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Abstract

Abnormal or excessive accumulation of adipose tissue leads to a condition called obesity. Long-term positive energy balance arises
when energy intake surpasses energy expenditure, which increases the risk of metabolic and other chronic diseases, such as atheroscle-
rosis. In industrialized countries, the prevalence of coronary heart disease is positively correlated with the human development index.
Atherosclerotic cardiovascular disease (ACD) is among the primary causes of death on a global scale. There is evidence to support the
notion that individuals from varied socioeconomic origins may experience varying mortality effects as a result of high blood pressure,
high blood sugar, raised cholesterol levels, and high body mass index (BMI). However, it is believed that changes in the concentration
of trace elements in the human body are the main contributors to the development of some diseases and the transition from a healthy
to a diseased state. Metal trace elements, non-metal trace elements, and the sampling site will be examined to determine whether trace
elements can aid in the diagnosis of atherosclerosis. This article will discuss whether trace elements, discussed under three sections of
metal trace elements, non-metal trace elements, and the sampling site, can participate in the diagnosis of atherosclerosis.
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1. Introduction

The rise in blood cholesterol and blood sugar levels
due to dietary imbalance, as well as unhealthy behaviors
like smoking and genetic factors, are all contributing causes
to the rise in patients with coronary heart disease in the
United States, Europe, and China [1]. The four main risk
factors for coronary heart disease are smoking, blood sugar,
blood lipids, and hypertension. The aforementioned four
independent risk factors were found to be the primary in-
dicators for coronary atherosclerosis [2–4]. Moreover, it
has been found that the frequency of coronary heart disease
in underdeveloped countries was positively correlated with
the human development index. Contrarily, it has a negative
correlation (p = 0.47 and 0.34, respectively) with the hu-
man development index of wealthy nations. Due to dietary
imbalances and variations in the concentration of trace ele-
ments in serum, coronary heart disease incidence rates have
changed over the past few decades, with increases in de-
veloping nations and decreases in industrialized countries
(p = 0.021 and 0.002, respectively) [5–9]. According to
a recent Lancet study, there is a link between obesity and
several diseases [10–12]. A thorough understanding of the

effects of obesity on health is provided by the simultaneous
evaluation of 78 disease outcomes [12–14]. Numerous or-
gan systems are affected by 21 non-overlapping disorders
that are related to severe obesity (HR ≥1.50, p < 0.0006)
[12]. These disorders are interrelated to the level that indi-
vidual obesity-related disorders can be predicted using one
or more obesity-related diseases [15]. Secondly, this asso-
ciation accelerates the rate at whichmultiple obesity-related
incidents occur. In the Finnish cohort, obese people had a
5-fold higher risk of simple multiple morbidities and a 12-
fold higher risk of complicated multiple morbidities than
those who were of a healthy weight [16]. Among obese par-
ticipants under the age of 50, the risk of complex multiple
incidence rate is higher than that of elderly obese patients.
According to the classification of obesity, the relative risk
of complex and common diseases increases with increas-
ing levels of obesity [17,18]. Third, there are 140 possi-
ble combinations of 21 diseases in the overall pattern of
complex multiple incidence rates associated with obesity,
which is highly varied (cardiometabolic, digestion, respira-
tion, nerves, musculoskeletal, infection, and malignant dis-
eases). Despite having a high incidence rate, obesity is only
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mildly linked to death, suggesting that it affects overall sur-
vival less than disease-free survival. These three conclu-
sions were supported by a separate cohort of senior people
from the UK Biobank [14–18].

These days, lifestyle, stress, nutrition, genetics, and a
lack of exercise are all contributing to an increase in obe-
sity among the world’s population. White adipose tissue
(WAT) in obese people not only stores extra energy but also
disrupts endocrine function. WAT secretes a class of chemi-
cals known as adipokines, which have endocrine, autocrine,
and paracrine functions in the central nervous system (CNS)
and throughout the body [19–21]. Obesity increases the
chance of developing atherosclerosis and Alzheimer’s dis-
ease (AD) [22,23]. Obesity has been identified as a risk
factor for coronary heart disease. Additionally, obesity can
cause low-grade chronic inflammation of adipose tissue,
which upsets the homeostasis system and brings on a vari-
ety of disorders, including those associated with neurode-
generation. Interleukin-1β (IL-1β), Interleukin-6 (IL-6),
tumor necrosis factor α (TNF-α), and leptin are examples
of proinflammatory adipokines produced by adipose tis-
sue during this process, while anti-inflammatory adipokines
such adiponectin are decreased [24]. These processes are
thought to play a part in the development of atherosclero-
sis, which has also been supported by our earlier research
[24–27].

