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Abstract

Aortic aneurysms are life-threatening vascular diseases associated with high morbidity, and usually require prophylactic surgical inter-
vention. Current preventative management of aortic aneurysms relies on the diameter and other anatomic parameters of the aorta, but
these have been demonstrated to be insufficient predictive factors of disease progression and potential complications. Studies on patho-
physiology of aortic aneurysms could fill this need, which already indicated the significance of specific molecules in aortic aneurysms.
These molecules provide more accurate prediction, and they also serve as therapeutic targets, some of which are in preclinical stage. In
this review, we summarized the inadequacies and achievements of current clinical prediction standards, discussed the molecular targets in
prediction and treatment, and especially emphasized the molecules that have shown potentials in early diagnosis, accurate risk assessment
and target treatment of aortic aneurysm at early stage.
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1. Introduction

Aortic aneurysms (AAs) are defined as dilation more
than 1.5 times the diameter of normal aortic vessels at
the same aortic segment. Among arterial diseases, inci-
dence of AAs is the second highest after atherosclerosis,
and AAs are characterized by a high mortality rate and
lethal complication. AAs can be classified into thoracic
aortic aneurysms (TAAs) (above the diaphragm) and ab-
dominal aortic aneurysms (AAAs) (below the diaphragm)
by anatomical locations. Pathophysiological studies have
shown that there are differences between the two aneurysms
but they also common in various aspects of pathogenesis.
Patients with TAAs or AAAs are usually asymptomatic, and
most patients are diagnosed accidentally while they are re-
ceiving medical attention for other reasons. The prevalence
of TAAs is lower than that of AAAs.

One of the largest epidemiological studies in recent
years estimated the incidence of TAAs at 7.6 per 100,000
people, an increase from 3.5 to 7.6 per 100,000 over a 12-
year period (whichmight be related to the aging of the popu-
lation and the advancement of imaging technology) [1]. Of
note, the morbidity of males is higher than that of females,
but females have worse outcomes. The fatal complications
of TAAs are aortic dissection (AD) and aneurysm rupture.
The mortality from acute AD rises rapidly over the first 24
hours, increasing 1%–2% per hour; mortality is nearly 50%
in the first week, and 90% of all patients die within one year
[2]. Moreover, in patients who received emergent treat-
ment and survived to the hospital, the in-hospital mortality
was 24% for type A AD and 11% for type B AD [3]. Epi-

demiological studies have demonstrated higher morbidity
of AAAs, but show similar trends to that of TAAs, which
increase from 46 to 73 per 100,000 people in the last decade
[4].

The clinical diagnosis of AAs relies on modern imag-
ing technologies. Current guidelines use aortic diameter for
risk stratification and threshold for prophylactic surgical in-
tervention, and imaging technologies play a crucial role in
diametermeasurement, such as computed tomography (CT)
andmagnetic resonance imaging (MRI) [5,6]. Although en-
dovascular techniques play a significant role in treatment
of AAs in recent years, open surgery remains indispens-
able in the management of AAs involving ascending aorta
and aortic arch [5]. However, there is no effective drugs to
reverse the disease progression. Once symptoms develop
(chest pain, shortness of breath, stroke), the patient might
have an unfavorable outcome. Even though modern tech-
nologies are sensitive and convenient, by the time they are
diagnosed, AAs may have already progressed considerably
after a long period of subclinical pathophysiological devel-
opment. Therefore, there is a urgent need for early diagno-
sis and therapeutic decision-making to reduce the extremely
poor prognosis [5].

Studies have shown that the underlying pathophys-
iological mechanism of AAs is extensive remodeling of
the extracellular matrix (ECM) accompanied by vascular
smooth muscle cell (VSMC) loss and elastin fragmentation
of the vessel wall [7]. During pathogenesis and progression
of AAs, long-term chronic stimulation causes intimal tear-
ing, which is preceded by cystic medial necrosis or medial
degeneration [8]. The pathophysiology and progression of
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Fig. 1. Aorta anatomic parameters of AA. (A) 3D modelled CT images of the aorta of a female aged 24 years (a) and a female aged
85 years (b). Reproduced with permission from BMJ Publishing Group Ltd. [17]. (B) 3D wall stress distributions of the two abdominal
aortic aneurysm models: (a) unaltered model, (b) no-calcification model. Reproduced with permission from Elsevier [18].

