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Abstract

Atrial cardiomyopathy represents a process of structural and functional changes affecting the atria and leading eventually to clinical
manifestation of atrial fibrillation and risk of stroke. Multimodality imaging provides a comprehensive evaluation of atrial remodeling
and plays a crucial role in the decision-making process in treatment strategy. This paper summarizes the current state of knowledge
on the topic of left atrial strain imaging using two-dimensional speckle tracking echocardiography (2D-STE). We focus on our recently
published data on left atrial remodeling assessed by 2D-STE versus high-density voltage mapping in patients with atrial fibrillation (AF).
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1. Introduction
Atrial fibrillation (AF) is the most common arrhyth-

mia, affecting up to 2% of the population [1] and is associ-
ated with significant morbidity and mortality. The substrate
for AF lies in the process of left atrial (LA) remodeling, in-
cluding LA fibrosis, fatty infiltration, amyloid deposition
or LA dilatation, that lead to subsequent LA mechanical
dysfunction and a delay in electrical conduction properties
[2]. The term “fibrotic atrial cardiomyopathy” was intro-
duced to describe these histological and pathophysiological
changes.

The clinical approach in assessing patients with AF
requires an evaluation of cardiac structure and function [1].
Such an assessment requires multi-modality imaging and
influences our therapy strategy (rhythm control vs. rate
control), need for ablation, pace and ablate approach, stroke
risk stratification, and prognosis.

The assessment often begins with echocardiography
as a first line diagnostic imaging strategy. The recent
innovations in advanced cardiac imaging - cardiac mag-
netic resonance (CMR) and cardiac computed tomography
(CCT) provide a comprehensive characterization of atrial
anatomy. These imaging techniques are very accurate tools
to exclude thrombus and to guide left atrial appendage
(LAA) closure or catheter ablation (CA) of AF. In com-
parison to echocardiography, CCT provides better spatial
resolution together with a rapid dataset acquisition. How-
ever, its disadvantages are the need to inject iodine contrast
agent and radiation exposure. Another advanced imaging
technique, CMR, provides very high temporal resolution,
a unique feature of tissue characterization and no need for
radiation exposure. However, its limitations are: long scan
times, higher price, suboptimal reproducibility of results,
and low availability. All these disadvantages drive the need

for non-invasive, cheaper and widely available tools like
echocardiography for evaluating atrial remodeling.

This paper summarizes the current state of knowledge
on the topic of atrial strain imaging using two-dimensional
speckle tracking (2D-STE). We focus on our recently pub-
lished data on LA remodeling assessed by STE derived
strain analysis versus electro-anatomical voltage mapping
in patients with atrial fibrillation [3].

2. Assessment of Atrial Remodeling
Atrial remodeling is caused by collagen deposition in

the cell interstitium followed by massive fibrosis formation
[4]. This remodeling process causes alterations in the nor-
mal electrical conduction [5]. Fibrosis tends to increase
progressively. Prevention of atrial remodeling is one of the
treatment goals in order to delay disease progression.

The expert consensus in 2016 defined “atrial car-
diomyopathy” as “any complex of structural, architectural,
contractile or electrophysiological changes affecting the
atria with the potential to produce clinically relevant mani-
festations” [6]. A working histological-pathophysiological
classification was proposed with four different classes of
atrial myopathy based on the predominant pathophysiologi-
cal mechanism: (1) cardiomyocytes dependent changes; (2)
mostly fibroblast dependent alterations; (3) mixed and (4)
non-collagen deposits related.

Atrial remodeling pathophysiological process is de-
fined by changes in the atrial structure and function result-
ing in atrial cardiomyopathy. LA remodeling is a complex
process involving various interrelated pathophysiological
mechanisms: (1) structural changes (LA dilatation) due to
interstitial fibrosis; (2) functional remodeling (LA failure);
and (3) electrical remodeling—changes in ion transport pro-
cesses and action potential properties conducive for inci-
dent atrial fibrillation [7].
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The identification of an advanced stage of fibrosis by
multi-modality imaging can direct the therapy approach re-
garding intensity and need for invasive or conservative ap-
proach [8]. For example, the extent of fibrosis in the LA
may guide the decision-making process in treatment strat-
egy, selecting those patients suitable for ablation and may
predict the long-term maintenance of sinus rhythm post AF
ablation [9,10]. It may also predict the risk of cardioem-
bolic stroke and success after cardioversion in AF patients
[11]. Moreover, the degree of fibrosis may guide the choice
of AF ablation strategy [12].

