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Coronary artery disease (CAD) is the most common cardiovascular
disease worldwide. In this study, we investigated the pathogene-
sis of CAD. We downloaded the GSE98583 dataset, including 12 CAD
samples and 6 normal samples, from the Gene Expression Omnibus
(GEO) database and screened differentially expressed genes (DEGs)
in CAD versus normal samples. Next, we performed functional en-
richment analysis, protein-protein interaction (PPI) network, and
functional module analyses to explore potential functions and reg-
ulatory functions of identified DEGs. Next, transcription factors (TFs)
and microRNAs (miRNAs) targeting DEGs were predicted. In total,
456 DEGs were identified in CAD and normal samples, including 175
upregulated and 281 downregulated genes. These genes were en-
riched in the intestinal immune network for immunoglobulin A pro-
duction and the mitogen-activated protein kinase signaling pathway
(e.g., TGFBR2 and EGF). The PPI network contained 212 genes, and
HIST1H2BJ, HIST1H2AC, EGF, and EP300 were hub genes with degrees
higher than 10. Four significant modules were identified from the
PPI network, with genes in the modules mainly enriched in the in-
flammatory response, protein ubiquitination involved in ubiquitin-
dependent protein catabolic processes, protein transport, and mito-
chondrial translational elongation, respectively. Two TFs (E2F1 and
FOXK1) and five miRNAs (miR-122A, miR-516-5P, miR-507, miR-342,
and miR-520F) were predicted to target 112 DEGs. miR-122A report-
edly targets both LRP10 and IQGAP1 in the TF-miRNA target regula-
tory network. The abnormal expression of TGFBR2, EGF, LRP10, and
IQGAP1 may be implicated in CAD pathogenesis. Our study provides
targets and potential regulators for investigating CAD pathogenesis.
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1. Introduction
Coronary artery disease (CAD), also known as ischemic

heart disease, is a group of diseases that includes sudden car-
diac death, myocardial infarction, and stable and unstable
angina [1]. CAD is the most common cardiovascular dis-
ease and is usually characterized by chest discomfort or chest
pain [2]. For CAD, primary risk factors include a lack of ex-

ercise, smoking, excessive alcohol consumption, high blood
pressure, obesity, depression, and poor diet [3, 4]. Addi-
tionally, genetics is considered a risk factor for developing
CAD [5]. In clinical practice, CAD can be diagnosed by em-
ploying coronary angiography, electrocardiogram, coronary
computed tomographic angiography, and cardiac stress test-
ing [6]. In 2015, 110 million CAD cases were reported, lead-
ing to 8.9 million deaths, thus making it the leading cause
of disease-related deaths globally [7]. Therefore, elucidating
mechanisms that underlie CAD is of considerable importance
and significance.

Kalirin (KALRN ) reportedly inhibits the activities of
guanine-exchange factor and inducible nitric oxide synthase,
which play important roles in the CAD mechanism via the
Rho GTPase signaling pathway [8]. Decreased adiponectin
and increased interleukin-6 (IL-6) levels promote CAD pro-
gression in epicardial adipose tissues [9, 10]. Moreover, lev-
els of neuregulin-4 (Nrg4) are found to be inversely related
to the development and severity of CAD [11]. Transforming
growth factor-β1 (TGF-β1) is involved in the pathogenesis
of restenosis, including thrombogenesis and inflammation.
In patients with CAD, polymorphisms and TGF-β1 levels
are independent risk factors for developing in-stent resteno-
sis after coronary bare-metal stent implantation [12]. MiR-
214 is known to inhibit the expression of vascular endothe-
lial growth factor (VEGF), as well as activities of endothelial
progenitor cells; therefore, circulating miR-214 could be em-
ployed as a novel biomarker and a diagnostic factor for CAD
[13]. MiR-34a mediates sirtuin 1 (SIRT1) in endothelial pro-
genitor cells, and atorvastatin reportedly improves endothe-
lial function by promoting SIRT1 expression by suppressing
miR-34a [14, 15]. Serum levels of miR-126, miR-197, and miR-
223 are reportedly increased in patients with CAD, and both
miRNA-197 and miRNA-223 can predict cardiovascular death
[16]. According to a report by Bai et al. [17], the MEG3-
miR-26a-Smad1 regulatory axis can be implicated in regu-
lating the proliferation/apoptosis balance of vascular smooth
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muscle cells during atherosclerosis. Although these studies
have focused on CAD pathogenesis, key genes and miRNAs
associated with CAD remain unclear.

