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Abstract

Hypercholesterolemia is involved in the development of atherosclerosis and is a risk factor for coronary artery disease, stroke, and pe-
ripheral vascular disease. This paper deals with the mechanism of development of hypercholesterolemic atherosclerosis. Hypercholes-
terolemia increases the formation of numerous atherogenic biomolecules including reactive oxygen species (ROS), proinflammatory
cytokines [interleukin (IL)-1, IL-2, IL-6, IL-8, tumor necrosis factor-alpha (TNF-α)], expression of intercellular adhesion molecule-
1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E-selectin, monocyte chemoattractant protein-1 (MCP-1), granulocyte
macrophage-colony stimulating factor (GM-CSF) and numerous growth factors [insulin-like growth factor-1 (IGF-1), platelet-derived
growth factor-1 (PDGF-1) and transforming growth factor-beta (TGF-β)]. ROS mildly oxidizes low-density lipoprotein-cholesterol
(LDL-C) to formminimallymodified LDL (MM-LDL)which is further oxidized to form oxidized LDL (OX-LDL). Hypercholesterolemia
also activates nuclear factor-kappa-B (NF-κB). The above atherogenic biomolecules are involved in the development of atherosclerosis
which has been described in detail. Hypercholesterolemia also assists in the development of atherosclerosis through AGE (advanced gly-
cation end-products)-RAGE (receptor for AGE) axis and C-reactive protein (CRP). Hypercholesterolemia is associated with increases in
AGE, oxidative stress [AGE/sRAGE (soluble receptor for AGE)] and C-reactive protein, and decreases in the sRAGE, which are known
to be implicated in the development of atherosclerosis. In conclusion, hypercholesterolemia induces atherosclerosis through increases in
atherogenic biomolecules, AGE-RAGE axis and CRP.
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1. Introduction

Atherosclerosis affects medium and large-sized arter-
ies and is characterized by focal thickening of the intima of
the arteries and deposition of lipid, resulting in narrowing
of the arteries. Atherosclerosis leads to cardiovascular dis-
eases [1]. There are numerous factors including hyperlipi-
demia [2,3], diabetes [4], hypertension, cigarette smoking
[5], obesity [6],hyperhomocysteinemia [7], and elevated
serum C-reactive protein [8,9] which are involved in the
development of atherosclerosis. The term hyperlipidemia
refers to increased levels of serum total cholesterol (TC),
low-density lipoprotein-cholesterol (LDL-C) and triglyc-
erides (TG), or a combination of all the three. A major
risk factor for coronary artery disease is hyperlipidemia
[3,10]. CAD (coronary artery disease) risk increases by
2% to 3% for every 1% increase in serum cholesterol [11].
A 10% reduction of serum cholesterol reduces the risk of
CAD by half for men of 40 yrs of age and by 25% for
men 60 yrs of age over 5 yrs [11]. An increase of 10
mg/dL of LDL-C was associated with a 12% increase in
the risk of cardiovascular disease (CVD) [12]. The serum
TG levels are strongly associated with CAD [13,14]. There
is a strong inverse correlation of high-density lipopro-
tein cholesterol (HDL-C) with atherosclerotic CAD. High