2.1 Cardiac Computed Tomography (CCT)

CCT has several potential roles in evaluating atrial re-
modeling in AF patients: CT provides accurate assessment
of LA dilatation, which is a marker of AF progression [13].
In addition, CCT can detect LA wall infiltration by epicar-
dial fat (location and volumetric assessment), which is a po-
tential early marker for inflammation, for local slower acti-
vation time and for increased risk of AF recurrence after ab-
lation [14]. Prior to AF ablation procedure, the pulmonary
vein anatomy can be obtained by CT and LAA thrombus
can be excluded; and finally, due to its great spatial resolu-
tion, multi-detector CT (MDCT) is able to accurately mea-
sure LA wall thickness, and thus, enable personalized AF
ablation [15]. CCT can estimate LA volume with preci-
sion and with fast data acquisition, thus providing a more
accurate evaluation of LA volume compared to TTE [16].
However, compared to echocardiography, its disadvantages
are the need to inject iodine contrast agent and radiation ex-
posure, and compared to LGE-CMR, it has a low contrast-
to-noise ratio, limiting its ability to differentiate between
normal tissue and scar.

2.2 Three-Dimensional Electro-Anatomical Mapping
(3D-EAM)

Cardiac imaging using 3D-EAM system, combines
both anatomical structure and electrophysiological data
and is capable to display hybrid information in a three-
dimensional, visual way. Low atrial endocardial voltage
zones (LVZs), measured by EAM system, represent a surro-
gate maker for the presence of atrial fibrosis and are targets
for AF ablation [6]. Studies showed that those LVZs cor-
relate with local conduction disturbances in the atrial tissue
[17] and that AF ablation in patients with more than 5% of
LVZs areas had lower procedure success with higher rate
of AF recurrence [18]. However, intracardiac voltage map-
ping appears to be an invasive and expensive tool.

2.3 Cardiac Magnetic Resonance with Gadolinium
Delayed-Enhancement (LGE-MRI)

CMR represents valuable imagingmethod for atrial fi-
brosis identification [19]. The contrast enhancement tech-
nique is used for cardiac tissue characterization, specifi-
cally for assessment of myocardial scar formation and re-

gional myocardial fibrosis [20]. Caixal et al. [21] re-
cently reported interesting results showing accurate detec-
tion of LA fibrosis in cardiac late gadolinium enhancement
magnetic resonance imaging (LGE-MRI). They showed a
strong correlation between MRI detected fibrosis and en-
docardial voltage and conduction velocity using EAM.

The quantitative analysis of atrial fibrosis by MRI has
been shown to be associated with the risk of stroke [11].
In addition, MRI analysis of LA fibrosis is currently be-
ing evaluated for decision making regarding selection of
patients for AF ablation, and for planning and guiding AF
ablation procedures. Marrouche et al. [10] established the
Utah stage classification for a quantitative analysis of LA
fibrosis (i.e., LA wall enhancement as a percentage of the
total LA wall, stages I–IV), and showed that the extent of
atrial fibrosis detected by LGE-MRI was independently as-
sociated with AF recurrence in patients undergoing AF ab-
lation. However, the implementation of image-guided atrial
fibrosis ablation did not significantly improve the success
rate of the procedure compared to pulmonary vein isolation
in treatment resistant AF, according to the early results of
the randomized DECAAF II trial. Important advantage of
using this image-integration method of ablation was noted
in the subgroup of patients with early stages of fibrosis [22].

Although CMR is becoming more available, provid-
ing best soft tissue contrast compared to other techniques
without radiation exposure, its limitations include long scan
times (due to its dependency on heart movements and
breathing and the need for multiple images), challenges in
evaluating atrial fibrosis during AF rhythm due to irregular-
ity; higher price; suboptimal reproducibility of results; and
low availability in different medical centers.