Microarray studies of human diseases, including CAD, are
limited owing to a lack of human disease tissues or appro-
priate disease models. Peripheral blood plays a crucial role
in mediating immune responses, metabolism, and intercellu-
lar communication, as well as affords convenient sample col-
lection; accordingly, it is an ideal tissue for biomarker detec-
tion [18, 19]. Moreover, gene expression in peripheral blood
could reflect CAD severity [20, 21]. Additionally, Taurino
et al. [22] revealed that analyzing gene expression in whole
blood is useful for detecting genes that determine cardiovas-
cular phenotypes, including those implicated in the patho-
genesis and progression of CAD. In the present study, we uti-
lized the microarray dataset GSE98583, contributed by Ku-
mar and Kashyap et al. [23]. In the study by Kumar and
Kashyap et al. [23], differentially expressed genes (DEGs)
of different disease severities were identified, followed by
functional enrichment and other analyses to explore candi-
date genes and pathways contributing to CAD severity. In
the present study, we primarily identified DEGs in CAD and
control samples, followed by functional enrichment and pre-
diction of transcription factors (TFs) and microRNAs (miR-
NAs) regulating these DEGs, to elucidate potential genes and
their corresponding regulators involved in CAD pathogen-
esis. This study will provide deeper insights into the patho-
genesis of CAD and provide a theoretical basis for developing
targeted therapy.

2. Methods
2.1 Ethical approval

In the present study, all datasets were downloaded from
public databases, which allowed researchers to download and
analyze public datasets for scientific purposes. Therefore,
ethical approval was not required.

2.2 Data source

We downloaded and used the microarray dataset
GSE98583 from the Gene Expression Omnibus (GEO,
http://www.ncbi.nlm.nih.gov/geo/) database, which is
based on the GPL571 [HG-U133A_2] Affymetrix Human
Genome U133A 2.0 Array. The GSE98583 dataset included
12 whole blood samples from non-diabetic male patients
with CAD based on their coronary angiogram results. Of the
12 patients, 6 presented single-vessel disease (stenosis>95%
in the left anterior descending artery, Gensini score 20–30),
and 6 had triple vessel disease (stenosis >95% in all three
major epicardial vessels, Gensini score 50–60). Additionally,
six whole blood samples from control subjects with atypical
angina and normal coronary angiograms were included.

2.3 Data preprocessing and differential expression analysis

The original CEL files were downloaded and prepro-
cessed using the R package Oligo (version 1.34.0, http://bioc
onductor.org/help/search/index.html?q=oligo/, Johns Hop-

kins University, Baltimore, MD, USA.) [24]. Data pre-
processing involved data format conversion, filling miss-
ing data, background correction, and data standardization.
Next, the probes were annotated and combined with plat-
form annotation files. Probes that could not be matched
to gene symbols were filtered out. For multiple probes
mapped to one gene symbol, the average value of the
probes was obtained as the expression value of the corre-
sponding gene symbol. Using the R package Limma (ver-
sion 3.10.3, http://www.bioconductor.org/packages/releas
e/bioc/html/limma.html, Walter and Eliza Hall Institute of
Medical Research, Melbourne, Australia) [25], we analyzed
DEGs between CAD and control samples. Genes with a P-
value of<0.05 were defined as DEGs.