Obesity and diabetes are both complex, multifaceted
disorders that can often be prevented [28,29]. Diabetes
also considerably raises the risk of coronary atherosclerosis
[30]. The leading cause of death worldwide is atheroscle-
rotic cardiovascular disease (ACD) [31]. Risk factors in-
cluding high blood pressure, diabetes, high cholesterol, and
body mass index (BMI) have different long-term effects
on patient groups with different income levels in terms of
mortality [5,32,33]. Over the past 20 years, high-income
countries have been able to minimize the consequences of
these risk factors, while low- and middle-income countries
have experienced an increase in mortality as a result of high
BMI and blood sugar levels [33]. The rise in atherosclero-
sis mortality is attributed to several factors, including pop-
ulation growth and aging, considerable nutritional system
changes, and population growth [34]. However, it is uncer-
tain whether differences in the dietary intake of trace ele-
ments contribute to coronary atherosclerosis [35,36].

According to the reported studies, coronary heart dis-
ease and several other disorders are closely associated to
trace elements in the human body [37,38]. According to
studies by Zang et al. [39], metal levels in the blood and
obesity in children and adolescents are positively corre-
lated. It has been discovered that obesity is associated with
an increase in superoxide dismutase (SOD) and total circu-
lation copper concentration. Metal ions affect leptin pro-
duction in adipocytes by regulating the release of free fatty
acids and the consumption of glucose, highlighting that
obesity is a substantial risk factor for coronary heart disease

[39–41]. Gonzalez et al. [42]. revealed that acute coronary
syndrome (ACS) is the outcome, not the cause, of the iron
saturation of the iron transporter transferrin (transferrin sat-
uration: TSAT). TSAT is a crucial factor in the diagnosis
of ACS and is not up-regulated in the acute inflammatory
response [42,43]. Changes in trace elements can help type
2 diabetic patients with their insulin resistance, according
to Kalita et al. [44]. It is known that the cofactors mag-
nesium and manganese are necessary for multiple enzymes
involved in diabetes. Low magnesium and manganese lev-
els increase the risk of developing metabolic syndrome,
which disrupts glucose metabolism. Atherosclerosis may
be brought on by low levels of total glycerides (TG) and to-
tal cholesterol as well as magnesium deficiencies [44,45].
According to Li et al. [46], blood selenium concentration
was strongly related to both men’s and women’s all-cause
mortality, although it was more significant in females with
coronary heart disease. Hence, it is believed that the ma-
jor cause of the development of various diseases and the
transformation from a healthy condition to a diseased state
is a change in the concentration of trace elements in the hu-
man body. Numerous studies have demonstrated the links
between coronary heart disease and factors including smok-
ing, high blood pressure, high blood sugar, and high choles-
terol.

There is a definite relationship between trace elements
and atherosclerosis. This review will assess, from the per-
spective of sample location and the presence of specific
trace elements, whether trace elements can serve as a novel
indicator for detecting atherosclerosis (see Fig. 1 for de-
tails).

2. Sampling Position
In this review, the advantages and disadvantages of

peripheral blood and epidermal tissue have been compared
[47]. See the subordinate part and Fig. 2 for details.

2.1 Peripheral Blood
Peripheral blood can be used as a window to eval-

uate diseases [48–50]. It is convenient for sampling and
causes minimal harm [51]. The peripheral blood is sep-
arated into three layers following centrifugation: the up-
per plasma layer, the middle white blood cell layer, and
the bottom red blood cell layer. Furthermore, the periph-
eral blood is separated into plasma and serum based on
whether or not it has been anticoagulated. The upper layer
obtained following anticoagulant treatment and centrifuga-
tion is plasma. Without anticoagulant treatment, the upper
layer obtained following centrifugation is serum.

2.1.1 Application of Leukocytes
Leukocytes in peripheral blood are one of the most

crucial elements for diagnosing and assessing disease [52].
Samples of patients’ peripheral blood smears are analyzed
by pathologists for clinical diagnosis. This examination is
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Fig. 1. Flow chart. The process of atherosclerosis, the sampling location, and the significance of different types of trace elements for
atherosclerosis.