AAs involve many molecules and pathways that provide
biomarkers to predict the progression of AAs [9]. Thus,
by combining in-depth research on the pathological pro-
cess and application of imaging technologies, more molec-
ular probes have been developed to target pathological tis-
sues. In this review, we discuss inadequacies, advantages
and considerations about predictive imaging of aorta and
emphasis on the molecular targets and probes that have al-
ready shown potential to improve prediction and risk strat-
ification of AAs and treatment to benefit the patients.

2. Current Practice to Determine Treatment
of AA
2.1 Aortic Diameter

Aortic dilatation is a widely accepted risk factor for
AD and rupture. Natural complications are rare in mod-
erate size. According to retrospective studies, annual risk
of dissection and rupture is 0.08% at diameters of 45 mm,
0.22% of 50 mm, 0.58% of 55 mm in ascending AA, and
there is a substantial increase when the diameter exceeds 60
mm to 6.9% yearly [10]. In descending AA, a substantial
increase occurs at diameters over 70 mm [11]. For the pur-
pose of preventing aneurysm expansion beyond the critical
point, the guidelines recommend prophylatic surgical treat-
ments at 55 mm and 55 to 60 mm for ascending and de-
scending AA respectively [5,12]. However, patients with
connective tissue disease have a significantly high risk of
a poor prognosis. For example, patients with Marfan syn-
drome need lower surgical threshold; preventive surgery is
indicated ≥50 mm, or ≥45 mm when accompanying risk
factors, such as AA growth >3 mm/year, massive aortic
valvular regurgitation or family history of AD [5,6]. Mean-
while, the bicuspid aortic valve (BAV) is also considered a
risk factor to justify surgical intervention at diameters ≥50
mm [13].

Despite the evidence supporting the relationship be-
tween aortic dilatation and unfavorable outcomes, a large
proportion of catastrophic acute aortic events occur below
the criteria for surgical intervention. Retrospective studies

have demonstrated that nearly 70% of patients with type A
dissection and 80% of patients with type B dissection have
aortic diameters ≥55 mm when AD occurs [14,15]. How-
ever, this reflects the late stage of pathology, in which the
aortic wall is already severely damaged [16]. Aortic diam-
eter is an insufficient parameter for risk stratification and
predicting catastrophic events, in spite of the diameter could
predict dissection and rupture at a demography level.

2.2 Aorta Anatomic Parameters: Elongation, Tortuosity,
Volume and Calcification

The length of human aorta has been proved increase
with age, like aortic diameters (Fig. 1A, Ref. [17,18])
[17,19]. Compared with the youth, the length of ascend-
ing aorta increases nearly twofold at 80 years of age, which
is a great change in length compared with diameter, increas-
ing approximately 12% for length and 3% for diameter per
decade [20]. Several lines of evidence suggest that the pres-
sure on the vessel wall increases over ten-fold, as the shape
of the ascending aortic changes form straight to curved with
normal aortic diameter, blood pressure and cardiac output
[21].

Studies have shown a significant increase in volume,
while the diameter remains stable in AAs patients [22,23].
Meanwhile, volume in patients who had surgical treatment
are significantly different from that in patients who did not
have surgery [24], and this observation could be used in
the long-term follow-up of AAs [25]. Although volume
measurement can be obtained by modern imaging [26], the
value isuncertain and needs further validation.

Calcification is the main characteristic of atheroscle-
rotic cardiovascular disease, and intimal calcification of
atherosclerotic plaques strongly correlates with a high risk
of cardiovascular events [27]. Fragmentation of intimal cal-
cifications on multi-detector CT is often considered one of
the symptoms of unstable AAs (Fig. 1B) [28]. The existing
calcification decreases the biomechanical stability of AAs
and augments the peak wall shear stress (WSS) of the aorta
[18]. For AD, intimal tears are frequently located near or
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exactly on calcifications in the aorta [29]. However, aortic
calcification is not considered as an independent risk fac-
tor according to current studies and statistics [30]. Thus,
further studies need to be developed on aortic anatomic pa-
rameters as predictors and independent risk factors for AAs.