serum HDL-C levels reduce the rate of atherogenesis [15],
while low levels of HDL-C accelerate atherosclerosis [16].
The risk of CAD is increased by 2% to 3% for every 1
mg/dL reduction in the levels of HDL-C [17]. The ratio
of TC/HDL-C >3.5 in men and >4.5 in women, while
the ratio of LDL-C/ HDL-C >3.5 in men, and >3.0 in
women are risk of cardiovascular diseases [18]. Reactive
oxygen species (ROS) [19–22], and advanced glycation
end products (AGE) and its cell receptor RAGE (receptor
for AGE) and soluble receptor for AGE (sRAGE) [23,24]
have been implicated in the development of atherosclerosis.
AGE and its cell receptors, sRAGE and esRAGE (endoge-
nous secretory receptor for AGE) have been implicated in
various diseases including non-ST segment elevated my-
ocardial infarction (NSTEMI) [25], restenosis following
PCI (percutaneous coronary intervention) [26] and accel-
erated atherosclerosis with streptozotocin-induced diabetes
in apo-E-deficient mice [27]. This paper deals with the
mechanism of hypercholesterolemia-induced atherosclero-
sis, with special reference to ROS andAGE-RAGE axis and
C-reactive protein (CRP).
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Fig. 1. Effects of hypercholesterolemia on atherogenic biomolecules. Hypercholesterolemia increases the generation of ROS (reac-
tive oxygen species) and cytokines [interleukin (IL)-1, IL-2, IOl-6, IL-8, tumor necrosis factor-alpha (TNF-α)], and activates nuclear
factor-kappa B (NF-κB). Cytokines generate ROS and increase the expression and release of cell adhesion molecules [intercellular ad-
hesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E-selectin]. ROS increase the expression and release of
cell adhesion molecules, growth factors [insulin-like growth factor-1 (IGF-1), transforming growth factor-beta (TGF-β)], and increases
oxidation of low-density lipoprotein cholesterol (LDL-C) to formminimally modified LDL (MM-LDL) which is further oxidized to form
maximally oxidized-LDL (OX-LDL). MM-LDL produces monocyte chemoattractant protein-1 (MCP-1) and monocyte colony stimu-
lating factor (M-CSF) from endothelial cells. OX-LDL assist in migration of monocytes in subendothelial space and formation of foam
cells. All the above biomolecules are involved in the development of atherosclerosis. ⇆, rightward and leftward arrow; ↑, increase.

2. Effects of Hypercholesterolemia on
Atherogenic Biomolecules

Atherogenic biomolecules are defined as the
biomolecules which are involved in the induc-
tion of atherosclerosis. This section describes the
hypercholesterolemia-induced production of atherogenic
biomolecules (Fig. 1).

2.1 Hypercholesterolemia-Induced Sources of ROS

There are various sources of hypercholesterolemia-
induced increases in ROS. The content of cholesterol
in platelets, polymorphonuclear leucocytes (PMNLs), en-
dothelial cells, smooth muscle cells and monocytes are el-
evated by hypercholesterolemia [28–30]. Thrombin, his-
tamine, and adenosine diphosphate (ADP) are released by
cholesterol-rich platelets [31,32]. Phospholipase A2 is ac-
tivated by histamine and ADP [33] which act on membrane
phospholipids to release arachidonic acid [34]. Increases in

the intracellular Ca2+ concentration [35] that occur in hy-
percholesterolemia [36] would also increase the phospho-
lipase A2 activity. The formation of arachidonic acid is
enhanced by activated phospholipase A2 and hence an in-
crease in the synthesis of prostaglandins and leukotrienes
in various cells. The intermediate steps in the biosyn-
thesis of prostaglandins [37] and leukotrienes [38] from
arachidonic acid generate ROS. Leukotriene B4 (LTB4)
is formed during the metabolism of arachidonic acid by
leukocytes. Hypercholesterolemia activates complements
component C3 and C5 (C3a and C5a) [39]. The synthe-
sis and release of platelet-activating factor (PAF) are el-
evated by hypercholesterolemia [35]. Platelet-activating
factor increases the formation and release of interleukin-1
(IL-1) [40], and tumor necrosis factor-alpha (TNF-α) [41].
Platelet-activating factor [42], LTB4 [43], C3a and C5a
[44], interleukin-1 [45] and TNF-α [46] stimulate PMNLs
to generate ROS. Hypercholesterolemia accelerates the pro-
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duction of ROS in endothelial cells through activation of
nicotinamide adenine dinucleotide phosphate (NADPH)-
oxidase [47,48]. NADPH-oxidase is the most important
modulator of ROS in endothelial cells. The serum levels
of CRP in insulin-sensitive subjects are elevated by hyper-
lipidemia [49]. Prasad [8] has reported that CRP increases
the generation of ROS from white blood cells.