Fig. 2. Sampling details of samples. Obtaining stratified centrifuged blood from the patient’s peripheral blood and using centrifuged
serum is one method. Another method is to collect samples from the patient’s scalp and hair.
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predicatedmostly on themorphological properties of leuko-
cytes and their nuclei and cytoplasm, such as their form,
size, color, texture, maturity, and staining [53]. Leuko-
cytes are closely associated with blood diseases and various
other disorders. Recently, computer-aided diagnosis tech-
nology has developed rapidly in the field of digital hematol-
ogy, which is related to the detection of leukocytes and their
nuclei and cytoplasm, as well as segmentation and classifi-
cation technology. These technologies continue to play a
crucial role in digital hematological image analysis by de-
livering traceable clinical data and decreasing human inter-
vention [54].

2.1.2 Application of Serum

It has been suggested that serum proteins contribute
to every aspect of life. Moreover, it has been reported that
the human serum proteome is under strong genetic control
[55]. Additionally, it was discovered that serum proteins
are part of the regulatory group of network modules, which
includes members synthesized in all parts of the body. The
underlined finding suggests that thousands of proteins in
the blood play a significant role in mediating coordination
or homeostasis at the system level [56]. Importantly, deep
serum and plasma proteomes are associated with a vari-
ety of diseases, human life spans, and the ability to predict
how well individuals would respond to treatment [55,57–
63]. Recent research has linked genetics, protein levels, and
diseases as well as highlighted the potential causative link
between proteins and complex disorders [64,65].

2.2 Epidermal Tissue

Elemental analysis of hair is a valuable diagnostic tool
for assessing mineral nutrition in the body [66,67]. The
hair follicle is one of the most active metabolic tissues.
Most metallokeratins have a high affinity for the sulfhydryl
groups of amino acids, while melanin in hair conveniently
binds cations through ionic interaction. The keratin outer
layer of hair forms a barrier with the environment to prevent
the escape of accumulated substances (ions). Hair analysis
has become a popular source of information in the therapeu-
tic, nutritional, toxicological, and forensic fields recently
due to advancements in research techniques [68,69]. Stan-
dard analytical procedures for determining the concentra-
tion of trace elements in blood and urine may not accu-
rately reflect the current availability of biological elements
in organisms. For example, the concentration of biologi-
cal components in hair samples is significantly higher than
that in serum, with zinc ion levels over one hundred times
higher. As a result, serummetal concentrations do not accu-
rately reflect total trace element concentrations in the body
[70,71]. Metal is implanted into the structure of hair contin-
uously as it develops. Given that the average rate of growth
in humans is 1 cm per month [72], the concentration of a
given element in the hair represents the organism’s aver-
age long-term concentration. The metal concentration in

the routine analysis sample decreases in a few days (blood)
or weeks (urine); therefore, hair analysis is more valuable
for assessing the long-term concentration of specific met-
als. For example, the sample examined is 3–4 cm long,
so the analysis results show the average concentration of
mineral nutrients in the past 3–4 months [72]. Such a large
time window is rare for samples that can be easily obtained
from patients. The results of elemental hair analysis are not
affected by short-term changes in metal serum concentra-
tions.

3. Trace Elements
Trace elements are substances comprising between

0.01% and 0.005% of our body weight. Trace elements
have several physiological and biological applications.
They may serve as hormones and vitamins, as well as
primary or secondary components of biological macro-
molecules. Furthermore, they play a crucial role in keep-
ing the body functioning normally. Among these, critical
trace elements such as iron, copper, zinc, cobalt, chromium,
manganese, and selenium are vital components in the body.
The body is unable to generate or synthesize the aforemen-
tioned substances, hence food must be consumed to meet
these needs. Deficiency can easily occur if the diet is not
properly balanced, is partial, or the sufferer is ill. These
elements all play a role in the development of atheroscle-
rosis [73]. Trace elements play a significant influence on
the status of cardiovascular disease because they directly or
indirectly affect circulatory processes [74–76].