2.4 Echocardiography

Every newly diagnosed patient with AF is usually re-
ferred to transthoracic echocardiography (TTE) for com-
prehensive evaluation of atrial structure and size, valvular
anatomy and function, as well as LV systolic and diastolic
performance [1,23]. Doppler and volumetric approaches
were the first methods used to assess LA function; a larger
atrial volume was shown to be associated with a higher risk
of AF in older patients [24]. LA volume index (LAVI) was
recognized as a key prognostic marker [25] and has a cen-
tral role in the multidisciplinary management of patients
with AF diagnosis [26]. The Doppler obtained E/e’ ratio
(a marker for left ventricular filling pressure) can be help-
ful to evaluate atrial compliance and LA stiffness.

More recently, speckle tracking echocardiography
(STE), has been applied to assess LA remodeling and fibro-
sis. Left atrial STE derived strain imaging has appeared as a
non-invasive and affordable diagnostic modality for the ac-
curate detection of atrial cardiomyopathy, as opposed to the
highly invasive 3D-EAM and CMRmethodology with lim-
ited availability. It should be emphasized that left atrial fi-
brosis cannot be assessed directly on echocardiography, but
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Fig. 1. Display of the left atrial deformation over a cardiac cycle, starting at the QRS as zero reference point. The peak pos-
itive longitudinal strain (LAS) corresponds to atrial reservoir function (LASr — reservoir strain), strain during early diastole reflects
atrial conduit function (LAScd — conduit strain) and strain during late diastole corresponds to atrial contractile function (LASct — LA
contraction strain).

studies have shown direct correlation between LA global
strain measured by STE and the degree of LA fibrosis on
histopathology [27].

3. Atrial Strain Using 2D-STE
LA strain is an STE–derived analysis of LA mechani-

cal function with the advantage of being tissue Doppler de-
rived, angle-independent measure of atrial function. It al-
lows the assessment LA mechanical performance in each
phase of the cardiac cycle (reservoir, conduit, and contrac-
tile). The parameters acquired with this technique cannot be
compared directly to conventional echocardiographic pa-
rameters, but when used in combination, LA strain can pro-
vide complementary information on structural remodeling
and mechanical dysfunction of left atrium [28,29].

The EACVI/EHRA Expert Consensus Document [30]
for the evaluation of patients with AF, indicates STE and
LA strain as valuable complementary tools in this setting
and the new European AF guidelines [26] underscore the
use of LA strain for more accurate assessment of LA func-
tion. The lack of large prospective studies and standardized
methods for LA strain measurement, along with several
technical and methodological challenges, encouraged the
publication of the EACVI/ASE/Industry Task Force con-
sensus document to standardize definitions and techniques
for using 2D-STE [31], aiming to standardize the assess-
ment of LA, right ventricle, and right atrial myocardial de-
formation.

LA Mechanical Deformation is Divided into Three Phases
(a) Reservoir phase—LASr (left atrial reservoir

strain): atrial diastole (occurs during ventricular systole)—
begins at the end of ventricular diastole (mitral valve clo-
sure) and continues until mitral valve opening. Represents

the time of LV isovolumic contraction, ejection and isovo-
lumic relaxation (Fig. 1).

(b) Conduit phase—LAScd (left atrial conduit strain):
passive atrial systolic phase during ventricle diastole. Starts
with mitral valve opening through diastasis until the onset
of LA contraction in patients with sinus rhythm. In patients
with AF, it continues until the end of ventricular diastole
(mitral valve closure).

(c) Contraction phase—LASct (left atrial contraction
strain): starts with the onset of LA contraction until the end
of ventricular diastole (mitral valve closure) in patients with
sinus rhythm.

The importance of the reference frame of zero strain
was emphasized in the EACVI/ASE/Industry Task Force
consensus document. Choosing different options for zero
strain reference affects LA strain measurements [31]:

(1) Zero strain reference set at left ventricular end-
diastole-recommended (Fig. 1).

(2) Zero strain reference set at the onset of LA con-
traction.