2.2 Effects of Hypercholesterolemia on Antioxidants

Reduction in antioxidants would also elevate the
serum levels of ROS. Superoxide dismutase (SOD), cata-
lase and glutathione peroxidase (GSH-Px) are enzymatic
antioxidants. Superoxide dismutase metabolizes superox-
ide anion to hydrogen peroxide (H2O2) and oxygen, while
catalase metabolizes H2O2 to H2O + O2. GSH-Px metabo-
lizes H2O2 to water and oxygen. This suggests that the Su-
peroxide anion (oxygen radical) becomes inactive with an-
tioxidant enzymes. Serum levels of SOD and GSH-Px have
been reported to be markedly reduced, while catalase activ-
ity was elevated in hypercholesterolemic rabbits as com-
pared to control [50]. Vitamin E, an antioxidant, produced
an increment in the serum levels SOD and GSH-Px activity
without a change in the catalase activity [50]. The activ-
ity of aortic SOD, Catalase and GSH-Px were significantly
augmented in hypercholesterolemic rabbits [50].

2.3 Role of ROS in the Generation of Biomolecules for
Development of Atherosclerosis

ROS have numerous functions in the development of
atherosclerosis. It activates nuclear factor-kappa-B (NF-
κB) [51] which in turn activates pro-inflammatory genes
of various cytokines such as, interleukin (IL)-1, IL-2, IL-
6, IL-8 and TNF-α and interferon-γ (IFN-γ) [40,41]. IL-1
and TNF-α stimulate PMNLs to generate ROS [40,41,51–
53]. NF-κB is a key factor in regulation of NADPH-oxidase
expression and function [54]. ROS elevate the expression
of intercellular adhesion molecule-1 (ICAM-1) [55,56] and
vascular cell adhesion molecule-1 (VCAM-1) [57,58] in
endothelial cells. Expression of E-selectin in the human
endothelial cell is increased with ROS [59]. The expres-
sion of cell adhesion molecules (CAM) is elevated by cy-
tokines [60]. Leukocytes adhesion to endothelial cells is the
early step in the development of atherosclerosis [61]. ROS
are implicated in the growth, proliferation, and differentia-
tion of vascular smooth muscle cells [62–64]. Insulin-like
growth factor-1 (IGF-1) plays a critical role in the growth
of vascular smooth muscle cells [65]. ROS increase the for-
mation of IGF-1 in vascular smooth muscle cells and play
an important role in the growth of vascular smooth muscle
cells [66]. Transforming growth factor (TGF-β) modulates
vascular development and remodeling by cell differentia-
tion, proliferation, migration and extracellular matrix for-
mation [67]. ROS activate TGF-β’s which mediate numer-
ous TGF-β fibrogenic effects [68].

Oxidation of LDL-C by ROS has numerous functions

in the development of atherosclerosis [68–72]. LDL-C is
mildly oxidized to form minimally modified LDL (MM-
LDL) which is further oxidized to form maximally oxi-
dized LDL (OX-LDL). MM-LDL activates smooth muscle
cells and endothelial cells to produce monocyte chemoat-
tractant protein-1 (MCP-1) which is involved in the mi-
gration of monocytes (leukocytes) from endothelial surface
to subendothelial space. Monocytes possess LDL recep-
tors which combine with native LDL, but the amount of
native LDL is not enough to form foam cells. MM-LDL
stimulates endothelial cells to generate monocyte colony-
stimulating factor (MC-SF) which triggers monocyte dif-
ferentiation intomacrophages that develop receptor for OX-
LDL. OX-LDL is taken up by differentiated macrophages
to form foam cells. An overview on the formation of OX-
LDL and its role in the development of atherosclerosis have
been reported by Poznyak et al. [73]. Parthasarathy et al.
[70] have reported that OX-LDL is present in the circulat-
ing blood. LDL oxidation takes place in the vascular wall
[73]. Hashimoto et al. [74] have reported that transmi-
gration of monocytes into subendothelial space is assisted
by OX-LDL directly through a change in the endothelial
junction. Other investigators [75] have reported that OX-
LDL assists in the recruitment of monocytes through in-
teraction of platelet with monocytes and endothelial cells.
Macrophages are involved in the generation of numer-
ous growth-regulating factors [76]. Plasma LDL has been
shown to have a positive correlation with ROS release by
mononuclear leucocytes (MNLs) and polymorphonuclear
leukocytes (PMNLs) [77].

Triglycerides (TG) enhance the generation of ROS and
secretion of TGF-β and IL-β [78,79]. Araujo et al. [77]
have reported that plasma triglycerides were positively cor-
related with the release of ROS by MNLs and PMNLs.
Triglycerides increase the expression of cytokines (IL-1,
IL-6, IL-8, TNF-α) [80] and adhesion molecules (ICAM-
1, VCAM-1) [81].