2.3 Aortic Hemodynamics
In recent years, hemodynamic assessments have at-

tracted great attention owing to the progress of imag-
ing technology, such as time-resolved three-dimensional
phase contrast cardiovascularmagnetic resonance (4D-flow
CMR). According to the guidelines, CMR and echocar-
diography are recommended to regularly monitor the aorta
[6,31]. Several studies of 4D-flow CMR have proven
the value of this technique as a potential tool to evaluate
the WSS of aortic hemodynamics with 3D flow patterns
[32,33]. In addition, certain regions of the aorta with in-
creasedWSS accompany the stiffness of the aortic wall and
accelerate AAs growth [34]. WSS also influences endothe-
lial cell function and triggers pathways that promote vessel
wall remodeling and aortic dilatation [35].

Several studies in patients with BAV have shown that
aberrant valve opening can lead to disorganized outflow
patterns, which are related to aortic morphology and result
in markedly altered regional WSS. In particular, the WSS
patterns were significantly different in BAV patients com-
pared with individuals with tricuspid aortic valve (TAV).
Outflow patterns vary depending on the types of BAV
[36,37]. TAA formation is one of the frequent complica-
tions in BAV patients [38]. Nearly 80% of BAV patients
exhibit aortic dilatation with a high risk of AD and rupture
[38,39]. In addition, children and young adults with Mar-
fan syndrome had abnormal WSS, and altered aortic flow
patterns are mostly located in the proximal aorta, where the
segments are at high risk of aortic dilatation and compli-
cations. The two parameters correlated with regional size
could be potential markers of risk assessment [40].

3. Molecular Targets for the Prediction of AA
3.1 Inflammation

In patients with AAs, immunohistochemical analy-
sis and enzyme-linked immunosorbent assay have revealed
an inflammatory activity and infiltration in the aneurysm
vessel wall [7,41]. In addition, a large number of CD3+
and CD68+ cells was found in the medial layer of thoracic
AA [42]. It has also been demonstrated in positron emis-
sion tomography (PET)/computed tomography (CT) that
patients who have a progressive course or clinical symp-
toms of AD exhibiting higher inflammatory cell activity in
the aorta than patients who are clinically stable or asymp-
tomatic [43]. Recent data demonstrate that inflammation
contributes greatly to aortic wall remodeling, even in the ab-
sence of genetic diseases [41,44]. Basic research and clin-
ical studies have shown that inflammatory cells are associ-
ated with medial layer degeneration. These cells are also

detected in the wall of the vasa vasorum in the adventitia
and at the edges of the ruptured media of dissection [42].

Macrophages are one type of the inflammatory cells
that initially infiltrate the aorta. This suggests that
macrophages play a major role in ECM degradation pro-
cesses in the aortic wall of AAs patients regardless of
their genetic predisposition [45,46]. Macrophages and their
products, such as collagenases, elastase and cytokines, fa-
cilitate inflammatory cell recruitment, increase cytokine
stimulation and protease production, and promote neovas-
cularization and lymphocyte differentiation [45]. Recent
studies have demonstrated that two types of macrophages,
M1 and M2, have distinct functions. M1 macrophages sus-
taining are accumulate at the site of arterial injury as highly
proinflammatory macrophage subse. M2 macrophages
found in human AAs samples are mostly associated with
inflammation resolution and promote the dissection healing
process [47,48].

Lymphocytes are another inflammatory cell type asso-
ciated with the inflammatory mechanism of AAs. In lym-
phocytes, T helper 1 lymphocytes are predominantly re-
lated to plaque formation with a proliferative pattern [49].
Meanwhile, T helper 2 lymphocytes, which make up a ma-
jority of lymphocytes in aortic lesions, are associated with
atherosclerotic development of AAs [50], and secrete inter-
leukins [51]. Recent research suggests that infiltration of T
lymphocytes, especially T helper 2 lymphocytes, contribute
to modulating the immune response and VSMC apoptosis
by activating death-promoting pathways [51].

Recent studies have shown that surface receptor in-
tegrin might be a new biomarker in AAs. The integrin
CD11b/CD18, also known as macrophage-1 Ag (Mac-1),
plays an important role in immune-inflammatory responses
as pathogen-associated molecular patterns and damage-
associated molecular patterns recognition receptor [52,53].
Mac-1, which has been reported as a biomarker of inflam-
matory cells in infarcted myocardium and atherosclerotic
plaques [54], predominantly induced cellular immune re-
sponses in macrophages [55].