The use of different zero reference point in previ-
ous research works led to different normative values [32–
34]. Using the recommended end-diastole zero reference
makes atrial strain analysis possible in all patients (includ-
ing patents in AF), and it makes the analysis easier, since
with this zero reference the LA strain measurement is equal
to the first positive peak systolic value of the LA strain
curve. LA reservoir function analysis by STE is the most
commonly used LA strain parameter with the largest evi-
dence supporting its prognostic value [30,34]

A large-scale population-based study by Liao et al.
[35], provided age- and sex- related reference values of LA
deformation indices and proved the utility and feasibility of
strain analysis in evaluation of LA function. Their findings
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were consistent with the Task Force efforts of the Ameri-
can and European echocardiographic societies to standard-
ize LA strain measurements [30,31].

In 2018, Sugimoto et al. [36], published echocar-
diographic reference ranges for normal left atrial strain
analysis. The NORRE study provided contemporary, age-
specific, applicable echocardiographic reference ranges,
using vendor-independent software (VIS) system (TomTec
Imaging System, Munich, Germany) for analyzing the data.

4. Clinical Implications of Atrial Strain
There is rapidly growing body of literature that sup-

ports LA strain use in different clinical settings.

4.1 Atrial Fibrosis—A Hallmark of AF
Myocardial fibrosis is the substrate of AF and its char-

acterization could be used to guide our treatment approach.
Studies showed that 2D-STE obtained atrial strain

measurements correlated directly with histologically
proven fibrosis of the LA wall [27]. Kuppahally et al. [37]
reported inverse correlation between the degree of fibrosis
detected by contrast enhanced MRI and LA strain analysis
in patients with persistent AF compared with paroxysmal
AF.

Watanabe et al. [38] found correlation between EAM
and 3D-speckle tracking echocardiography (STE) meth-
ods in paroxysmal AF patients during SR, even in pa-
tients with less advanced anatomic remodeling. This group
showed that LA dyssynchrony is latent in patients with AF
in the early remodeling phase, and that the early remodeling
changes can be detected using 3D-STE. However, 3D-STE
analysis is possible only during sinus rhythm and is limited
by its lower accuracy and temporal resolution. To overcome
these limitations, our group used 2D-STE derived LA strain
instead of 3D-STE for the estimation of LA fibrosis grade
[3]. An evaluation of LA reservoir strain (LASr) was cho-
sen, since it represents atrial filling and compliance. Most
importantly, LASr was shown to be less affected by the car-
diac rhythm in the time of examination-can be performed
during AF [31].

Similar to methods used in previous works [18], we
defined low voltage zones (LVZs) as an area with voltage
amplitude lower than 0.5 mV and covering more than 5% of
LA area, measured by multi-electrode, contact force map-
ping catheter. This cut-off reflected the minimum amount
of LA fibrosis detected by LGE-CMR in previously re-
ported study [39].

We used this cutoff to compare patients with LVZ
(≥5%) versus those without LVZ (<5%) in EAM regard-
ing association with atrial LASr [3]. Patients with LVZs
more than 5% area had lower atrial reservoir strain. Our
study demonstrated negative correlation between the extent
of atrial fibrosis measured by EAM and LASr measured
by 2D-STE and suggested that non-invasive STE derived
atrial strain imaging can be easily applied for evaluation

of LA fibrosis, even in patients with irregular rhythm [40].
Strain analysis holds the potential for better prediction of
ablation procedure success and better selection of patients
who would benefit from it. Moreover, reduced atrial strain
was associated with the progression from paroxysmal AF
to persistent AF [41].

4.2 LA Strain in AF Therapy and Follow Up
LA strain measurements are complementary to volu-

metric measures, but are more sensitive, because they can
detect LA dysfunction, before LA dilatation occurs [42,43].
In a study by Cameli et al. [43], there was a strong asso-
ciation between LASr and cardiovascular events after ad-
justments, and both LA emptying fraction and LASr were
superior and incremental to LAVI, suggesting that impaired
reservoir function (LASr) may be a more sensitive indica-
tor of left atrial remodeling [44,45]. Studies have shown
an association between reduced LASr and contractile func-
tion, as well as paroxysmal AF that precedes LA enlarge-
ment [46,47]. Furthermore, LASr at baseline, prior to ab-
lation, has been shown to be an independent predictor of
LA reverse remodeling [48,49]. In patients undergoing AF
ablation, LASr predicts the maintenance of sinus rhythm
after ablation in both paroxysmal and persistent AF forms
[28,50–52].