2.4 Enrichment analysis
Based on the Database for Annotation, Visualization and

Integrated Discovery (DAVID, version 6.8, https://david.
ncifcrf.gov/, Laboratory ofHuman Retrovirology and Im-
munoinformatic, USA) tool [26], GeneOntology (GO) terms
[27] andKyoto Encyclopedia ofGenes andGenomes (KEGG)
pathway [28] enrichment analyses were performed for iden-
tified DEGs. The number of genes involved in each termwas
set at≥2, and a P-value< 0.05 was established as the signif-
icant threshold.

2.5 PPI network analysis
Combined with the STRING (version 10.0, http://string

-db.org/) database [29], PPI pairs were used to predict pro-
teins encoded by identified DEGs. The PPI score was set at
0.7. Next, a PPI network was constructed for DEGs using the
Cytoscape software (version 3.2.0, http://www.cytoscape.or
g, National Institute of General Medical Sciences, USA) [30].
Using the CytoNCA plug-in (version 2.1.6, http://apps.cyt
oscape.org/apps/cytonca Central South University, Chang-
sha, China) [31] in Cytoscape with parameter set as: without
weight, we performed network topology analysis to identify
the hub network nodes. Furthermore, significant modules
with a score>5were selected from the PPI network using the
MCODE plug-in (version 1.4.2, http://apps.cytoscape.org/a
pps/MCODE, University of Toronto, Canada) [32] in Cy-
toscape.

2.6 TF-miRNA target regulatory network analysis
Using the iRegulon plug-in (version 1.3, http://apps.cytos

cape.org/apps/iRegulon, Laboratory of Computational Biol-
ogy, KULeuven, Belgium) [33] inCytoscape, we performed a
TF-target prediction for the PPI network nodes. The param-
eters “minimum identity between orthologous genes” and
“maximum false discovery rate on motif similarity” were set
at 0.05 and 0.001, respectively. Results with a normalized en-
richment score (NES) of >4 were selected. Using the We-
bGestalt GAST (version: updata 2013, http://www.webgesta
lt.org/option.php, Baylor College ofMedicine, Houston, TX,
USA) tool [34], we predicted target miRNAs for PPI network
nodes by employing the overrepresentation enrichment anal-
ysis (ORA) method. The least number of enriched genes was
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Fig. 1. The box diagrampresents the distribution of expression values after data normalization. Red and white represent disease samples and control
samples, respectively.

set at two, and the top five results are presented. Finally, the
results of TF-target prediction andmiRNA-target prediction
were merged to build the TF-miRNA target regulatory net-
work using Cytoscape [30].

2.7 Validation using the Comparative Toxicogenomics Database

The etiology of several chronic diseases is based on in-
teractions between environmental chemicals and genes reg-
ulating physiological processes [35]. The Comparative Tox-
icogenomics Database (CTD, http://ctdbase.org/, NC State
University, Raleigh, NC, USA) is a publicly available database
for identifying chemical-gene-disease networks [36]. We
conducted a CTD search to identify genes and pathways as-
sociated with CAD. Next, we performed a Venn analysis to
identify overlapping genes and pathways between the CTD
database and the microarray dataset GSE98583.

3. Results
3.1 Differential expression analysis

The distribution of expression values after data normal-
ization is shown in Fig. 1. The medians were at the same
level, indicating that data preprocessing results were good.
According to the screening threshold, a total of 456 DEGs
(175 upregulated and 281 downregulated genes) were identi-
fied. The clustering heatmap indicated that DEGs could help
distinguish samples with different disease statuses (Fig. 2).

