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Abstract

Restrictive cardiomyopathy (RCM) is an uncommon cardiac muscle disease characterized by impaired ventricular filling and severe
diastolic dysfunction with or without systolic dysfunction. The patients with RCM present poor prognosis and high prevalence of sudden
cardiac death, especially in the young. The etiology of RCM may be idiopathic, familial or acquired predispositions from various
systemic diseases. The genetic background of familial RCM is often caused by mutations in genes encoding proteins of sarcomeres and
a significant minority by mutations in non-sarcomeric proteins and transthyretin proteins. It is important to identify the associations
between genotype and phenotype to guide clinical diagnosis and treatment. Here, we have summarized the reported index cases with
RCM involving genetic etiology to date and highlighted the most significant phenotype results.
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1. Introduction
Restrictive cardiomyopathy (RCM) is the least fre-

quently encountered form of cardiac muscle disease, which
increases myocardial stiffness and results in impaired ven-
tricular filling [1,2]. RCM should be classified as either
primary or secondary according to underlying etiology [3].
The hallmark of RCM is diastolic dysfunction in the pres-
ence of normal or near-normal systolic function, ventricu-
lar volumes and wall thickness, at least at the beginning of
disease [4]. Consequently, the systolic function might dete-
riorate at later stages of the disease [5]. Patients with RCM
may present signs of left or right heart failure. Right-sided
symptoms often predominate, such as peripheral edema and
ascites. However, there is a worse prognosis when the left
ventricle is affected or ventricular arrhythmias and conduc-
tion disturbances are encountered [4,6]. Pharmacological
therapy and heart failure management for RCM show lim-
ited efficacy to improve ventricular filling or prolong sur-
vival [7]. Although therapy is unsatisfactory, early and ac-
curate diagnosis can significantly improve symptom and
survival [4,7]. The correct diagnosis depends on the dis-
tinction between RCM and constrictive pericarditis, which
share similar clinical presentations and physical findings
[8,9]. But their pathophysiological mechanism and prog-
nosis differ significantly [10].

RCM may be idiopathic, familial, acquired predispo-
sitions from various systemic diseases or a combination of
them [2]. Some familial cases presenting genetically deter-
mined etiology are often associated with autosomal domi-

nant inheritance or X-linked inheritance [11]. Although fa-
milial RCM caused by a single genetic defect is rare in clin-
ical practice, mapping several specific disease-causing ge-
netic mutations resulting in RCM has been recognized [12].
The genetic mutations associated with the occurrence and
progression of RCM involve sarcomere proteins, such as
troponin I (TNNI3), troponin T (TNNT2), β-myosin heavy
chain (MYH7) and α-actin (ACTC1) [13–15]. The patients
with RCM owing to sarcomere gene mutations may be ac-
companied with or without similar microscopic features of
hypertrophic cardiomyopathy (HCM) [16,17]. It used to
be considered that RCM and HCM may represent a dif-
ferent phenotype of the same genetic disease [16]. A key
piece of evidence was the coexistence of an RCM pheno-
typic expression with mutations in the HCM-related genes
[18]. Other non-sarcomeric gene mutations, including my-
opalladin (MYPN) and titin (TTN), and infiltrative RCM-
associated mutations have also been identified in RCM re-
cently [11,19].

This article focuses on heritable genetic mutations
and genotype-phenotype associations with familial RCM,
as shown in Table 1 (Ref. [11,13,14,17,19–48]). The
risk stratification and clinical treatment of RCM patients
could be affected and improved depending on the system-
atic databases of genetic alterations.
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Table 1. The detailed mutations and their clinical phenotypes associated with RCM.

Genes Mutation Sex Age
Phenotypes

Complications Refs
HCM DCM HF

Sarcomeric Genes
TNNI3 p.D190H M 11 y – – + Marked atrial enlargement [17]

p.R192H M 19 y + – + Paroxysmal AF, involvement in worst clinical phenotypes
p.K178E F 6 y – – + Dyspnea, involvement in worst clinical phenotypes
p.R145W M/F 70/68 y – – + Dyspnea, angina
p.A171T M 63 y – – – An embolic stroke
p.L144Q F 31 y – – + –

TNNI3 p.R204H F 16 y + – + – [20]
TNNI3 p.L144H F 27 y – – + Died of pulmonary embolism at 30-year old [21]

p.R170Q M 15 y – – + Marked atrial enlargement
TNNI3 p.P150S M – – – + AF [22]
TNNI3 g.4789_4790delAA F 6.4 y – – + – [23]
TNNI3 g.4762delG F 23 y + – + Died of congestive HF [24]
TNNT2 p.96delE F 12 m – – + Involvement in infantile RCM [25]
TNNT2 p.100-101delNE F 11 y + – + Overlap of RCM and HCM phenotypes [26]
TNNT2 p.I79N F 53 y – – + A malignant form of HCM involved [13]
TNNT2 p.E136K M 3.5 y – – + Dysplastic coronaries [23,27]
TNNC1 p.A8V and p.D145E F 8 m + – + Involvement in young-onset and fatal restrictivephysiology [28]
MYH7 p.P838L M 2 m + – + Early onset, mild hypertrophy, evolution to death quickly [14]
MYH7 p.G768R M 15 m + – + Involvement in restrictive physiology in childhood and HCM in adults [29]
MYH7 p.R721K F – – – + – [30]
MYH7 p.Y386C F 9 m – – + Myocardial bridging [31]
MYL3 p.E143K