Interestingly, LA peak longitudinal strain (LASr) re-
sults are reduced after electrical cardioversion or ablation,
and tend to increase gradually in the following period of
months after the procedure, suggesting an increased throm-
boembolic risk [53,54]. These results are probably related
to the atrial “stunning” after conversion to SR. Moreover,
reduced atrial strain predicts arrhythmia recurrence post
cardioversion during a period of six months follow up [55].

4.3 Cardioembolic Stroke
Ischemic stroke is a leading cause of morbidity and

mortality in patients with AF. The presence of AF increases
significantly (fivefold) the risk of stroke, with the left atrial
appendage thrombus formation the most common cause
[56,57]. The risk of stroke is in correlation with LA size
[58]. Risk factors, such as age, obesity, diabetes, hyper-
tension and sleep apnea are important factors in promot-
ing atrial cardiomyopathy characterized by endothelial dys-
function, fibrosis and blood stasis. These changes create a
prothrombotic milieu in the left atrium and have been re-
lated to the process of clot formation even before arrhyth-
mia occurs.

Stroke prevention plays a major role in the manage-
ment of AF patients and the decision for anticoagulation
is currently based on clinical risk scores. Parameters of
LA function are not implemented in the risk score. Sev-
eral LA imaging-derived parameters have been shown to
correlate with the risk of thromboembolism—LA dilation,
spontaneous echo contrast (SEC) in LAA, LAA thrombus,
reduced LAA velocity, 2D-STE reservoir strain (LASr) and
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LAA morphology (non-chicken wing) [59]. It is unclear
however, if their addition to the current risk scoring system
will improve the risk stratification for stroke.

The role of echocardiography in excluding thrombus
in LAA and in characterizing LA enlargement in patients
with AF is complemented by the evaluation of LA strain.

LA strain parameters have been shown to be associ-
ated with thromboembolic risk. LASr is associated with
stroke among patients with permanent AF [60] and is neg-
atively associated with cardioembolic risk in patients with
paroxysmal and persistent AF [61]. LA strain also corre-
lates with CHADS2 score [62].

LA strain has been suggested as being a surrogate
marker of AF occurrence in patients with cryptogenic stroke
[63]. In study by Leong et al. [64], patients with cryp-
togenic stroke and no history of AF demonstrated signifi-
cantly lower left atrial reservoir strain compared to controls.
LASr analysis provided incremental discriminatory value
in the identification of stroke patients, with the ability to
detect subtle LA dysfunction, before occurring of arrhyth-
mia. The data support the hypothesis that remodeling and
reduced atrial contraction predispose to subsequent throm-
boembolism [65] and emphasize the need for early recog-
nition of subtle left atrial abnormalities.

Recently, Park et al. [66] reported, that reduced LA
reservoir strain <14.5% was associated with an increased
risk of stroke in patients with heart failure and sinus rhythm.

Furthermore, Sade et al. [67] showed that STE imag-
ing evaluation of LA dysfunction by LA reservoir atrial
strain and contraction (LASr and LASct) predicted both
cryptogenic stroke in general and embolic stroke of unde-
termined source (ESUS), independently from LA volume
index (LAVi) and CHA2DS2-VASc score. LASr >26%
yielded 86% sensitivity, 92% specificity, 92% positive, and
86% negative predictive values for the identification of
ESUS.

4.4 Left Atrial Strain in Heart Failure (HF) and Valvular
Heart Disease

The crucial role of the LA in the pathophysiology of
HF with reduced ejection fraction (HrEF) and HF with pre-
served ejection fraction (HpEF) and in valvular diseases is
comprehensively exposed in the recent review article by
Carpenito et al. [68].

LA enlargement represents compensatory response to
longstanding rise in LA pressure and LV filling pressure in
the early stages of diastolic dysfunction, so it can maintain
stroke volume. Parallel to LA dilatation, structural alter-
ations begin and fibrosis occur, until left atrium loses its
contractile function and starts to behave like a conduit with
subsequent mechanical and electrical failure [69]. When
compliance is lost, reservoir and conduit atrial function are
altered and further increase in pulmonary pressure reflects
the underlying interaction between right ventricle and pul-
monary circulation uncoupling.