3.2 Enrichment analysis

Multiple GO functional terms were enriched for upreg-
ulated and downregulated genes. For upregulated genes,
positive regulation of proteins targeting mitochondria, the
glutathione derivative biosynthetic process, and mitochon-
drial translational termination were the primary functional
terms that were enriched (Fig. 3). In contrast, cellular re-
sponse to mechanical stimulus, centrosome localization, and
thymus development were potential functions of downreg-
ulated genes (top 20 listed, Fig. 4). Meanwhile, the upreg-
ulated genes were implicated in 3 pathways (such as the in-
testinal immune network for immunoglobulin A (IgA) pro-
duction, P = 2.10× 10−2), whereas the downregulated genes
were implicated in 15 pathways (such as endocytosis, P = 4.61
× 10−4; mitogen-activated protein kinase [MAPK] signal-
ing pathway, P = 1.22 × 10−2) (Table 1). In particular, the
downregulated transforming growth factor-beta receptor 2
(TGFBR2) and epidermal growth factor (EGF) were enriched
in the MAPK signaling pathway.

3.3 PPI network analysis

The PPI network is shown in Fig. 5, presenting 212 nodes
and 332 edges. In the PPI network, histone cluster 1, H2bj
(HIST1H2BJ, down, degree = 18), histone cluster 1, H2ac
(HIST1H2AC, down, degree = 17), EGF (down, degree = 16),
and E1A binding protein p300 (EP300, down, degree = 15)
were nodes with degrees higher than 10 and were thus con-
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Fig. 2. The clustering heatmap of the differentially expressed genes (DEGs). Y-axis represents all DEGs, and X-axis represents all samples; the green
and purple blocks in upper represent control group and CAD group, respectively.

sidered hub nodes. Moreover, four network modules were
screened, including module A (score = 7; with seven nodes
and 21 edges), module B (score = 6; with six nodes and 15
edges), module C (score = 6; with 6 nodes and 15 edges), and
module D (score = 5.6; with 6 nodes and 14 edges) (Fig. 6).
The results of theGO functional enrichment analysis ofmod-

ule nodes are listed in Table 2. The nodes in modules A, B, C,
and Dwere mainly enriched in the inflammatory response (P
= 3.70× 10−6), protein ubiquitination involved in ubiquitin-
dependent protein catabolic process (P = 2.95× 10−6), pro-
tein transport (P = 5.27× 10−3), and mitochondrial transla-
tional elongation (P = 3.05× 10−9), respectively.
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Fig. 3. The Gene Ontology (GO) terms enriched for upregulated genes. The size of a circle indicates the number of genes involved in the respective term.
The color change from green to red suggests that the –log10(P-value) changes from small to large.

Table 1. Pathways enriched separately for the up- and down-regulated genes.
Category Pathway ID Pathway name Count P value Genes

UP hsa04672 Intestinal immune network for IgA production 4 2.10× 10−2 CD86, IL15, HLA-DMB, HLA-DMA

hsa05150 Staphylococcus aureus infection 4 3.02× 10−2 C3AR1, C3, HLA-DMB, HLA-DMA

hsa00561 Glycerolipid metabolism 4 3.62× 10−2 AKR1A1, DGKH, AGK, ALDH3A2

DOWN hsa04144 Endocytosis 14 4.61× 10−4 CHMP2A, RAB5B, TGFBR2, CXCR1, CXCR2, VPS37C, EPS15L1,

KIT, IGF2R, HSPA6, GIT2, RAB11A, EGF, IQSEC1

hsa05220 Chronic myeloid leukemia 7 1.42× 10−3 E2F3, GAB2, SOS1, STAT5B, TGFBR2, SOS2, RAF1

hsa04068 FoxO signaling pathway 9 2.09× 10−3 EP300, S1PR4, SOS1, PRKAB2, TGFBR2, SOS2, RAF1, EGF, BCL2L11

hsa05219 Bladder cancer 5 5.18× 10−3 RPS6KA5, E2F3, RAF1, DAPK2, EGF

hsa04010 MAPK signaling pathway 11 1.22× 10−2 RPS6KA5, SOS1, TGFBR2, SOS2, MAP2K4, HSPA6, RAF1, CACNB4,