3.1 Metal Ions
3.1.1 Zinc

Zinc ions influence the body’s metabolism of a vari-
ety of proteins, lipids, and carbohydrates as well as a variety
of other cellular metabolic activities [77,78]. More than 70
enzymes depend on zinc, including glutathione peroxidase
and superoxide dismutase. By serving as a cofactor of Cu-
Zn superoxide dismutase (Cu, Zn-SOD), zinc can have an
impact on CHD (coronary heart disease). According to the
reported studies, zinc supplementation decreases Cu-Zn su-
peroxide dismutase activity because copper absorption and
increased zinc consumption have an antagonistic relation-
ship [79]. Moreover, zinc also has anti-inflammatory and
antioxidant effects [80,81]. With the increase in zinc con-
centration, cells are better able to act as antioxidants, and
normal endothelium function is maintained. The role of
zinc in enzymes, humoral mediators, and mitosis is crucial
for the function of the immune system [82]. Zinc deficiency
can lead to an increase in oxidative stress sensitivity, as well
as interleukin-1 and tumor necrosis factor α increase of fac-
tors. The expression is connected to endothelial cells’ en-
hanced apoptosis.

The zinc ion concentration of female patients with
coronary heart disease was low, according to our study of
3541 cases [83]. Further grade analysis revealed a con-
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nection between the decline in menopausal hormones in
women and the decline in zinc ion concentration. It was dis-
covered that the zinc ion concentration of female smokers
over 50 years of age was different, using the age of 50 as the
cutoff threshold for hormone secretion drop [83]. It, there-
fore, makes sense to speculate the association between the
decrease in hormone secretion during female menopause,
the concentration of zinc, and the occurrence of coronary
heart disease in menopausal women.

3.1.2 Iron

Iron holds critical importance for a variety of physio-
logical processes. Proteins and enzymes that contain iron
are crucial components of cell metabolism. These enzymes
and proteins are necessary formitochondrial function, DNA
synthesis, DNA repair, cell death, and cell proliferation
[84–86]. Additionally, the generation of red blood cells
(RBCs) and the transportation of oxygen both depend on
iron, which is the primary component of hemoglobin. Due
to its propensity to form reactive oxygen species (ROS) and
its ability to catalyze the Fenton reaction, which produces
hydroxyl radicals, iron may also be toxic at high doses [87].
In addition, it is essential for determining the amount of bac-
terial toxicity [88].

The disease may also result from irregular iron intake
or output. Initially, iron was linked to the onset of coro-
nary atherosclerosis [87,89]. LDL oxidation can be has-
tened by free iron [90]. Due to the absorption of low-density
lipoprotein by macrophage LDL receptors, foam cells con-
gregate. The two primary steps in the development of coro-
nary atherosclerosis are the development of a necrotic core
and the invasion of foam cells [91]. Numerous macrophage
subtypes have been identified in atherosclerotic plaques
[92]. Macrophages are crucial to the development of coro-
nary atherosclerosis. The primary cause of M1macrophage
activation in plaques is lipid absorption, which can result in
foam cell formation and the generation of inflammatory cy-
tokines [93]. It is postulated that M1 macrophages produce
coronary atherosclerosis through media-induced paracrine
stimulation of MSC (mesenchymal stem cells) migration
and proliferation in the intima.

Plaque instability may result from the M1 cells’ pro-
duction of a fibrous cap after the hydrolysis of collagen
fibers [94]. Additionally, M2 macrophages are stimulated
by Th2 cytokines including IL-4, IL-10, and IL-13 to cre-
ate anti-inflammatory cytokines. The inflammatory re-
sponse is balanced by M2 macrophages, which also aid in
tissue healing and inflammation reduction. The M1/M2
model provides a concise framework for comprehending
macrophage behavior in a damaged environment. Al-
though M2 macrophages can export and metabolize iron,
M1 macrophages have an advantage in iron accumulation
due to their high ferritin level. Changes in the iron turnover
between M1 and M2 macrophages may contribute to coro-
nary atherosclerosis. The association between peripheral

blood iron concentration and coronary atherosclerosis was
validated by a cross-sectional study encompassing more
than 4000 individuals [95]. A biomarker for the prediction
of coronary atherosclerosis is the decrease of iron ions in
peripheral blood [95].

3.1.3 Copper
Copper is the most abundant element in the human

brain [96–98] and is involved in a variety of biological func-
tions. Its abnormal changes have been linked to numerous
neurological diseases [99,100]. In biological systems, cop-
per ions usually have coexisting oxidation states. On the
other hand, copper has various complexes, including dis-
tribution, storage, and transportation. Therefore, in a dis-
eased condition [101], the dynamic change in copper con-
centration results in abnormal accumulation or uncontrol-
lable oxidation-reduction reactions [102], which then dis-
turb the natural balance or start a chain of events that even-
tually result in neurodegenerative diseases like Alzheimer’s
and Parkinson’s [103]. To understand how copper changes
over time, we need to makemore copper detection tools, es-
pecially ones that can accurately separate copper ions with-
out damaging samples.