F 22 y – – + Severe biatrial enlargement [32]
MYL2 p.G57E
TPM1 p.N279H F 36 y + – + – [32]
TPM1 p.E62Q and p.M281T F 6 y + – + – [33]
ACTC p.D313H F 8.2 y – + + A mixed RCM/DCM phenotype [23]
MYBPC3 p.Q463X F 34 y + + + Persistent AF [34]

p.E334K M 45 y + + + –
Nonsarcomeric Genes
DES p. R16C M 30 y – – + AVB, involvement in a recessive phenotype of restrictive physiology [35]

p.T453I M 17 y – – – AVB
p.R406W M 27 y – – + AVB, early onset severe cardiac and skeletal myopathy

IVS3.del+2_11
TATACCTTGG

F 48 y – – + AVB

DES p.Y122H M 19 y – – – AVB [36]
DES p.E413K M 30 y – – + AVB, severe skeletal myopathy [37]
DES c.735G>C M 41 y – – + AF, right HF, skeletal myopathy [38]
MYPN p.Q529X M – + – + – [19]
TTN p.Y7621C F 35 y – – + AF, thromboembolism [11]
FLNC p.S1624L F 14 y – – + Intestinal lymphangiectasia [39]

p.I2160F F 15 y – – + –
BAG3 p.P209L F 15 y – – – Severe myopathy, neuropathy, long QT syndrome, late-onset RCM [40,41]
Infiltrative RCM Pathogenic Mutations
TTR p.V122I – – – – + Late-onset RCM, prevalent in African Americans [42]

p.I68L – – + – + Male predominance, age-dependent penetrance [43]
p.L111M – – – – + Young-onset and manifest RCM, carpal tunnel syndrome [44]
p.T60A – – – – + A major determinant of poor prognosis [45]
p.H88R M 65 y – – + Late-onset cardiomyopathy [46]
p.A65G F 72 y – – + Hereditary amyloidosis [47]
p.S23N F 46 y – – + Manifest cardiac and peripheral, ATTR amyloidosis [48]

M, male; F, female; y, years; m, months; RCM, restricted cardiomyopathy; HCM, hypertrophic cardiomyopathy; DCM, dilated cardiomyopathy;
HF, heart failure; AF, atrial fibrillation; AVB, atrioventricular block; –, not mentioned in the previous reports; +, mentioned/occurred in previous
reports.
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2. Sarcomeres and Cardiomyopathies
Cardiac muscle cells (cardiomyocytes), as the struc-

ture of myocardium tissue, are composed of parallel bun-
dles of myofibrils with a diameter of about 1 µm. And
single myofibril comprises ordered sarcomeres in series,
acting as the smallest contractile units of striated muscle
[49,50]. In cardiac muscle cells, sarcomeres, mitochondria,
and sarcoplasmic reticulum (SR) account for approximately
60%, 35%, and 5% of the volume, respectively [50].

The sarcomeres are defined as regions residing be-
tween the Z-lines (also known as Z-disks or Z-bands) based
on the electron-optical properties and structural compo-
nents [51]. The sarcomeres consist of an A-band flanked
by two half I-bands as the central region. The A-band
is anisotropic due to parallel aligned thick filaments com-
posed ofmyosin. Themyosin is a hexameric protein includ-
ing two heavy chains and four light chains. Each myosin
molecule contains two myosin “heads”, which are associ-
ated with two light chains, respectively, and make a to-
tal of four light chains [52]. The myosin “heads” are rec-
ognized to reveal the active site for ATP hydrolysis, with
which myosin motor proteins produce a force on actin fila-
ments [53]. The I-band on each side of the A-band is nearly
isotropic composed of actin and its associated proteins due
to thinner and less well-aligned filaments (called thin fil-
aments) [54,55]. It is well known that the interaction of
filamentous actin with myosin is the basis of muscle con-
traction [56]. The actin, with monomeric (G-actin) poly-
merized and filamentous (F-actin) states, is the most abun-
dant and highly conserved protein in most eukaryotic cells
[57,58]. G-actin proteins polymerize into long F-actin in
the presence of Mg2+ and K+ at a physiological ionic con-
centration to form a tight helix. The length stabilization
of actin cannot be achieved until the addition of capping
proteins to block monomer loss [59]. In addition to the
actin backbone, the thin filaments include other two major
proteins, tropomyosin (Tm) and troponin (Tn), which are
also recognized as significant components regulating the
contractile and diastolic system of striated muscle together
[60]. Tm is an elongated α-helix molecule that assembles
into the parallel dimeric coiled-coil. In response to the bind-
ing of a distinct thin filament effector, the Tm moves to a
precise location on the actin’s surface to exert its biologi-
cal activities [61,62]. Each Tm molecule spans seven actin
subunits. A tremendous effort has been made to dissect
how Tm proteins transmit the binding event from a single
actin monomer to other defined actin monomers according
to an accurate activation of actin filaments [63–66]. The
Tn complex consists of three subunits, including Troponin
I (inhibitory, TnI), troponin C (calcium-binding, TnC) and
troponin T (tropomyosin binding, TnT) proteins [67]. TnI,
binding to actin and Tm, functions as an inhibitory subunit
to prevent muscle contract without Ca2+ binding to TnC,
which confers Ca2+ sensitivity to the regulatory system.
The elongated TnT molecule binds to Tm and interacts be-