Inflammatory responses accelerate metabolic
processes by increasing the consumption of glucose.
PET imaging with a radioactive tracer, 18-fluoro-2-
deoxyglucose (FDG) can detect the high expression area,
which has been shown to be correlated with the presence
of macrophages and related to the risk of AD progres-
sion (Fig. 2A, Ref. [43,56–59]) [43,60]. A study with
PET/CT identified that translocator protein (TSPO) as a
diagnostic technique in cardiovascular disease [61]. Also,
TSPO expressions can be utilized to assess populations
of macrophage during pathological progression [62].
Mac-1 is also a specific receptor of superparamagnetic
iron oxide nanoparticles (SPIONs), which accumulate
into macrophages by endocytosis and can be detected
by MRI [63]. In another study, Mac-1 was used as the
central biomarker in a mouse model of atherosclerosis,
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Fig. 2. Application of different molecular targets in different imaging techniques. (A) The FDG-uptake in the dissected aortic wall
shown in CT, PET, PET/CT and 2 months, 2 years, 3 years follow-up with CT. Reproduced with permission from BMJ Publishing Group
Ltd. [43]. (B) 99mTc-MAG3-anti-CD11b SPECT/CT images with pathological and immunohistochemical confirmation. Reproduced
under CC-BY 4.0 license from Springer Nature [56]. (C) (a,b) 99mTc-RYM1 imaging of carotid aneurysm, carotid arteries ex vivo
photography (a) and autoradiography (b) without (left) and with (right) pre-injection of excess of MMP inhibitor RYM; (c,d) 99mTc-
RYM1 SPECT/CT images of abdominal aortic aneurysm animals model, (c) low remodeling group, (d) aneurysm group, Arrows: areas
of maximal tracer uptake in aorta. This research was originally published in JNM. Toczek J et al. [57] Preclinical Evaluation of RYM1, a
Matrix Metalloproteinase-Targeted Tracer for Imaging Aneurysm. J Nucl Med. 2017; 58: 1318–1323. © SNMMI . (D) Representative
MRI images of mice after injection with CG and CDR, following BAPN administration for 0, 2, and 4 weeks. Mice were examined by
BL after MR imaging. The red arrows for the CG or CDR groups indicate the same position. CG: DOTA-Gd, CDR: Col-IV-DOTA-RhB,
BLI: bioluminescence imaging. Reproduced under CC-BY 4.0 license from Ivyspring International Publisher [58]. (E) In vivo imaging
of MMP activation in aneurysm. left (L): carotid arteries aneurysmal; right (R): control. This research was originally published in JNM.
Razavian M et al. [59] Molecular imaging of matrix metalloproteinase activation to predict murine aneurysm expansion in vivo. J Nucl
Med. 2010; 51: 1107–1115. © SNMMI .

and a nuclear imaging probe, 99mTc-MAG3-anti-CD11b,
was developed to assess inflammatory status with single
photon emission computed tomography/computed tomog-
raphy (SPECT/CT). Histological anatomy and section
staining verified the formation of atherosclerotic plaques
and Mac-1 high expression in the areas displayed by
SPECT/CT (Fig. 2B) [56]. In our experiment, anti-CD11b-
TCO/Tz-PEG11-HYNIC-99mTc, a pre-targeting imaging
molecular probe has been established and which allowed
the SPECT/CT image detection of CD11b infiltration in
progressive AA [64] (Table 1, Ref. [43,56–61,63,65,66]).

Inflammation may lead to increased C-reactive pro-

tein (CRP) levels. One study investigated the relationship
between serum CRP-to-albumin ratio (CAR) and progres-
sion in patients with AAA, and the results indicated that in-
creased serumCARwas significantly associated with larger
diameter [67]. However, changes in inflammatory factors
in blood are subject to a variety of diseases and lack speci-
ficity for AAs. The imaging technology combined with in-
flammatory markers is more intuitive and effective.

