs

Many studies have shown that anaerobic glycolysis
can be used by undifferentiated hiPSCs to satisfy their en-
ergy demands even if oxygen availability is sufficient. The
hiPSCs’ self-renewal ability appears to be regulated by
metabolic pathways that are essential to maintaining this
state [36–39]. ATP is produced by mitochondrial respi-
ration from lipids in the form of fatty acids. Fatty acid
and glucose metabolisms, as well as mitochondrial respira-
tion, appear to be critical for embryonic stem cell-derived
CMs compared with undifferentiated embryonic stem cells.
Therefore, the energy substrate metabolism during cardiac
maturation and differentiation is flexible. During the dura-
tion of CM maturation and differentiation, the contribution
of anaerobic glycolysis to ATP synthesis falls rapidly, while
mitochondrial respiration dependent on fatty acids plays
an increasingly significant role. The metabolism of in-
duced hiPSC-CMs is more like that of fetal CMs compared
with the adult CM phenotype. This suggests that metabolic
switches during in vitro differentiation are unlikely to have
entirely developed to the metabolic state of adult-like CMs.
Therefore, it is possible to gain new insights into stem cell
differentiation and develop recent strategies for stem cell
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differentiation using defined medium by identifying cell-
specific metabolic pathway components or metabolic path-
ways [40].

4.3 Fatty Acid Oxidation Induces a Mature Metabolic
Phenotype

The study of hiPSCs derived from myocardial sub-
strate metabolism, gene expression, and the changes of mi-
tochondrial oxygen consumption by using oleic acid salt
and the agonist wY-14643 active peroxidase body multipli-
cation body activated receptor alpha, stimulates the inter-
action between increasing fatty acid oxidation and mature
CMs. CMs derived from hiPSCs show decreased glycoly-
sis and increased fatty acid oxidation. These results demon-
strated that the hiPSC-CM profile showed growth and hy-
pertrophy compared with untreated cells, suggesting that
fatty acid oxidation induced a more mature metabolic phe-
notype in vitro. In addition, RNA sequencing demonstrated
that fatty acid treatment upregulates genes involved in fatty
acid b-oxidation and downregulates genes in lipid synthesis
and glucose metabolism, specifically, the mRNA level of
CD36, CPT-1B, and PDK4, which likely enhance the abil-
ity to oxidize fatty acids and make the hiPMC-CM simi-
lar to adult CMs. In summary, these studies have provided
convincing proof that the metabolic switch from glucose to
fatty acids is a driver of hiPSC-CM maturation [41].

4.4 Fatty Acid Oxidation Promotes the Development of
CMs Characteristics

The utilization of fatty acids as a priority for pro-
ducing ATP means the advanced metabolic phenotype of
developing CMs. In hiPSC-CMs, supplementation with
CM and palmitic/oleic acids dramatically enhances mito-
chondrial remodeling, oxygen consumption rates, and the
production of ATP [42]. Metabolomic analysis follow-
ing fatty acid supplementation has shown elevated lev-
els of ATP promoted by ß-oxidation. In hiPSC-CMs, a
higher metabolic phenotype of preferential fatty acid use
is achieved, whereby fatty acid-driven ß-oxidation main-
tains the bioenergetic and respiratory capacity of the heart,
contributing to ultrastructural and functional characteristics
similar to those of late-developing CMs. Further research
on themitochondrial bioenergetics and ultrastructural adap-
tations associated with fatty acid metabolism is of great im-
portance in cardiac physiology studies pertaining to late mi-
tochondrial and metabolic adaptations [14].

4.5 Fatty Acid Oxidation and the Induction of hiPSCs
Differentiation into CMs are Mutually Reinforcing

Fatty acid oxidation is triggered by the peroxisome
proliferator-activated receptor α. Peroxisome proliferator-
activated receptors (PPAR) agonists increase fatty acid and
glucose oxidation as well as cardiac gene expression during
cell differentiation, implying a mutually reinforcing rela-
tionship between CM metabolism and differentiation such

as the TFPa/HADHA gene, which is required for fatty acid
β-oxidation and cardiolipin re-modeling in human CMs
[43,44].

5. The Effect of Excess Fatty Acids on hiPSC
Differentiation into CMs

Moderate amounts of fatty acids promote the differ-
entiation and maturation of hiPSCs into CMs, but exces-
sive amounts of fatty acids can have a negative effect on
differentiation. CD36 is a membrane protein that improves
the uptake of fatty acids into CMs [45]. Myocardial fatty
acid utilization is also governed by the CD36-mediated up-
take step [45–47]. Insulin is triggered via Akt signaling by
the translocation of CD36 to the sarcolemma, resulting in
an increased rate of cellular fatty acid uptake [48]. Upon
the disappearance of such triggers, CD36 is internalized
(within minutes) and the fatty acid uptake rate is normal-
ized [49]. Cardiac insulin resistance results in almost to-
tal dependence on fatty acids, with little contribution from
glucose and other fuel sources [50]. Since fatty acid up-
take exceeds metabolic energy requirements, excess fatty
acids are stored in triacylglycerols within cells. Through
increased levels of lipid metabolites such as diacylglycerols
and ceramides, ectopic lipid storage causes insulin signal-
ing inhibition, which can have a negative influence on the
differentiation of hiPSCs into CMs [51]. Excess lipid sup-
ply can lead to loss of cardiac insulin sensitivity, resulting
in loss of CM endothelial acidification and thus impairment
of v-ATPase function [52].