tween Tm, actin and the rest of the Tn complex, likely mod-
ulating the actomyosin ATPase activity [68]. The Tn-Tm
complex prevents actin-myosin interactions when the mus-
cle cells are in a state of rest. Conformational changes in
the Tn proteins caused by Ca2+ released from the sarcoplas-
mic reticulum enable myosin to bind to actin [51,69]. These
highly ordered sarcomere proteins’ exact structure and rel-
ative position are crucial in normal physiological functions,
including heart muscle contraction.

The cardiomyocyte cytoskeleton mainly consists of
highly ordered sarcomeres referring to myosin-actin and
titin filaments (also described as connectin) [70]. The cy-
toskeleton acts as a sensitive and dynamic cellular orga-
nizer and effector rather than a static skeleton responding
to extracellular signals. The titin filament, a giant molec-
ular spring and scaffold in cardiomyocytes, spans from the
Z-line with NH2 terminus over the half I-band and thick fil-
ament to M-line, the centre of sarcomere [71]. Titin protein
is potentially expressed in millions of various isoforms of
different lengths due to differential splicing within the re-
gion of titin located in the I-band from the transcript [72,73].
Cardiac titin consists of anN2-B segment between the prox-
imal and distal immunoglobulin (Ig) domains andmight not
match a complementary N2-A component. Therefore, the
cardiac titin isoforms are mainly classified as N2-B (3000
kDa in the absence of N2-A) or N2-BA (>3200 kDa at vari-
able sizes in the presence of N2-A) [74,75]. The expres-
sion of titin isoforms in the sarcomere differs according to
the species, location and developmental period [76]. The
cardiomyocyte compliance is determined by N2-BA/N2-B
ratio because the long titin isoform is more compliant than
the short one. The normal N2-BA/N2-B expression ratio in
the hearts of many adult mammalians, including humans, is
approximately 35:65 [77]. There will be less stiffness and
resistance to stretching when more N2-BA prevalent [78].
Moreover, oxidation can also affect titin compliance. It had
been reported that increased oxidant stress could elevate the
stiffness of cardiomyocytes contributing to the global heart
stiffening. That is why the aging or failing heart is less com-
pliant [79].

Cardiomyopathies are defined as diseases of the my-
ocardium related to cardiac dysfunction [80], ranging from
lifelong symptomless conditions to life-threatening symp-
toms, including progressive heart failure, different arrhyth-
mias and even sudden cardiac death. Some cardiomy-
opathies may be idiopathic or familial/genetic/inherited eti-
ology. The genetic studies involving disease-causing muta-
tions suggested that pathological variations in the sarcom-
ere gene played a central role in inherited cardiomyopathies
[81]. Several lines of evidence supported that the so-called
“disease of the sarcomere” is highly associated with initi-
ation and even different clinical phenotypes of RCM [3].
The observation that the familial occurrence of RCM had
long been established firstly attracted attention to its genetic
background [82].
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3. Sarcomeric Gene Mutations
The genetic basis of RCM is largely attributed to mu-

tations in the sarcomeric complex. The main mutations are
summarized as follows.

3.1 TNNI3 Mutations
TnI has evolved into three isoforms in higher verte-

brates, encoded by three related genes: TNNI1, TNNI2 and
TNNI3. Cardiac TnI (cTnI) in the adult is specifically ex-
pressed and regulated by TNNI3, slow and fast skeletal mus-
cle cells by TNNI1 and TNNI2, respectively [83]. In the hu-
man chromosomal genome, TNNI3 is located at 19q13.4,
encoding approximately 210 amino acids residues with a
molecular weight of 24.0 kDa [84]. The functional domain
in cTnI between residues from 61 to 112 binds TnT. The in-
hibitory domain, including residues from 147 to 163, bind
strongly to actin and the N-terminal of TnC. It is neces-
sary for regulating the connection of Ca2+ to TnC and ac-
tomyosin ATPase activity [85,86]. A second actin-binding
site, residues 168 to 188 of cTnI, binds specifically to the
actin-tropomyosin filament contributing to the inhibitory
activity of cTnI [87]. The C-terminal domain in cTnI is
specific and crucial for normal cardiac relaxation. In addi-
tion, the remaining C-terminal part residues from 192 to 210
are not fully identified. Still, they are suspected of playing
a significant role in stabilizing the Ca2+-activated state of
tropomyosin in the actin filaments [88].