3.2 Matrix Metalloproteinases (MMPs)
MMPs are endopeptidases secreted by several matrix-

resident and inflammatory cells of the vessel wall and
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Table 1. Summary of molecular targets in pathophysiology of AAs with Imaging Techniques.
Molecular targets Imaging techniques Materials

Inflammatory cells

PET/CT FDG [43,60]
PET/CT TPSO [61]

SPECT/CT 99mTc-MAG3-anti-CD11b [56]
MRI SPIONs [63]

MMPs
SPECT/CT 99mTc-RP805 [59,65]
PET/CT 99mTc-RYM1 [57]

Apoptosis SPECT/CT 99mTc-Duramycin [66]

Col-IV MRI or fluorescence imaging Col-IV-DOTA-Gd-RhB [58]

miRNAs - -

belong to the metzincins superfamily, which contain a
wide spectrum of zinc-dependent elastases and collage-
nases [68]. Specific endogenous inhibitors of MMPs, tis-
sue inhibitors of metalloproteinases (TIMPs), and MMPs
are indispensable for natural physiological ECM remod-
eling, but the dysregulated interaction between two en-
dopeptidases results in ECM degradation [69,70]. MMPs
not only lead to ECM degradation but also act on non-
matrix substrates [71]. Matthew and colleagues [72] have
demonstrated that MMPs mediate proteolysis by regulat-
ing immune-inflammation responses, promoting the mi-
gration of inflammatory cells and modulating non-matrix
molecules. Moreover, MMPs play a vital role in the re-
cruitment of inflammatory cells, migration of VSMCs into
the vessel intima and promotion of neovascularization [73].

Although MMPs are a spectrum of enzymes that have
similar functions, each MMP has specific functions and is
expressed at different levels in different tissues during in-
flammation [69]. Particularly, in patients with AAs, MMP-
2/9/12 expression have been shown significantly higher in
serum and aortic tissue, regardless of the genetic predispo-
sition [74–76]. Distinct from other MMPs, MMP-12 is ex-
clusively secreted by macrophages and could regulate the
degradation of elastin and type IV collagen [77]. The en-
zyme can induce the activation of MMP-2 and MMP-3,
which both activate MMP-7, MMP-8, and MMP-13. This
amplifying cascade effect results in excessive degradation
of ECM [78].

MMPs have three complexes of zinc ions in the cat-
alytic center, and they are exposed only whenMMPs are ac-
tivated. Thus, the structural changes associated with MMP
activation can be exploited for molecular diagnosis. In
the early stage, antibody probes specific to the activation-
specific epitopes had low specificity for MMPs. Impor-
tantly, each MMP has specific substrates. Therefore, sub-
strate specificity can be exploited to enhance the selectiv-
ity to target MMPs [79]. Inhibitor-based probes are an-
other technology to identify MMPs and obtain good re-
sults [80,81]. Research with PET/CT reported an MMP in-
hibitor, RYM, and demonstrated that 99mTc-RYM1 probes
are more abundant in AAA (Fig. 2C) [57]. In the SPECT

technique, the probes were designed with special tracers of
MMPs, such as RP782 and RP805. 99mTc-RP805 signal
was significantly higher in the inflammatory area (Fig. 2E)
[59,65]. Serum MMPs levels, specifically MMP-2 and
MMP-9, were shown to be associated with AAs. Studies
on serum MMP levels are based on patients who have been
clinically diagnosed, which may be significant for risk as-
sessment, but inadequate to predict AAs [82,83]. Thus,
MMPs could be a possible biomarker to visualize inflam-
mation by molecular imaging for early diagnosis and may
serve as a potential target for treatment (Table 1).

3.3 Apoptosis

Recent evidence has shown that apoptosis is another
vital process in the pathogenesis of AAs [84,85]. VSMC
is the main effector cell constituting the aorta tunica media
and play an essential role inmaintaining vascular wall struc-
ture and function [86]. Several studies have demonstrated
that the inflammatory cells induce apoptosis andMMP syn-
thesis [42]. Moreover, endothelial injury mediates the up-
regulated expression of long non-coding RNAH19 and Toll
like Receptors (TLRs). H19 mediates the expression levels
of the transcription factor HIF1α, which has been shown
to activate apoptosis of VSMCs. The TLR4-related signal-
ing pathways increase the expression of the MMP-9 level,
consequently stimulating the VSMCs dysfunction. VSMC
apoptosis is considered to weaken the aortic structural in-
tegrity and participates in the pathogenesis of AAs [87,88].
Additionally, SPECT with a 99mTc-duramycin probe was
effective in evaluating apoptosis in AAs [66] (Table 1).