HDL-C has antiatherogenic properties. Plasma HDL-
C has a negative correlation with ROS release by resting
MNLs and PMNLs [77]. It has antioxidant activity [82]
and has inhibitory effects on LDL oxidation [83]. HDL-
C reduces the expression of MCP-1 [84] and prevents the
CRP-induced upregulation of proinflammatory adhesion
molecules [85].

3. Mechanism of
Hypercholesterolemia-Induced
Atherosclerosis

Hypercholesterolemia-induced atherosclerosis is
based on the oxidative hypothesis of atherosclerosis which
has been accepted universally [71,72,76,86]. The proposed
mechanism of atherosclerosis produced by hypercholes-
terolemia is depicted in Fig. 2. Hypercholesterolemia
augments the production of ROS [37,38,42–46] and
cytokines [40,41] which increase the expression of CAM
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Fig. 2. Schematic diagram of mechanism of hypercholesterolemia-induced atherosclerosis. ROS, reactive oxygen species; ICAM-
1, intercellular adhesion molecule-1; VCAM-1, vascular cell adhesion molecule-1; EC, endothelial cell; LDL, low-density lipoprotein;
MM-LDL, minimally modified LDL; OX-LDL, maximally oxidized LDL; MCP-1, monocyte chemoattractant protein; VSMC, vascular
smoothmuscle cell; MC-SF, monocyte colony stimulating factor; TYM, tissuemacrophage; PDGF, platelet-derived growth factor; IGF-1,
insulin-like growth factor-1; TGF-β, and transforming growth factor-β. ↑, increase;⇆ , rightward and leftward arrow.

[55–58]. CAM [55–58] in endothelial cells. The early
step in the development of atherosclerosis is adherence of
monocytes to endothelial cells [61] and which is achieved
through CAM. CAM is involved in the rolling and adhe-
sion of monocytes to the endothelial cells. Monocyte then
transmigrates into subendothelial space [87]. MM-LDL
produce monocyte chemoattractant protein-1 (MCP-1) in
endothelial cells and vascular smooth muscle cells [88].
The migration of monocytes to the subendothelial space is
assisted by MCP-1 [89]. OX-LDL increases the expression
of cell adhesion molecules [90]. OX-LDL directly en-
hances the migration of monocytes to subendothelial space.
Immigrating monocytes into the subendothelial space have
LDL receptor but the rate of uptake of native LDL is not
enough to produce foam cells [91]. MM-LDL stimulates
endothelial cells to express MC-SF [92] that enhances
the monocyte differentiation to form tissue macrophages
which develop receptors for OX-LDL [92]. OX-LDL is
a ligand for scavenger receptors which are expressed in
tissue macrophages [93]. OX-LDL is taken up by tissue
macrophage to form foam cells. Foam cells are involved
in formation of numerous growth factors which enhance
vascular smooth muscle cell proliferation and migration
and fibrous tissue synthesis which helps in the development
and progression of atherosclerosis. There is a development

of fatty streaks in full-fledged atherosclerosis.

4. Evidence for the Role of
Hypercholesterolemia-Induced ROS in the
Development of Atherosclerosis

As described above, hypercholesterolemia generates
ROS. The question arises if hypercholesterolemia-induced
ROS induces atherosclerosis. This section describes the
increases in the levels of ROS and the indirect measures
of ROS in hypercholesterolemic atherosclerosis. Indi-
rect measures of ROS include lipid peroxidation products,
malondialdehyde (MDA) [94,95], aortic tissue chemilumi-
nescence (AO-CL) [96], a polymorphonuclear leukocyte
chemiluminescence (PMNL-CL) [97] and white blood cell
chemiluminescence (WBC-CL) [97]. AO-CL is a measure
of antioxidant reserve [96]. An increase in AO-CL sug-
gests a decrease in the antioxidant reserve and vice-versa.
Luminol-dependent chemiluminescence is a highly sensi-
tive method for measurement of ROS generated by PMNLs
and WBCs [97].