Most RCM-associated mutations in TNNI3 are gen-
erally missense rather than frameshift or splice mutations.
It has been described that a c.87A>G nucleotide substi-
tution in exon 8 of TNNI3 identified by linkage analy-
sis and direct gene sequencing was highly correlated with
marked restrictive filling and a family history of sudden
cardiac death [17]. The index case of familial occur-
rence with RCM involved a proband who suffered from
severe heart failure at the age of 11. Subsequent inves-
tigation in this study revealed that six missense variants
were associated with RCM-related specific genetic muta-
tions: p.D190H, p.R192H, p.K178E, p.R145W, p.A171T
and p.L144Q [17]. These mutations largely increase the
myofibril sensitivity to Ca2+ and affect the basal and max-
imal actomyosin ATPase activity [89,90]. The worst clin-
ical phenotypes involved p.K178E and p.R192H resulting
in significant increases in Ca2+ sensitivity [90]. Accord-
ing to the echocardiography results of a p.R193H transgenic
mouse model, there were significantly reduced left ven-
tricular end-diastolic volumes compared with the wild-type
group [91]. Moreover, p.R193H mutant of TNNI3 in adult
rat cardiac myocytes further dissected that the increased
basal mechanical force cannot be explained by a gain of
myofibril Ca2+ sensitivity. It was inferred that the TnI-
based disinhibition in actin-myosin interaction at normal
diastolic Ca2+ concentration contributed to the cellular de-
fect of TNNI3 p.R193H mutation. This Ca2+-independent
mechanical force was blocked by chronic inhibition of the

interaction between actin and myosin proteins [92]. An-
other heterozygous p.R204H mutation in exon 8 of TNNI3
was identified in a young female patient with pure RCM
who had undergone heart transplantation at the age of 23
[20]. The specific mechanism of how p.R204H mutation
induces primary RCM is still unclear, although the phe-
notype and clinical condition deteriorated rapidly. Addi-
tionally, two novel disease-causing p.L144H and p.R170Q
missense mutations, both present in exon 7 of TNNI3, were
found in a family with four affected patients and a single un-
related patient essentially associated with RCM [21]. The
p.L144Hmutation was located in the first actin-binding do-
main and overlapped with the ATPase inhibitory domain.
The p.R170Q mutation was located in the second actin-
binding domain [93]. These mutations within the actin-
binding domain have been presented to cause excessive
inhibition in troponin I actomyosin ATPase activity [86].
Some studies at the laboratory suggest that these mutations
could weaken the ability of the troponin complex to suf-
ficiently inhibit the cross-bridge attachment when muscle
cells are at the relaxation phase, which significantly de-
creased the rate of muscle relaxation [94,95]. The change
costs higher energy to return to the pre-contractile basal
state [21]. Furthermore, a pathogenic p.P150S in exon 7
of TNNI3 responsible for RCMwas confirmed in a Chinese
family [22]. This mutation is in the actin and the N-terminal
of the TnC binding domainwhere the configuration of cTnC
and cTnI returns to the status before constriction and cTnI
binds to actin again as a consequence of decreased Ca2+
concentration. However, the process fails to complete once
mutation occurs in this domain, such as p.P150S, resulting
in impaired diastolic filling in patients with RCM.

Besides missense mutations, deletion mutations in
TNNI3 are also responsible for the development of RCM
in a tiny percentage of patients. A novel deletion mutation
of two nucleotides g.4789_4790delAA in exon 7 of TNNI3
was identified in RCM individual [23]. This mutation con-
tributed to a frameshift and the presence of a premature ter-
mination codon at amino acid site 209 (E177fsX209). An-
other index patient diagnosedwith RCMat the age of 23 and
died due to progression of congestive heart failure at the age
of 28 indicated a deletion of one nucleotide g.4762delG in
exon 7 of TNNI3. This deletion also induced a frameshift in
residue 168 and the introduction of a premature termination
codon at site 176 (D168fsX176) [24]. According to labo-
ratory tests, this mutation resulted in the truncation of the
C-terminal part of cTnI and an approximate 50% decrease
in total cTnI, likely leading to a nearly total deficiency of
the second actin TnC binding domain. The damage of the
inhibitory effect of the Tn-Tm complex on thin filaments
could cause impaired myocardium relaxation and restric-
tive filling [24].

Collectively, the integrity of the cTnI is essential for
conformation of the Tn complex in myofilament and the
inhibition of actomyosin ATPase activity. To dissect the
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pathogenic cellular mechanisms resulting from TNNI3 mu-
tations to identify the cause of RCM is scientifically and
clinically important.

3.2 TNNT2 Mutations

TNNT2 gene encodes the Tm-binding subunit of the
Tn complex in the heart, which acts as a regulator of stri-
ated muscle contraction in response to differential intracel-
lular Ca2+ concentration [96]. It is well established that the
association between pathogenic TNNT2 mutations and risk
of cardiomyopathies [25].