3.4 Type IV Collagen (Col IV)

Histological studies have shown that collagen is an
important component of the ECM, which strengthens the
aortic wall structure and affects cell proliferation and adhe-
sion by binding to integrins [89]. Moreover, collagen reg-
ulates the local activity of cytokines [90]. Col IV is one
of component of the subendothelial basement membrane
of the tunica intima in the aortic wall. It has been demon-
strated that medial degeneration leads to long-term chronic
stimulation, which results in intimal tearing of AD [8,91].
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Studies have also shown that Col IV is exposed initially at
sites of endothelial injury [92]. Meanwhile, the activation
ofMMP-2/9 degrades basementmembrane proteins expres-
sion in SMCs, including Col IV [75,93].

Col IV belongs to the subendothelial basement mem-
brane and is exposed on the aortic intima of early phase
AAs. Recent research has demonstrated the MRI and flu-
orescence imaging with a Col IV-targeted probe, Col-IV-
DOTA-Gd-RhB, to visualize aortic lesions, which can ef-
fectively predict AD and rupture of AAs (Fig. 2D) [58] (Ta-
ble 1).

3.5 Others
As the first biomarker identified in 1993, microRNAs

(miRNAs) had been reported to contribute to both physio-
logical and pathologic processes of cardiovascular diseases
[94]. Overexpression of miRNAs, such as miR-29, -195,
-21 and -143/145. miR-29 and miR-195 lead to the degra-
dation of ECM and decrease miR-21 [95]. MiR-21 is asso-
ciated with transforming growth factor β (TGF-β) signal-
ing pathway dysfunction [96,97]. MiR-1 43/145 promotes
a phenotypic switch of VSMC and induces degeneration of
the medial layer [98]. It has been demonstrated that miR-
NAs are strikingly stable in human plasma/serum [99]. In
patients with AAs and AD, miRNAs show over 10- to 40-
fold increases in plasma [100].

Additionally, TGF-β signaling molecules and TGF-
β receptors (TGFBR) play a multitude of roles in various
physiological processes. TGF-β signals activate Smad2/3
through TGFBR to induce the phosphorylation of Smad2/3
proteins. Moreover, TGF-β signals can be mediated by
non-Smad pathways, which can transduce signals fromAng
II and be mediated by mitogen-activated protein kinases
[101]. Furthermore, the TGF-β and Ang II pathways can
modulate vascular tone and the SMC phenotype by interact-
ing with each other [9]. Mutations in the TGF-β pathway
are associated withMarfan syndrome and Loeys–Dietz syn-
drome [102].

4. Molecular Targets to Treat AA
4.1 Medicine
4.1.1 Traditional Medicine

The current medicinal managements of AAs, mainly
focus on controlling blood pressure and heart rate as an
adjuvant therapy. ꞵ-Adrenergic blockade (β-blockers) has
been used as a medicinal treatment in patients with AAs for
decades and the effectiveness of β-blockers in reducing aor-
tic aneurysm growth rate in turkeys was demonstrated over
70 years ago [6]. Moreover, β-blockers showed a positive
result reducing the rate of change in central aortic pressure
[103]. Several randomized clinical trials have shown that in
patients withMarfan syndrome, β-blockers decrease the di-
lation of the aortic root and aortic complications [104]. Ac-
cording to the guidelines, all patients with AAs and Marfan
syndrome should be administered β-blockers unless con-

traindicated [5,6]. Heart rate is the major determinant of
the dosage of β-blockers. Despite limited evidence for its
specific target in AAs pathology, β-blocker therapy is still
widely used as a first-line medicine to prevent the progres-
sion of aortic dilation. Several large randomized clinical
trials in patients with Marfan syndrome have subsequently
found that the evidence is inadequate to suggest that losar-
tan is better than β-blocker therapy in reducing aortic di-
lation. However, this therapy is still controversial because
of the differences in results of mouse models and human
studies [105,106].