Hypercholesterolemic atherosclerosis was associated
with increases in the serum [20,97–101] and aortic MDA
[19,96,97], PMNL-CL [96], WBC-CL [96,98,101] and
aortic-CL [96,97]. However, the aortic-CL has been ob-
served to be reduced in certain studies [98–102]. Aortic-
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CL is a measure of both oxidative stress and antioxidant re-
serve in the tissue [103]. If hypercholesterolemia increases
the indirect measure of ROS and produces atherosclerosis,
then lowering serum levels of cholesterol would be asso-
ciated with reduction in the extent of atherosclerosis and
the levels of both direct and the indirect measure of ROS.
We describe the agents which have both antioxidant and
hypolipidemic effects on hypercholesterolemic atheroscle-
rosis and ROS. Secoisolariciresinol diglucoside (SDG) a
product of flaxseed reduced the serum levels of choles-
terol and this reduction was associated with a reduction in
the extent of hypercholesterolemic atherosclerosis, aortic
MDA and aortic-CL [104]. Flax lignin complex, a byprod-
uct of flaxseed reduced hypercholesterolemic atherosclero-
sis by 30%, and this effect was associated with a lowering
of serum levels of cholesterol by 20%, serumMDA by 35%
and aortic MDA by 58% in rabbits [99]. It is to note that
both SDG and flax lignan complex have antioxidant activ-
ity [99,105,106]. Probucol, an antioxidant and cholesterol-
lowering agent [107] decreased the extent of hypercholes-
terolemic atherosclerosis, and aortic tissue MDA, but had
no effects on aortic-CL [96].

We now discuss the effects of antioxidants on hyperc-
holesterolemic atherosclerosis and ROS. Since ROS is im-
plicated in the formation of atherosclerosis, the antioxi-
dants would reduce the evolution of hypercholesterolemic
atherosclerosis and associated indirect measures of ROS.
Vitamin E, an antioxidant [108], reduced hypercholes-
terolemic atherosclerosis and this was associated with a de-
crease in serum and aortic MDA but had no effect on serum
cholesterol [20].

Sources of hypercholesterolemia-induced ROS in-
clude the synthesis of prostaglandins and leukotrienes [37,
38], activated complements [39,44], PAF [42], and cy-
tokines [45,46]. Hence inhibitors of the enzyme of syn-
thesis of prostaglandin and leukotrienes, PAF, cytokines
and activated compliments would decrease the formation of
hypercholesterolemic atherosclerosis and ROS levels. In-
hibitors of cyclooxygenase which is involved in the synthe-
sis of prostaglandin and leukotrienes such as aspirin [109],
and indomethacin [110] were used in the prevention of hy-
percholesterolemic atherosclerosis and reduction of ROS.
Aspirin did not affect the serum levels of cholesterol in
rabbits with hypercholesterolemia but reduced atheroscle-
rosis by 47% and this effect was associated with lowering of
serum and aortic tissue MDA, release of ROS from WBC-
CL, and aortic-CL [101]. Indomethacin decreased the ex-
tent of hypercholesterolemic atherosclerosis by 46% and
this effect was associated with a decrease in aortic MDA
and antioxidant reserve, but no change in the serum choles-
terol, and WBC-CL [111]. Pentoxifylline an inhibitor of
cytokines [112], and PAF [113,114] had no effect on serum
cholesterol but the extent of hypercholesterolemia-induced
atherosclerosis was lowered by 38% and this effect was as-
sociated with a reduction in serum and aortic tissue MDA,

and normalization of aortic-CL [115].

5. Serum/Plasma/Tissue Levels of
Atherogenic Biomolecules in
Hypercholesterolemia

Are the atherogenic biomolecules such as
serum/plasma/tissue levels of ROS, NADPH-oxidase,
NF-κB, CAM, cytokines, MCP-1, GM-CSF, PAF, LTB4,
activated complements, IGF-1, and TGF-1 elevated in hy-
percholesterolemia? One would expect these atherogenic
biomolecules to be elevated in hypercholesterolemia.