The first case of RCM caused by a de novo muta-
tion of TNNT2 was reported in a 12-month-old girl [97].
This infantile case had experienced recurrent episodes of
sinus bradycardia and tachycardia, malignant ventricular
arrhythmias and hemodynamic instability. She received
extracorporeal membrane oxygenation therapy, followed
by a biventricular assist device insertion and subsequently
underwent heart transplantation [97]. Genetic testing re-
vealed a novel deletion mutation c.285_287GGA in exon 9
of TNNT2, resulting in deletion of glutamine in 96 amino
acid residual (p.96delE). The p.96delE mutation is located
in the highly conserved domain. It induces the deficiency
of a negative charge in the coiled-coil region, affecting the
TnT-Tm-actin complex’s interactions [98]. Following ex-
perimental results demonstrated that p.96delEmutation sig-
nificantly increased the Ca2+ sensitivity in fibres recon-
stituted with the adult and fetal TnT isoforms. However,
the effect was enhanced in adult Tn protein [99]. Another
heterozygous in-frame double deletion mutation (c.297-
302AATGAG) in exon 9 of TNNT2was reported in an RCM
pediatric patient. That led to the deletion of asparagine and
glutamic acid, two highly conserved amino acids, at po-
sitions 100 and 101, respectively (p.100-101delNE) [26].
This case’s clinical condition deteriorated rapidly with fre-
quent chest pain and dyspnea, and the patient ultimately
received a heart transplant 15 months after initial presen-
tations. Histology indicated mild muscle hypertrophy, in-
terstitial fibrosis and disarray of the myocytes. It must be
mentioned that those observations revealed a certain over-
lap of restrictive and hypertrophic phenotypes that coex-
isted in this RCM case.

Somemissensemutations proved to be associatedwith
RCM. In a large family with autosomal dominant cardiomy-
opathy, the c.236T>A missense mutation in exon 8 of
TNNT2 led to the substitution of isoleucine (I) with as-
paragine (N) at amino acid position 79 (p.I79N) [13]. RCM
caused by this mutation often complicated massive bia-
trial enlargement, markedly abnormal diastolic function,
subsequent sinus bradycardia and progression to complete
heart block, and even needed radiofrequency ablation and
pacemaker/cardioverter-defibrillator implantation therapy
in some patients. A transgenic mice model with targeted
human cTnT (TNNT2 p.I79N) protein expression showed
enhanced calcium-activated force generation and ATPase

activity without muscle hypertrophy. The rate of Ca2+ dis-
sociation from TnC during diastole decreases, and the base-
linemuscle tension increases, resulting in slower relaxation,
the elevation of end-diastolic pressure and subsequent di-
astolic heart failure [100,101]. Another index RCM case
induced by a novel nucleotide substitution g.9718G>A in
exon 10 of TNNT2 was associated with myocyte vacuola-
tion according to the histology of proband’s explanted heart.
This disorder is commonly observed in TnT-mutation re-
lated cardiomyopathy [23,27]. The underlying pathogenic-
ity of this new variant remains to be elucidated.

Therefore, the identified TNNT2 mutations, such as
p.100-101delNE and p.I79N, associated with RCM often
occur in a TnT binding fragment corresponding to residues
70–170 in the N-terminal domain. This finding suggests the
existence of a mutational hotspot region in TNNT2 where
mutations may result in impaired Tm-dependent functions
of cTnT [102].

3.3 TNNC1 Mutations

Cardiac troponin C (cTnC) consists of two globular
EF-hand (the most common calcium-binding motif) do-
mains and a flexible linker. The calcium-sensing part of the
Tn complex is troponin C encoded by TNNC1 in both car-
diac muscle and slow skeletal muscle. There are two high-
affinity calcium-binding sites in the C-domain of cTnC
where are often occupied by Ca2+ in physiologic conditions
[103].

Previously, mutations in TNNC1 have been associated
with HCM or DCM. Nowadays, the evidence indicated that
a compound heterozygous mutation p.A8V (c.C23T) and
p.D145E (c.C435A) in TNNC1 inducing fatal RCM was
described in a pediatric proband who inherited the muta-
tion from her unaffected paternal grandmother and mater-
nal grandfather, respectively [28]. The younger sister of
this proband, who carried the same genetic background,
initially showed congenital HCM, evolved to RCM, sub-
sequently occurred with heart failure and death. This phe-
nomenon suggests that RCM induced by the compound het-
erozygosity p.A8V and p.D145E is combined with a young-
onset marked restrictive physiology, familial history of sud-
den cardiac death and gradually evolves into septal hyper-
trophy. The p.A8V mutation alone caused a more open
cTnC N-domain conformation, presumably increasing in-
teractions with the switch region of cTnI [104], while the
p.D145E mutation altered Ca2+ bind by the C-domain of
cTnC [105]. It appeared not compatible with the fact that
the grandparents of the proband who carried single p.A8V
or p.D145E allele were unaffected. The seemingly contrast-
ing finding might be explained by the possibility that the
single mutation was haploinsufficiency to cause a complete
penetrance. However, the combination of compound het-
erozygotes p.A8V and p.D145E resulted in a more severe
phenotype of RCM. Experimental results demonstrated that
the major abnormality induced by p.A8V and p.D145E mu-
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tations at the same time was the decreased Ca2+ off-rate,
altered muscle relaxation and impairing diastolic function
[106,107].