With the development of a large number of Cu2+ de-
tection methods [104,105], fluorescent probe methods have
received widespread attention due to their probe character-
istics, such as visible fluorescent signals and immediate re-
sponse to targets [106–108]. In particular, the rhodamine
spiral CT (computed tomography) Cu2+ probe, its signifi-
cant copper ion evaluation, and the specific color change ac-
companying the recognition process are particularly promi-
nent. Efforts are being made to improve the probe’s
sensitivity and selectivity to Cu2+ in complex environ-
ments or biological systems [109–111], the probe’s long-
wavelength excitation and emission characteristics [112],
thereby avoiding biological interference and the probe’s
solubility and affinity [113].

3.1.4 Manganese
Manganese (Mn), an essential component of the hu-

man body, is mostly obtained through food and water. Mn
enters the body via the digestive system and is then trans-
ported to tissues with a high concentration of mitochon-
dria, such as the pituitary, liver, and pancreas, where it
is rapidly accumulated [114,115]. The synthesis and ac-
tivation of numerous enzymes, including oxidoreductases,
transferases, hydrolases, lyases, isomerases, and ligases, as
well as glucose and lipid metabolism, the accelerated syn-
thesis of protein, vitamin C, and vitamin B, the catalysis of
hematopoiesis, the regulation of the endocrine system, and
the enhancement of immune function, are all facilitated by
Mn [116,117]. OtherMnmetalloenzymes, such as arginase,
glutamine synthetase, phosphoenolpyruvate decarboxylase,
and manganese superoxide dismutase (MnSOD), also help
with these metabolic processes and lessen the oxidative
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stress on free radicals.
In recent years, there has been a marked rise in

the incidence of metabolic illnesses like type 2 diabetes
(T2DM), obesity, insulin resistance, atherosclerosis, hyper-
lipidemia, nonalcoholic fatty liver disease (NAFLD), and
hepatic steatosis [118]. Metabolic syndrome is typically
what causes these metabolic illnesses (MetS). MetS criteria
must be met if three of the five markers are present: abdom-
inal obesity, impaired glucose metabolism, hypertension,
and dyslipidemia, which includes higher triglyceride levels
and reduced high-density lipoprotein (HDL) levels [119].
Additionally, several studies [120–126] have demonstrated
a connection between oxidative stress and inflammation,
and metabolic disorders. Mn is a component or activator
of various enzymes, primarily antioxidants, and it is crucial
for maintaining appropriate insulin production and secre-
tion as well as glucose and lipid metabolism. As a result,
manganese may prevent the development of MetS [127].

It’s important to note that Mn is required for MnSOD
(Manganese SuperoxideDismutase) to lowermitochondrial
oxidative stress. ROS are produced mostly by mitochon-
dria in both healthy and diseased cells. Various neuropatho-
logical illnesses are associated with the increased produc-
tion of glucocorticoids, which are crucial in controlling the
biosynthesis and metabolism of proteins, lipids, and carbo-
hydrates. Excessive ROS inappropriately accumulates and
causes oxidative damage [128]. MnSOD is a significant an-
tioxidant that can also remove superoxide produced in mi-
tochondria and guard against oxidative stress [129,130]. If
mitochondria are damaged or dysfunctional, the production
of ROS and oxidative stress are exacerbated [131].

According to a reported study, central obesity, in-
creased triglycerides, decreased high-density lipoprotein
cholesterol, elevated blood pressure, and elevated fasting
glucose is the five factors that often define MetS [132].
The existence of MetS aids in the identification of high-risk
people who have T2DM and cardiovascular disease (CVD)
[132]. A frequent risk factor forMetS components is oxida-
tive stress. In MetS patients, persistent low-level inflam-
mation and oxidative stress state are typically regarded as
second-level abnormalities, while insulin resistance is typ-
ically regarded as the first level of metabolic alterations
[133]. All individual MetS components and the incidence
of cardiovascular problems in MetS participants are linked
to oxidative stress [133–136].