4.1.2 Inhibition of Inflammation
Rapamycin had been used as a potent anti-

inflammatory drug in the clinic. Rapamycin- were
used for occlusive cardiovascular diseases with coated bal-
loons and stents. One group designed nanoparticles (NPs),
PEG-b-PBLG NPs, for targeted rapamycin delivery. In
animal experiments, macrophages preferentially ingested
NP. This NP delivery system effectively led to mitigation
of aortic pathological process under a low dosage of
rapamycin. Furthermore, the rapamycin-loaded PEG-b-
PBLG NPs significantly reduced inflammatory cytokine
production and MMP activity (Fig. 3A, Ref. [107–109])
[107]. On the other hand, another group fabricated a
ROS-responsive NP to deliver rapamycin. These NPs
acted as a ROS scavengers to inhibit oxidative stress and
apoptosis of VSMC in the in-vitro experiments (Fig. 3B)
[110]. Additionally, the rapamycin-loaded formulation
reduced macrophage recruitment, MMP activity and ECM
deterioration [108].

4.1.3 Inhibition of MMP
Several types of MMPs are expressed in the patho-

logical aortic tissue of AAs. Synthetic MMP inhibitors are
specific molecularly targeted drugs to decreaseMMP activ-
ity and prevent the pathological changes of aortic diseases
[110]. Studies have shown that doxycycline reduced MMP
activity by decreasing the mRNA stability of MMP-2 [111].
Many preclinical studies have demonstrated the potential
application of doxycycline to impede the development of
aneurysms [112].

Hydroxamate based medicines such as marimastat,
prinomastat and batimastat (BB-94) are another group of
synthetic MMP inhibitors, which bind zinc atoms [113].
BB-94was tested clinically to reduce MMPs in advanced
malignancy as the first synthetic MMP inhibitors [114].
One study utilized NP delivery systems, EL-PEG-PLA
NPs, to target BB-94 in a rat aortic injury mode. The re-
sults indicated that BB-94 greatly improved efficacies of
reducing elastin degradation, calcification, and aortic dila-
tion [115].

6

https://www.imrpress.com


Fig. 3. Nanoparticles of different molecular targets. (A) Structure of rapamycin-incorporated nanoparticles. Reproduced under CC-
BY 4.0 license from Plos One [107]. (B) Schematic of ROS-responsive nanoplatform. Reproduced with permission from Elsevier
[108]. (C) Schematic diagram illustrating the preparation of TP-Gd/miRNA-ColIV complexes and the resultant targeted gene therapy.
Reproduced under CC-BY 4.0 license from Springer Nature [109].

4.1.4 Protection of the Elastin Matrix

Clinical evidence supports that the TGF-β signal is vi-
tal in AD formation, although the results are largely based
on end-stage diseased aortae [116]. TGF-β1 shows multi-
ple functions in regulating processes of cell growth. TGF-

β1 is an established elastogenic factor at a low concen-
tration [117]. On the other hand, a higher concentration
of TGF-β1 may promote calcification by differentiating
of SMC to osteogenic phenotype. This group developed
PLGA NPs to deliver TGF-β1 and doxycycline. In an
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in vitro study, VSMCs were cultured in a 3D matrix and
loaded with NPs, and the results showed that the NPs re-
markably increase the elastin content and matrix assembly
[118].

An previous investigation showed that oligomers of
hyaluronan (HA-o) improved elastin assembly [119]. How-
ever, HA-o is susceptible to proteolysis in the hyperac-
tive of MMP environment and has a short blood half-
life time [120]. Onoda and colleagues designed a HA-o-
loaded PLGA NP to avoid these deficiencies. The HA-o-
NPs shown positive results that it could provide continuous
and controlled payload release. In an in vitro experiment,
VSMCs showed increased elastin matrix deposition and ly-
syl oxidase activity after treatment with HA-o-NP [121].

4.1.5 Others
Nucleic acids are indispensable for functional cells;

thus, nucleic acid dysregulations contribute to the initiation
of different diseases. As previously mentioned, miRNAs
have been suggested as biomarkers for the diagnosis and
treatment of AAs [122]. For example, miR-145 is an up-
stream factor in the regulation of KLF4, which is a vital
transcription factor associated with the phenotypic switch-
ing of VSMCs responsible for the degeneration of the me-
dial layer [98,123]. Increased miR-145 reduces KLF4 ex-
pression, maintains VSMC stability in a contractile pheno-
type, and prevents enlargement of the aorta [124]. MiR-
126 is another factor that regulates vascular cell adhesion
molecule-1 (VCAM-1) expression [125]. VCAM-1 is re-
lated to themigration of inflammatory cells to inflamed ECs
as an endothelial adhesion molecule upregulated in AAs
[126]. Upregulation of miR-126 contributes to modulating
aortic wall inflammation and integrity [127,128].