3.4 Myosin Associated Mutations

As described above, myosin is a hexameric contrac-
tile protein containing two heavy chains (MHC, encoded
by MYH7 in the heart) associated with four light chains
(MLC). The four MLCs are classified as two regulatory
light chains (encoded by MYL2 in the heart) and two es-
sential light chains (encoded by MYL3 in the heart). The
C-terminal part of each MHC is α helical, whereas its N-
terminal part folds into a globular head region called sub-
fragment 1 (S1). The S1 contains amotor domain binding to
actin. It hydrolyses ATP and a neck domain composed of a
regulatory and essential light chain, respectively, function-
ing as a lever for filament sliding in contraction [108,109].

A de novo heterozygous mutation p.P838L was firstly
identified in MYH7 in an infantile RCM case. The clini-
cal presentation of this proband was characterized by early-
onset, mild hypertrophy of the left ventricle and a very
short evolution to death [14]. The p.P838L mutation is lo-
cated in an extremely conserved hinge segment between
the rod region and the globular head region of myosin pro-
tein. The marked restrictive physiology might result from
the myosin head region’s impaired flexion during the re-
laxation cycle. However, in a p.P838L myosin transgenic
Drosophila melanogaster model, the heart morphology and
cardiac function was normal, although the p.P838L mutant
myosin increased basal ATPase, actin sliding velocity, rota-
tional flexibility and the average angle of two heads in vitro
[110]. On the one hand, the seemingly different findings
might result from the possibility that Drosophila myosin
protein is less sensitive to the p.P838L perturbation than
humans. On the other hand, the identification of the human
pathogenic mutations involved sequencing of select candi-
date genes. Hence, it is possible that a mutation in another
genetic locus, alone or in conjunction with P838L myosin,
is responsible for the severe phenotype observed in the hu-
man patients [110]. Another missense mutation, p.G768R
in exon 21 of MYH7, also was found in a pediatric RCM
case [29]. The p.G768R locates in a highly conserved re-
gion across species and has previously been reported as a
disease-causing mutation associated in adults with HCM
[111]. It suggests that the phenotypic manifestations of
MYH7mutations in children, especially young ones, are dif-
ferent from adult ones. Further investigations are needed to
determine whether other untested genetic mutations or sen-
sitive indicators functioned as potential contributors to the
severity and age of onset. A novel MYH7 p.R721K muta-
tion was found in an RCM proband, who died at 47-year old
due to progressive congestive heart failure, and her young
son both showed biatrial enlargement, normal wall thick-
ness and restrictive features. Yet, her other non-carrier son
did not have these features [30]. The p.R721K mutation

located in the converter domain of MYH7 affects myosin’s
ATPase activity. RCM induced by MYH7 mutation in this
domain is associatedwith severe diastolic heart failure, high
rates of atrial fibrillation, stroke, poor prognosis and even
sudden cardiac death [30]. Another p.Y386C mutation was
reported in exon 13 ofMYH7, which was previously seen in
an infant with de novo HCM by the laboratory. The index
case died at the age of 18 months, and the autopsy find-
ings presented RCM, not HCM [31]. Interestingly, this is
the first observation in a patient with RCM overlapped my-
ocardial bridging under anMYH7 mutant background.

RCM caused by MLC-related mutation was firstly re-
ported in an El-Salvadoran 22-year-old female. The pa-
tient underwent recurrent syncope and severe heart failure
[32]. There were homozygousmutations ofMYL3 p.E143K
(c.427G>A), combined with a novel heterozygous mu-
tation of MYL2 p.G57E (c.170G>A). Her mother, who
carried a double heterozygous MYL3 p.E143K and MYL2
p.G57E, showed a normal echocardiogram and electrocar-
diogram examinations. According to this phenomenon, the
homozygousMYL3 p.E143Kwas highly considered to con-
tribute to RCM in the proband [32].

3.5 TPM1 Mutations
The α-tropomyosin is encoded by TPM1 and plays a

crucial role in actin regulation and stability, participating in
fundamental functions in heart development. Mutations in
TPM1 cause dominantly inherited cardiomyopathies [112].
Almost all recently reported TPM1 variants are missense
mutations that resulted in a single amino acid substitution.

A novel homozygous missense mutation TPM1
p.N279H (c.835A>C) was found in an Italian RCM case.
The endomyocardial biopsy showed mild myocyte hyper-
trophy and no evidence of amyloid or iron deposition [32].
This proband’s father carried heterozygous p.N279H mu-
tation and was diagnosed with HCM in the absence of
restrictive physiology. In 2021, the compound heterozy-
gous TPM1 variants p.E62Q (c.184G>C) and p.M281T
(c.842T>C) were identified in a child with RCM for the
first time [33]. This proband was diagnosed with RCM
at the age of 6, received orthotopic heart transplantation
at 12-year old, and reached adult age without cardiovascu-
lar events. In addition, the family members of the proband
carrying one of these two mutations presented HCM phe-
notypes. Following tests suggested that TPM1 mutations
resulted in time-dependent and progressive deterioration of
cardiomyocyte CaT amplitudes. Yet, the reduced CaT am-
plitudes and the deficient sarcomeric structures are indepen-
dent of the TPM1 mutations and the clinical phenotypes of
cardiomyopathies [33].