3.1.5 Nickel

One of the key elements used to gauge air quality is
nickel. About 20% of people have an allergy to nickel
ions, and there are more female patients than male patients.
Nickel is the most frequently sensitizing metal. Nickel
ions can enter the skin through pores and sebaceous glands
and cause skin allergy and inflammation, which are clin-
ically seen as dermatitis and eczema when in touch with
the human body [137]. Nickel allergy frequently lasts for-

ever once sensitization takes place. Humidity, pressure,
sweat, and friction can exacerbate nickel allergy symp-
toms. Nickel-allergic dermatitis manifests clinically as
itchy, papular, or vesicular dermatitis with mossing [138].
In nickel deficiency, the activity of six dehydrogenases
decreases, including glutamate dehydrogenase, glucose-6-
phosphate dehydrogenase, lactate dehydrogenase, and isoc-
itrate dehydrogenase. These enzymes are essential for the
tricarboxylic acid cycle, anaerobic glycolysis, the synthesis
of NADH (nicotinamide adenine dinucleotide), and the re-
lease of nitrogen from amino acids. Nickel deficiency was
also found to change the structure of hepatocytes and mi-
tochondria, especially with an irregular endoplasmic retic-
ulum and a drop in oxidative activity [139].

In a study on the Chinese population, the link between
several chemical elements, pollution sources for ambient
fine particles (PM2.5), and oxidative stress indicators in
healthy college students was examined. Participants in the
study underwent 12 additional blood draws before and af-
ter transferring from suburban to urban campuses in Bei-
jing, China, which had significant levels of air pollution.
The 95% confidence interval (CI) of ox LDL is thought to
widen with each quartile point rise in nickel (2.5 ng/m3) and
with the duration of exposure to polluted air [140–142].

3.2 Non-Metallic Ions
3.2.1 Selenium

Selenium (SE) is a crucial part of selenoprotein and an
essential element for antioxidant defense. The involvement
of selenium in antioxidant defense, which is mediated by
the glutathione peroxidase (GPX ) family, supports the nu-
trient’s preventive action against dyslipidemia and cardio-
vascular disease (CVD). In this case, GPX slows or stops
atherosclerosis by lowering the production of hydroperox-
ides of phospholipids and cholesterol esters and stopping
the buildup of oxidized low-density lipoprotein (LDL) in
arteries [143–145].

Low activity of this enzyme will harm the body’s an-
tioxidant defense system because of insufficient selenium
intake and the presence ofGPX1 gene polymorphism [146].
According to several studies, single nucleotide polymor-
phisms (SNPs) of the GPX gene have been linked to a
higher risk of metabolic syndrome and cardiovascular dis-
ease [147,148]. Due to the lack of extensive studies, the
cardioprotective effects of selenium are currently debatable
[149].

Recent research has demonstrated that patients with
CVID (common variable immunodeficiency) had consid-
erably lower levels of plasma selenium and GPX activity
than healthy controls [150]. Se level, apolipoprotein A-1
concentration, and the main proteins that make up the high-
density lipoprotein cholesterol component all showed a sub-
stantial positive association. Numerous bacteria are capable
of producing selenocysteine, suggesting that selenoproteins
may be important for bacterial physiology [151]. More-
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over, dietary selenium impacts the composition of the host
microbiota. Therefore, pathogenic bacteria, microbiota,
and host immune cells may dispute the limited availabil-
ity of selenium, which is especially critical in CVID pa-
tients [151–153]. Se and apoA-1 concentrations are sig-
nificantly correlated in the literature. In predicting the
risk of cardiovascular disease, apolipoprotein A-1 and other
HDL-C functional markers outperform HDL-C concentra-
tion [154].

3.2.2 Fluorine

In previously reported studies [155], anatomical imag-
ing models used to measure atherosclerosis usually focused
on non-localization characteristics. The degree of lumi-
nal stenosis can be examined using conventional ultrasound
and angiography methods, and coronary calcium scores can
be generated using cardiac CT to measure coronary artery
calcification. However, alternative techniques have started
to be used with the explicit aim of identifying plaque com-
ponents, such as multi-detector CT coronary angiography,
MRI, intravascular ultrasound (IVUS), and optical coher-
ence tomography [155,156]. Since these patterns are based
on anatomy and don’t have the sensitivity and chemical
specificity of early detection, they are best suited for re-
vealing late structural changes or calcifications in the vessel
wall [157].