There is a strong correlation between LA volume and
its mechanical performance, but changes in LA deformation
can occur earlier than cavity remodeling and dilatation, and
LA strain has been shown to be potential marker of early
identification of subclinical heart dysfunction [70].

These early changes in atrial compliance can be cap-
tured by atrial strain analysis, adding incremental informa-
tion to the structural information provided by the conven-
tional echocardiographic indices. Early detection of atrial
remodeling with better understanding of LA function can
guide the correct time to intervene, just before the final fi-
brotic changes occur.

Kurt and colleagues [71] reported reduced levels of
LASr in patients with HFpEF compared to patients with LV
diastolic dysfunction with no cardiac failure. LASr <23%
has been associated with worse New York Heart Associa-
tion (NYHA) functional class and elevated pulmonary cap-
illary wedge pressure (PCWP) [72]. Recently, Khan et al.
[73] reported results of a robust meta-analysis, summariz-
ing studies of LA function in HFpEF. Volumetric measure-
ments of LA function were lower in HFpEF patients com-
pared to controls. Importantly, LA reservoir strain was as-
sociated with the composite of mortality and HF hospital-
ization.

Reduced reservoir function has been associated also
with symptoms [74] and with peak oxygen consumption
during cardiopulmonary exercise testing, even after adjust-
ment for LV and right ventricular (RV) longitudinal strain
[75].

The association of impaired LA reservoir and in-
creased stiffness with abnormal exercise hemodynamics in
HFpEF patients could provide significant diagnostic utility
in elderly ambulatory patients with dyspnea [76].

Another study by Melenovsky et al. [77], demon-
strated important differences in LA properties between
HFrEF and HFpEF. Patients with HFrEF had larger LA
volumes (LA volume index 50 versus 41 mL/m2; p <

0.001), whereas HFpEF patients had higher LA peak pres-
sures. These differences could be a reflection of different
pathophysiological mechanisms in LA cardiomyopathy—
HFrEF is characterized by greater eccentric LA remodeling,
whereas HFpEF by increased LA stiffness, which might
contribute to greater atrial fibrillation burden.

Further insights into the role of LA in functional re-
sponse to heart failure were reported by the group of Sug-
imoto et al. [78], focusing on the role of LA as a ca-
pacitor in the interaction between LV dysfunction, pul-
monary congestion, and RV dysfunction. A negative cor-
relation was found between impaired LASr (<23%) and
LA enlargement (>34 mL/m2). In HFpEF patients atrial
strain reserve was reduced slightly than in patients with
HFrEF. The investigators also found an association be-
tween minute ventilation and carbon dioxide production
(VE/VCO2) slope—marker of excessive ventilation—with
worse prognosis in HF. This parameter corresponded with
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the extent of elevation in LA pressure, suggesting that pul-
monary pressure plays a key role in the relationship between
LA strain and VE/VCO2 [79]. Moreover, the authors eval-
uated RV–pulmonary artery (PA) coupling as the ratio be-
tween PA systolic pressure and tricuspid annular systolic
excursion. This ratio increased in patients with HF, espe-
cially in HFrEF. The observations of this study are rep-
resenting the close interaction between RV function and
afterload—relating the RV remodeling to chronic pressure
overload to failing LA [80–82].

Reddy and colleagues [83] demonstrated that LA com-
pliance and mechanical performance decline with increas-
ing AF burden in HFpEF, increasing the likelihood of AF
progression. These changes in LA compliance may lead
to development of specific type of HFpEF characterized by
worsening pulmonary hypertension and right cardiac fail-
ure.

The same research group [84], demonstrated that atrial
strain analysis (LASr)may improve diagnostic accuracy be-
yond conventional echocardiographic indices to differenti-
ate HFpEF from non-cardiac causes of dyspnea (NCD). Of
all echocardiographic parameters, LASr best discriminated
HFpEF from NCD, outperforming E/e’, LA enlargement,
tricuspid regurgitation velocity >2.8 m/s, left ventricular
hypertrophy and left ventricular global longitudinal strain.
Indexing LASr to estimated LA pressure (E/e’) as a surro-
gate for LA compliance further improved diagnostic perfor-
mance.