3.6 ACTC1 and MYBPC3 Mutations
Actin is a highly conserved protein and encoded by

ACTC1. Mutations in this gene have been phenotypically
associated with various cardiac abnormalities. A novel

6

https://www.imrpress.com


p.D313H mutation (g.4642G>C) in exon 5 of ACTC1 was
observed in an individual with RCM [23]. Interestingly,
the proband’s father died from DCM after heart transplan-
tation and the older sister was diagnosed with overlapping
phenotypes of RCM and DCM. The p.D313H was located
in the immobilized region of the actin filament, acting as
an important tropomyosin-binding site [113]. The specific
mechanism by how the p.D313H mutation induced various
clinical phenotypes of cardiomyopathy remains unclear.

The MYBPC3 gene encodes the cardiac isoform of
myosin-binding protein C (MyBPC), a myosin-associated
and large multi-domain protein. The role of MyBPC in
the sarcomere regulation is not yet fully understood. Pre-
viously, MYBPC3 mutations were demonstrated highly re-
lated to familial HCM [114]. However, a nonsense mu-
tation MYBPC3 p.Q463X (c.1387C>T) was identified in
a multigenerational family with three adult RCM patients.
Moreover, another missense mutation MYBPC3 p.E334K
(c.1000G>A) was observed in an unrelated patient [34].
A zebrafish model with genetic knockdown of MYBPC3
showed ventricular hypertrophy and diastolic heart fail-
ure manifestations, including decreased diastolic relaxation
velocity, pericardial effusion and dilatation of the atrium
[115]. It is noted that primary RCM caused by MYBPC3
mutation is associated with severe diastolic dysfunction, yet
the long-term prognosis is still obscure [34].

4. Nonsarcomeric Gene Mutations
While nonsarcomeric mutations-associated RCM sub-

types are less common, several mutations have recently
been identified in index cases.

4.1 DES Mutations
Desmin is encoded by DES and functions as the chief

intermediate filament of the skeletal and cardiac tissue
connecting the Z-bands to the subsarcolemmal cytoskele-
ton. Cardiomyopathies caused by DES mutations often
present severe restrictive physiology, syncope, sudden car-
diac death due to conduction defect and overlap with a het-
erogeneous group of skeletal myopathies [116].

In four unrelated probands with RCM complicated
with the atrioventricular block (AVB), there were three
novel mutations p. R16C, p.T453I, a 10-bp deletion at the
exon-intron boundary of exon 3 and one known heterozy-
gous mutation p.R406W identified in DES [35]. The novel
p.R16C mutation was associated with a recessive pheno-
type due to the absence of RCM in three heterozygous car-
riers. The novel p.T453I mutation is located in the highly
conserved 9-amino acid motif among type III intermedi-
ate filaments acting as desmin interaction with other cy-
toskeletal proteins [117]. The new 10-bp deletion at the
exon-intron boundary of exon 3 damaged the exon 3 donor
splice site, predicting the loss of 32 amino acids and the ac-
cumulation of desmin-positive material [118]. The known
p.R406W mutation was located in the C-terminal of the

desmin core domain and associated with early-onset se-
vere cardiac and skeletal myopathy [119]. Although the
probands carry different mutations affecting different do-
mains, all shared the identical cardiac phenotypes of RCM
in combination with AVB [35]. Another novel homozygous
missense mutation DES p.Y122H (c.364T>C) was also re-
ported in the index patient with RCM plus AVB [36]. Fol-
lowing experimental results in vitro revealed a severe fil-
ament assembly defect of mutant DES protein. The novel
DES p.E413Kmutation was identified in a family with pure
RCM, including three affected and five at-risk members.
The pathogenicity of p.E413K mutation at a highly con-
served end of the alpha-helical rod domain might induce
potential disruption of intramolecular interactions and in-
ability of filamentous cellular network [37]. Recently, in
an index patient with RCM in combination with atrial fib-
rillation, there was a heterozygous mutation c.735G>C in
DES. This mutation affected the last base pair of exon 3
and caused a splice site defect. RCM caused by this muta-
tion showed right heart failure, massive dilation of the right
atrium and recurrent atrial fibrillation [38].

4.2 MYPN Mutations

The MYPN gene encodes myopalladin protein con-
necting structural regulatory molecules by translocation
from the Z-lines and I-bands to the cardiomyocyte nucleus
[120]. Mutations in MYPN associated with DCM, HCM
and RCM have been reported. MYPN p.Q529X mutation
was identified in siblings with RCM, yet their carriers’
mother was not affected. Different phenotypes were ob-
served in family members carrying the same mutation [19].
The phenomenon of reduced penetrance of p.Q529X muta-
tion might be explained by the possibility that the patients
with RCM had other disease-associated mutations inherited
from their father and absent from their mother. The knock-
in heterozygote MYPN p.Q526X mutant mice revealed the
diastolic dysfunction and restrictive physiology. There was
preserved systolic function without overt hypertrophic re-
modeling. The phenotype of mutant mice resembles RCM
induced by p.Q529X in humans [121].