In contrast to anatomical imaging, molecular imaging
mode can identify minute processes like microcalcification
and inflammation. These chemical alterations take place
before the aforementioned morphological changes during
the early stages of the disease process. The most well-
known of these molecular technologies is positron emission
tomography (PET), which uses the radiotracer 18F fluo-
rodeoxyglucose (18F-FDG), a radiolabeled glucose analog
that is used as amarker ofmetabolic activity and, in turn, for
inflammation. In contrast, 18F sodium fluoride (18F NaF),
a particular marker of bone mineralization, has lately been
utilized to diagnose vascular calcification after being tradi-
tionally used to diagnose metastatic bone malignancy.

One of the initial molecular markers used to assess
atherosclerosis was 18F-FDG, which is currently the most
widely used PET radiotracer and may also be the most thor-
oughly researched. Early research supported the use of
18F-FDG as a diagnostic tool by demonstrating a relation-
ship between the vascular system’s 18F-FDG activity and
atherosclerosis and cardiovascular risk factors [158–161].
More concrete proof of the connection between 18F-FDG
uptake and atherosclerotic disease was found in later inves-
tigations. 18F-FDG activity is higher in 58–85% of carotid
lesions, according to studies on patients with a history of
cerebrovascular accidents [162,163]. Before endarterec-
tomy, Tawakol et al. [164] used PET scanning on patients
with severe carotid stenosis and discovered a strong rela-
tionship between the uptake of 18F-FDG in carotid plaques
and the staining of macrophages on comparable pathologi-

cal specimens. Rudd et al. [165] utilized autoradiography
to show in a related investigation that 18F-FDG avid lesions
in individuals with symptomatic carotid stenosis were asso-
ciated with macrophage-rich plaque regions in endarterec-
tomy specimens. Additionally, the researchers discovered
that symptomatic carotid lesion uptake of 18F-FDG was
27% higher than ipsilateral asymptomatic lesions [165].

The use of 18F-FDG PET imaging to evaluate plaque
vulnerability and the risk of associated ischemia episodes
has been supported by some evidence from other research
[166]. Plaques with high-risk morphological characteris-
tics on CT and histology exhibit a much higher affinity for
18F-FDG, according to Figueroa et al. [167]. Patients with
elevated arterial 18F-FDG uptake have been observed to be
more prone to experiencing ischemic cardiovascular events
or cerebrovascular events [168,169].

3.2.3 Iodine
Iodine is commonly found in food, water, and iatro-

genic sources, and excessive intake can result in disorders
such as goiter [170,171]. Iatrogenic iodine excess is the
most prevalent adverse pharmaceutical effect, with amio-
darone serving as a typical example [172]. Goiter, hyper-
thyroidism, hypothyroidism, and autoimmune thyroid dis-
orders can all result from excessive iodine intake in humans
[173,174]. Additionally, some investigations have revealed
that too much iodine can harm intellectual growth [175].
Furthermore, the effects of iodine excess on the cardiovas-
cular system are still largely unknown.

According to an epidemiological analysis, individu-
als in the high-water iodine area had a greater incidence
rate and more severe carotid atherosclerosis than adults in
lower-water iodine locations [176]. Excessive iodine may
harm rat aortic endothelial cells, according to cell tests
[177]. The carotid artery is the area of atherosclerosis that
is most susceptible and is a sensitive sign of vascular disor-
ders. Carotid intima-media thickness (IMT) is a predictor of
cardiovascular events [178] and a marker of atherosclerosis
in coronary arteries and other blood vessels [179–181].

4. Conclusions
Taken together, trace elements are closely related to

atherosclerosis and play different roles in different stages
of atherosclerosis. In the prevention stage, reducing the
intake of gases contaminated with nickel ions and foods
containing manganese ions can reduce the occurrence of
atherosclerosis. Meanwhile, foods containing selenium are
protective factors for atherosclerosis. Animal studies have
demonstrated that iodine ions can impair aortic endothelial
cells, hence it is recommended to limit their consumption.
If atherosclerosis is already present, early atherosclerotic
calcification can be found by using probes with copper ions
and 18F sodium fluoride (18F NaF) in the early stages of
the disease. Detecting the contents of serum zinc and iron
ions in the treatment stage is helpful to evaluate the recov-
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ery from atherosclerosis.
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