The increases in the serum/tissiue levels of ROS in
hypercholesterolemic rabbits have been described in de-
tail in section 4 of this review. Hypercholesterolemia in-
creases the activity of the oxidant producing enzyme sys-
tem, NADPH-oxidase [116], and xanthine oxidase [117].
Hypercholesterolemia activates NF-κB [118]. Circulating
NF-κB is elevated in familial hypercholesterolemia [119].
Hypercholesterolemia increases the soluble cell adhesion
molecules (sICAM-1, sVCASM-1, sE-selectin) [120–122].
The serum levels of IL-6, IL-8, IL-12, TNF-α and IFN-γ
increased, while that of IL-4 and IL-10 decreased in hy-
percholesterolemia [123–125]. Hypercholesterolemia in-
creases the levels of circulating MCP-1 [123]. The serum
levels of GM-CSF are elevated in hypercholesterolemic pa-
tients [126]. Plasma levels of PAF have been reported to
rise in hypercholesterolemic patients [127]. Plasma lev-
els of LTB4, which promotes atherosclerosis [102], are el-
evated in hypercholesterolemic rats [128]. Activated C3 is
elevated in hypercholesterolemic apo-E-null mice and pa-
tients with familial hypercholesterolemia [129]. In sum-
mary, the atherogenic biomolecules are elevated in hyperc-
holesterolemic subjects.

6. Involvement of AGE and Its Receptors in
Hypercholesterolemic Atherosclerosis

AGEs are heterogenous groups of irreversible adducts
produced from the nonenzymatic interaction of amino
groups of protein, lipids, and nucleic acids with reduc-
ing sugars such as glucose, fructose, and glyceraldehyde
[130,131]. Receptors for AGE include RAGE, sRAGE, es-
RAGE, and cRAGE (cleaved RAGE). RAGE is bound to
the cell membrane, while sRAGE, esRAGE, and cRAGE
circulate in the blood. RAGE has two isoforms, esRAGE
and cRAGE. cRAGE is cleaved from RAGE by prote-
olytic enzymes [132] and esRAGE is produced from alter-
nate mRNA splicing of full-length RAGE [133]. sRAGE
contains both cRAGE and esRAGE. sRAGE, esRAGE,
and cRAGE lack the cytosolic and transmembrane domain
and circulate in the blood. Interaction between AGE with
RAGE produces atherogenic biomolecules [23,134]. The
binding of sRAGE, cRAGE and esRAGE with AGE does
not activate intracellular signaling and does not produce
atherogenic biomolecules. There is a competition between
RAGE and sRAGE for binding with AGE [135]. Thus,
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sRAGE and esRAGE have protective effects against ad-
verse effects of interaction of AGE with RAGE. AGE-
RAGE stress, defined as the ratio of AGE/sRAGE has
been coined by Prasad and Mishra [136], A high ratio
of AGE/sRAGE indicates the presence and progression of
atherosclerosis.

The serum levels of AGE and AGE/sRAGE were
higher, while the sRAGE levels were lower in hyperc-
holesterolemic subjects than normocholesterolemic sub-
jects [137]. The above investigators also reported that there
was a positive correlation between serum cholesterol levels
and the levels of AGE and AGE/sRAGE, and a negative
correlation between serum cholesterol and sRAGE. Santilli
et al. [138] have also reported that hypercholesterolemic
subjects had lower serum levels of sRAGE than normo-
cholesterolemic subjects. Hypercholesterolemia-induced
AGE would interact with RAGE to generate ROS [139],
which would activate NF-κB [51] and has been discussed
in detail in the section on “Role of ROS in the develop-
ment of atherosclerosis” of this paper. The mechanism of
AGE-RAGE stress in the formation of atherosclerosis has
been described in detail elsewhere [23,134]. The following
section provides the evidence of the implication of AGE,
RAGE and sRAGE in the development of atherosclerosis.