4.3 TTN Mutations

TTN (also called titin) gene encodes the largest hu-
man protein consisting of 364 exons and approximately
38,000 amino acid residues with a molecular weight of
4200 kDa. The TTN protein provides architectural sup-
port and sarcomeric organization during muscle contraction
[122]. Mutations in TTN refer to the different phenotypes
of cardiomyopathies and missense variants are very com-
mon and frequently benign in DCM [123]. A linkage anal-
ysis study identified a missense mutation TTN p.Y7621C
(c.22862A>G) in a family with RCM involving six affected
individuals aged 12–35 years [11]. The p.Y7621Cmutation
is located in titin’s most highly conserved A/I junction re-
gion, connecting the compliant I-band and the rigid thick
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filament bound A-band. The clinical presentations of RCM
induced by TTN mutation showed severe diastolic dysfunc-
tion overlapped with atrial fibrillation and thromboembolic
phenomena.

4.4 FLNC and BAG3 Mutations
Filamin C is an actin-cross-linking protein encoded by

FLNC in heart muscle. Pathogenicmutations inFLNC have
been reported to cause dominant isolated cardiomyopathy
phenotype. The prevalence of patients carrying a unique
FLNC pathogenic mutation in a cohort was evaluated 8% in
RCM [124]. It has been identified that two novel missense
mutations, FLNC p.S1624L and p.I2160F, were associated
with familial RCM. It was suspected that FLNC and DES
mutations shared similar pathological mechanisms due to
identical behaviour of cytoplasmic aggregation [39].

Mutation in BAG3 is a rare cause of RCM. Recently,
a heterozygous mutation p.P209L (c.626C>T) in exon 3 of
BAG3was found in a 15-year-old girl. The proband showed
severe myopathy, neuropathy, asymptomatic long QT syn-
drome and late-onset RCM [40]. The BAG3 p.P209L muta-
tion was also present in another index patient who suffered
from severe myofibrillar myopathy and RCM [41].

5. Infiltrative RCM-Associated Mutations
Cardiac amyloidosis (CA) is considered as the pro-

totype of the infiltrative form of RCM. Although CA can
be acquired, there are several mutations in genes involv-
ing transthyretin (TTR). TTR primarily serves as a trans-
porter for thyroxin and for retinol-binding protein. This
protein is a tetramer, but has an innate ability to dissoci-
ate into monomers which tend to be amyloidogenic prop-
erties. There are three main types of CA: immunoglob-
ulin light chain cardiac amyloidosis (AL-CA), wild-type
transthyretin cardiac amyloidosis (ATTRwt-CA) and mu-
tant transthyretin cardiac amyloidosis (ATTRm-CA) [3].

ATTRm-CA is an autosomal-dominant disease in
which gene mutations lead to changes in the protein TTR.
The clinical symptoms vary extensively depending onmany
factors including specific TTR mutation site and geograph-
ical distribution. The TTR p.V30M mutation was the
most common worldwide which induces progressive pe-
ripheral sensory-motor polyneuropathy with later cardiac
manifestations. However, other mutations p.V122I, p.I68L,
p.L111M and p.T60A cause exclusively infiltrative car-
diomyopathy [125]. The p.V122I mutation is prevalent in
3.4% of African Americans, and the clinical phenotype of-
ten refers to late-onset RCM, despite a low clinical pene-
trance of the disease [42]. Another prospective observa-
tional Atherosclerosis Risk in Communities study reported
that the p.V122I carriers had an increased risk of heart
failure during the later years compared with non-carriers,
indicating that p.V122I carriers are predominantly at in-
creased risk of heart failure with an age-dependent pen-
etrance [126,127]. The p.I68L mutation is endemic in

central-northern Italy and presents as HCM or RCM. Male
preponderance is present in affected patients but not in
unaffected mutation carriers [43]. The cardiac mutation
p.L111M has been traced to three unrelated Danish fam-
ilies [44]. The patients showed developing or manifest
RCM with a diastolic dysfunction as the first sign of dis-
ease. Ischemic symptoms were often present in the form
of angina pectoris because of amyloid deposits in the coro-
nary arteries [44]. Significantly, these patients with the
p.L111M were younger and less likely to be male [128].
Familial amyloid polyneuropathy (FAP) resulting from the
TTR p.T60A mutation was firstly described in 1986 in an
Irish family [45]. Moreover, cardiac amyloidosis is always
present at diagnosis in FAP p.T60A mutation, and is a ma-
jor determinant of its poor prognosis. Other sporadic cases
of RCM associated with TTR mutations such as p.A65G,
p.H88R and p.S23N have recently been reported [46–48].

6. Conclusions and Perspectives
Previously, the invasive endomyocardial biopsy was

needed to diagnose the primary cardiomyopathy, and ge-
netic testing was probably underestimated. Nowadays,
identifying disease-causing mutations in cardiomyopathy
has shed new light on molecular mechanisms. Given the
ever-broadening link between specific phenotype of RCM
and pathogenic mutations, genetic testing would be advan-
tageous to patients with severe diastolic dysfunction. Lo-
cation of the mutation in gene influences the development
of clinical phenotype of RCM. Therefore, recognizing the
effects of shared genetic mutations and establishing a close
association with clinical phenotypes is a major aim of future
studies.
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