Moreover, several studies using strain analysis re-
vealed that significant structural and electrical reverse re-
modeling of LA can occur after reducing LA pressure and
overload, highlighting LA strain as a potential therapeutic
target [85]. Reverse remodeling in LA, as detected by strain
analysis, can occur after many therapeutic modalities: med-
ical or resynchronization treatment for HF; ablation or car-
dioversion for AF; and also after valvular repair or replace-
ment for valvular heart disease [86,87].

5. Limitations
Important issues regarding LA strain analysis are un-

der discussion:
Atrial reservoir function is defined by the positive

peak of atrial strain curve (LASr), during the maximum
elongation of the LV in ventricular systole. For this rea-
son, LASr reflects also the longitudinal contraction of the
LV chamber in the same time period of the cardiac cycle.
We assume that LASr is an intrinsic performance measure-
ment of the LAmyocardium during ventricular systole, and
therefore on physiological grounds should be associated
with extent of LVZs of fibrosis. In fact, the deformation of
the LA during ventricular systole is largely, if not entirely,
the result of LV contraction and the traction the LV exerts
on the LA as its longitudinal dimension shortens within the
pericardial sac. Thus, it is possible that reduced LV (and
not LA) longitudinal strain during systole is primarily re-

sponsible for our measurements [88].
Barbier et al. [89], demonstrated that the systolic de-

scent of the LV base has a significant influence on the LA
deformation during reservoir phase and that acute LV re-
gional ischemia in their pig model, increased LA stiffness
and impaired LA reservoir function by reducing LV base
descent.

Later on, Russo and colleagues [45] demonstrated that
a reduction in longitudinal strain of LV (found to be an inde-
pendent predictor of incident AF) can be in fact associated
with a lower LASr.

Indeed, global longitudinal strain of LV function has
not been assessed comprehensively in the studies using LA
longitudinal strain analysis. However, the vast majority of
AF cases are the result of LV dysfunction, such a finding
would be reasonable, as was demonstrated by Russo and
colleagues [45].

On the contrary, Cameli et al. [70] demonstrated that
LASr was independent from LV strain in identifying heart
dysfunction in an earlier stage. Therefore, the issue whether
LASr is influenced by the LV function remains controver-
sial.

Instead of focusing on the LA reservoir function, focus
on contractile strain analysis has been suggested and worth
consideration in future research studies [90].

6. Future Perspectives
The development of LA strain imaging reveals its po-

tential role in the evaluation of LVdiastolic function, adding
incremental information to the data obtained with conven-
tional echocardiographic indices [91]. A strong association
of reduced LV filling pressure with subsequent LA reverse
remodeling and improved performance, has been demon-
strated by strain analysis, suggesting future utility in clini-
cal practice.

Numerous studies have been published on the role of
atrial strain imaging in the specific setting of heart fail-
ure. There are still difficulties in characterization of certain
types of HFpEF and LA strain analysis may be useful in
clarification of this topic. LA strain could also be useful in
studying the effect of drugs on atrial remodeling in patients
with cardiac failure.

LA strain imaging implementation in the research and
clinical management of AF is accumulating. Increasing
number of studies are supporting LA strain utility in as-
sessment of atrial remodeling process, its association with
thromboembolic risk, AF ablation success and arrhythmia
recurrence. Larger studies are needed to confirm this as-
sociation and to investigate whether strain analysis can be
applicable to identify patients at risk in everyday clinical
practice.

Moreover, new efforts to perform analysis of atrial
strain without depending on different vendors and using
new algorithms are emerging.
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7. Conclusions
In the era of precision medicine, personalized ap-

proach based on multimodality imaging information to ev-
ery specific patient is more andmore accentuated, and strain
analysis will potentially have amajor contribution in this re-
gard. Use of LA strain in the comprehensive assessment of
patients with AF, HF of different types, and valvular heart
disease may fill the gap of affordable, easy to use method
of risk stratification and precise timing of therapeutic inter-
vention.
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