The levels of AGE and RAGE were elevated in the
wall of the carotid artery of Zucker diabetic rats, and these
levels were further elevated in the balloon-injured carotid
artery of these rats [140]. These authors also reported
that sRAGE administration before and for 21 days post-
balloon injury reduced the neointimal hyperplasia in the
carotid artery. De-endothelialization of the carotid artery in
wild type mice has been shown to elevate the expression of
RAGE in injured arteries [141]. They also observed that use
of sRAGE reduced neointimal hyperplasia in these mice.
Wendt et al. [27] have shown that diabetes-accelerated
atherosclerosis in apo-E deficient mice had increased ex-
pression of VCAM-1 in the aorta, and that sRAGE adminis-
tration significantly reduced the atherosclerotic lesion in the
aorta. Administration of sRAGE completely suppressed the
accelerated and advanced atherosclerosis in apo-E deficient
mice [142]. Serum levels of sRAGE were reduced in Non-
ST-segment elevated myocardial infarction [25]. Serum
levels of sRAGE were reduced in patients with restenosis
following percutaneous coronary intervention (PCI) [26].
Low pre-PCI sRAGE levels in serum have been reported to
be a predictor of post-PCI restenosis in NSTEMI patients
[26]. AGE-RAGE stress has been reported to play a role in
the development of coronary artery disease [134,143] and
carotid artery stenosis [144].

7. Role of CRP in Hypercholesterolemic
Atherosclerosis

A hypercholesterolemic diet increases the serum lev-
els of CRP [49]. CRP can induce atherosclerosis through
the generation of ROS [8,145,146] activation of NF-κB

[147], and increased expression of CAM [148], and MCP-
1 [149]. CRP increases the release of MC-SF [150]. CRP
has been implicated in the development of CAD, periph-
eral vascular disease, and post-PCI restenosis [151]. The
data suggest that hypercholesterolemia- induced increase in
CRP could also be involved in the development of hyper-
cholesterolemic atherosclerosis through generation of nu-
merous atherogenic biomolecules.

8. Perspectives
Hypercholesterolemia increases the production of

ROS which sets the stage for the production of other
atherogenic biomolecules [27–48] leading to the formation
of atherosclerosis. Reduction in antioxidant enzymes by
high blood cholesterol would also elevate the ROS lev-
els [50]. Hypercholesterolemia-induced atherosclerosis is
associated with increases in the serum/plasma/tissue lev-
els of direct and indirect measures of ROS [19,20,96–
101,104]. Blockade of the ROS with antioxidant (vita-
min E) [20], hypolipidemic and antioxidant agents (SDG
[104], flax lignan complex [99], and probucol [96]), cy-
clooxygenase inhibitors (aspirin) [101] and indomethacin
[111], and inhibitors of cytokines and PAF (pentoxifylline
[115]) decreased the development of hypercholesterolemic
atherosclerosis and amount of ROS. The above data in-
dicate that there is an association between hypercholes-
terolemic atherosclerosis and ROS, while lowering the
serum cholesterol and blockade of sources ROS reduces
the extent of atherosclerosis and ROS. It is to note that hy-
percholesterolemia elevates the serum levels of AGE [137]
and AGE/sRAGE [137], and lowers the serum levels of
sRAGE [135,136]. An increase in AGE and AGE/sRAGE,
and a decrease in sRAGE in the serum have been impli-
cated in the development of atherosclerosis [23,134,137].
Hypercholesterolemia has been reported to elevate the
serum levels of CRP in human subjects [49]. A rise in
C-reactive protein increases the serum levels of athero-
genic biomolecules [146–150] and induces development of
atherosclerosis [151]. It is surprising that there are lim-
ited publications on the effects of hypercholesterolemia on
C-reactive protein and AGE-RAGE axis. Hypercholes-
terolemia increases the production of AGE, CRP, and ROS,
and decreases the production of sRAGE all of which are
implicated in the formation of atherosclerosis. Lowering
of AGE and C-reactive protein, raising of sRAGE, and use
of antioxidants may be considered as an adjunct therapy be-
sides lipid lowering agents for the treatment of hypercholes-
terolemia.

9. Conclusions
Hypercholesterolemia induces atherosclerosis

through increases in the atherogenic biomolecules (ROS,
NADPH-oxidase, NF-κB, CAM, MCP-1, GM-CSF,
cytokines, MM-LDL, OX-LDL and growth factors).
The initiating atherogenic biomolecule is ROS. Lipid-
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lowering agents, antioxidants, and the agents that block
the sources of atherogenic biomolecules would reduce
the development of hypercholesterolemic atherosclerosis.
Hypercholesterolemia could also produce atherosclerosis
through increases in AGE, AGE/sRAGE and CRP, and
decreases in the levels of sRAGE.
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