6. Issues and Prospects
In general, fatty acids affect the differentiation of

hiPSC-CMs by influencing organelles, mainly mitochon-
dria, which play a major role in the maturation of CMs [53],
cell structure, genetic phenotype, and metabolism. How-
ever, there are many different types of fatty acids, and there
is not much available research about the influence of other
kinds of fatty acids on the differentiation as well as the mat-
uration of hiPSCs into CMs. There is also little informa-
tion available about the interactions of fatty acids with other
classes of substances.

The differentiation of hiPSCs into CMs is a cutting-
edge technology that benefits cardiac patients suffering
from myocardial infarction and heart failure, leading to op-
portunities for CM regeneration and repair as well as re-
search challenges. Knowledge of the mechanisms of in-
duced differentiation remains very limited. This is because
during the course of hiPSC-CM differentiation, the hiPSC
not only differentiates into hiPSC-CMs, but also into many
other types of c, such as stem cells, endothelial cells, and fi-
broblasts. The recent strategy of purification is that hiPSC-
CMs are purified at day 20 by culturing them with lactate
purification medium for 7 days to eliminate non-CM cells
[54]. This method is based on the distinctive biochemical
differences between CMs and non-CMs involving lactate
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Table 1. Different types of fatty acids have different roles in the differentiation and maturation of pluripotent stem cells into
CMs.

Effect of fatty acids on the induction of stem
cell differentiation into mature CMs

Effect of fatty acids on the induction of stem
cell maturation into mature CMs

Different types
of fatty acids

Palm fat Cell expression of genes and proteins, mor-
phology, and structure, and metabolic matura-
tion of hiPSC-CMs cultured in the fatty acid-
containing medium [1] and cell elongation in-
creased [10,12]

Sodium-potassium channels and troponin T
exhibit characteristics of mature adult CM
with increased numbers [2,10,14], oxidative
function of mitochondria is developed and
maximum respiratory and reserve respiratory
capacity and structural and functional charac-
teristics and respiratory capacity are similar to
normal CM in adults [1,11]

A mixture of linoleic
and oleic acids

Action potential amplitude was enhanced, and
various ion channels and myocardial-specific
genes were also elevated in CMs [19]

Themaximum rate of action potential rises, the
cells’ mitochondrial function improved and
maximum respiratory and reserve respiratory
capacity and fatty acid-dependent mitochon-
drial respiration increases dramatically during
maturation [21]

Phosphatidylcholine Important for the survival of hiPSCs [22,23] Important for the survival of hiPSCs [22,23]
Nitro-oleic acid Induces cardiac-specific gene expression and

inhibits cardiac differentiation [26]
Inhibits cardiac maturation

Polyfluoroethylene
substance

Interference with CM differentiation Inhibits cardiac maturation

Valproic acid Increased the ability of pluripotent stem cell-
derived mesodermal progenitor cells to form
myotubes [29] and promotes embryonic stem
cell proliferation and mesodermal differentia-
tion related [30]

The number of mitochondria of hiPSC-CMs
increased [10], structural and functional char-
acteristics and respiratory capacity are simi-
lar to normal CM in adults and fatty acid-
dependent mitochondrial respiration increases
dramatically during maturation

and glucose metabolism. While non-CMs rely on glucose
as the cell’s main energy source, CMs can produce energy
from lactate and fatty acids as well [55,56]. How can FA
improve the efficiency of induction of hiPSCs to hiPSC-
CMs and increase enrichment and purification of induced
CMs? Furthermore, how can FA control the directional dif-
ferentiation of hiPSCs, since FA can stimulate an increase
in the number of mitochondria and the expression of CMs’
specific genes [57–60] and simplify their induction path-
ways, allowing mass production of hiPSCs. These are areas
which are worth studying and will contribute to the future
treatment of patients with myocardial infarction and heart
disease.

7. Conclusions
In conclusion, fatty acids are essential for the differen-

tiation andmaturation of hiPSC into hiPSC-CM. In general,
when hiPSC-CMbegins to differentiate into hiPSC-CMand
hiPSC-CM differentiation is relatively mature, hiPSC-CM
showed a more mature cell structure, improved respiratory
metabolism and CM function, more expression of CM spe-
cific gene-phenotype, and cell licardiones after culture with
a certain amount of specific fatty acids. Their number and
function in the body are more complete, and the expres-

sion of CM-specific metabolites and CM-specific markers
is more varied. The cells show a more mature state, similar
to adult CMs.

Recent studies show that different fatty acids may
have different effects (Table 1, Ref. [1,2,10–12,14,19,21–
23,26,29,30]). The appropriate amount of exogenous palm
grease can make hiPSC-CM differentiated by hiPSC-CM
more mature. Phosphatidylcholine is a key metabolite for
hiPSC-CM survival, and nitro-oleic acid has a weakening
effect on hiPSC-CM differentiation. PFOS and perfluo-
rooctanoic acid interfere with CM differentiation by dis-
rupting molecular pathways evoked during embryonic de-
velopment. Fatty acid metabolism, as the main metabolic
mode of adult CM, can also affect the differentiation and
maturation of hiPSC-CM. It can not only induce the more
mature metabolic phenotype of hiPSC-CM, and promote
the characteristic development of hiPSC-CM, but also pro-
mote the differentiation process of hiPSC-CM. At the same
time, excess FA often harms the differentiation and matura-
tion of hiPSC-CM. We are not yet able to generate hiPSC-
CM consistent with adult CMs. Therefore, we continue to
try different kinds of specific fatty acids or mixtures of fatty
acids, and other specific external conditions such as phys-
ical stretch, electrical stimulation, and a hypoxia environ-
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ment, to explore the cultivation of hiPSC-CM consistent
with adult CMs.
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