4.2 Delivery System
Although molecularly targeted medicines show speci-

ficity and effectiveness against specific target molecules,
systemic delivery may activate or inhibit the molecules that
are essential for normal homeostasis. Meanwhile, the ef-
fectiveness of molecularly targeted medicines is limited be-
cause of its poorly water-soluble and requirement for par-
enteral administration, such as rapamycin and MMP in-
hibitors [129,130]. Therefore, an appropriate delivery sys-
tem is required to reduce side effects of molecularly tar-
geted drugs while maintaining the efficacies.

The ever-increasing use of NPs in biomedicine re-
flects the great advances in novel imaging and drug deliv-
ery systems. In addition, NPs can be easily functionalized
and applied in a variety of diseases [131]. Exosomes are
the smallest membrane-delimited extracellular vesicles re-
leased by cells [132]. Exosome mainly function as regula-
tors of cell-to-cell communication at short or long distances
[133]. It has been used as a biomarker to monitor the pro-
gression of diseases [132,134]. Exosomes have unique en-
dogenous features and biological properties, such as stabil-

ity in body fluids, immune tolerance and the ability to carry
RNAs, DNAs, and proteins naturally [135,136]. In addi-
tion, exosomes range from 50 to 150 nm in size, which can
escape macrophage phagocytosis and promote permeation
across biological barriers [137]. Because of these advan-
tages, exosomes can be a suitable candidate for drug deliv-
ery as NPs. However, the low production quantity and diffi-
culty of isolation, drug loading and delivery efficiency limit
the application of exosomes in clinical practice [138,139].
To address this problem, several studies have focused on
synthetic NPs, which are easier to prepare and more effi-
cient in drug encapsulation and delivery (up to nearly 90%)
[139,140]. However, synthetic NPs may induce a stronger
immune response than exosomes [131].

The delivery system based on NPs is primarily used
for molecularly targeted drugs, targeted antibodies or pep-
tides and may be coated with molecules to protect the po-
tency of the drugs or to enhance their effect [108,129].
A study reported a TP-Gd/miRNA-Col IV NP delivery
system, which is a multifunctional nucleic acid delivery
nanosystem [109]. This nanosystem can be visualized by
MRI and deliver nucleic acid and targeted peptide Col IV
simultaneously (Fig. 3C). In addition, this nanosystem can
efficiently deliver miR-145 to stabilize the vascular struc-
ture. In the paper, nanosystem was successfully prepared
and used for predicting and monitoring AD [109]. As pre-
viously mentioned, the NPs loaded with BB-94 success-
fully released BB-94 in the lesion region, which inhib-
ited local MMP activity and suppressed aortic dilation at
small doses [115]. Poly (lactic-co-glycolic acid) has been
used in nanotechnology applications, such as targeted and
controlled drug delivery [141]. As an application of poly
(lactic-co-glycolic acid), a doxycycline-loaded poly(lactic-
co-glycolic acid) NP delivery system has been developed.
It has been demonstrated that elastin have the potential to
bind and inhibit MMPs to prevent the progression of AAs
[112].

5. Conclusions
The current management of AAs has drastically re-

duced morbidity and mortality. The current treatment de-
cision for AAs is primarily based on the clinical symptoms
and physical factors of the aorta. However, these indicators
are insufficient for predicting outcome and risk stratifica-
tion. Surgical repair is the first option for AAs. However,
studies on the pathophysiological basis of AAs have found
that numerous molecules might be involved in its pathogen-
esis, and molecular probes have the potential to solve this
vexing problem. In our review, we summarized two high-
lights from the development of molecular probes. Firstly,
the probes integrated molecular targets for diagnosis and
risk assessment in the subclinical stage. Secondly, molec-
ular probes with NPs can be adapted to accommodate the
complexity of AAs pathogenesis mechanisms and manifes-
tations, achieve drug intervention and may accomplish pre-
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cision medicine. As research on molecular targets further
develops, it is conceivable that early diagnosis and person-
alized treatments at the molecular level may become a real-
ity.
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