RAPGEF2, EGF, DUSP6

hsa05223 Non-small cell lung cancer 5 1.54× 10−2 E2F3, SOS1, SOS2, RAF1, EGF

hsa05221 Acute myeloid leukemia 5 1.54× 10−2 SOS1, STAT5B, SOS2, RAF1, KIT

hsa04012 ErbB signaling pathway 6 1.68× 10−2 SOS1, STAT5B, SOS2, MAP2K4, RAF1, EGF

hsa05215 Prostate cancer 6 1.75× 10−2 E2F3, EP300, SOS1, SOS2, RAF1, EGF

hsa05212 Pancreatic cancer 5 2.53× 10−2 E2F3, RALBP1, TGFBR2, RAF1, EGF

hsa05214 Glioma 5 2.53× 10−2 E2F3, SOS1, SOS2, RAF1, EGF

hsa04664 Fc epsilon RI signaling pathway 5 2.93× 10−2 GAB2, SOS1, SOS2, MAP2K4, RAF1

hsa05200 Pathways in cancer 13 3.74× 10−2 E2F3, RALBP1, TGFBR2, STAT5B, RAF1, FADD, KIT, DAPK2,

EP300, SOS1, SOS2, TPR, EGF

hsa05161 Hepatitis B 7 3.87× 10−2 E2F3, EP300, DDX3X, STAT5B, MAP2K4, RAF1, FADD

hsa00531 Glycosaminoglycan degradation 3 4.16× 10−2 HYAL2, IDS, GALNS
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Fig. 4. The Gene Ontology (GO) terms enriched for downregulated genes. The size of a circle indicates the number of genes involved in the respective
term. The color change from green to red suggests that the –log10(P-value) changes from small to large.

3.4 TF-miRNA target regulatory network analysis

Following the prediction of 2 TFs (E2F1 and FOXK1) and 5
miRNAs (miR-122A, miR-516-5P, miR-507, miR-342, and miR-
520F), 172 regulatory pairs were obtained (involving 29 up-
regulated and 83 downregulated genes). Subsequently, we
built a TF-miRNA target regulatory network (Fig. 7). In the
regulatory network, miR-122A can target both low-density
lipoprotein (LDL) receptor-related protein 10 (LRP10) and
IQ motif-containing GTPase-activating protein 1 (IQGAP1).

3.5 Validation with CTD database

In the CTD database, a total of 25,384 genes and 149 path-
wayswere found to be associatedwithCAD.TheVenn analy-
sis identified 429 overlapping genes betweenCAD-associated
genes and 456 DEGs, including TGFBR2, EGF, LRP10, and IQ-
GAP1 (Fig. 8A and Supplemental Table 1). Similarly, we
screened 10 overlapping pathways between CAD-associated
pathways and 18 significant KEGG pathways, including the
MAPK signaling pathway (Fig. 8B andTable 3). These results
suggest that identified genes and pathways are important in
CAD and could be implicated in CAD pathogenesis.

4. Discussion
In the present study, we identified 456 DEGs (includ-

ing 175 upregulated and 281 downregulated genes) between
CAD and control samples. In the PPI network, EGF (down,
degree = 16) was a hub node. Additionally, we screened four
significant network modules (modules A, B, C, and D) and
observed that each node was individually implicated in the
inflammatory response, protein ubiquitination involved in
ubiquitin-dependent protein catabolic process, protein trans-
port, and mitochondrial translational elongation. Further-
more, we built a TF-miRNA target regulatory network.

In patients with CAD, TGFBR2 polymorphism is corre-
lated with the risk of sudden cardiac arrest induced by ven-
tricular arrhythmias, suggesting that genetic variations in
the TGF signaling pathway could influence susceptibility to
sudden cardiac arrest [37]. TGFBR1 is reportedly overex-
pressed in patients with left ventricular dysfunction and is
thus considered a potential prognostic factor after acute my-
ocardial infarction [38]. The mRNA expression levels of
EGFR in atheromatous lesions could be a promising prognos-
tic biomarker for predicting the stimulatory growth factor-
induced increase in smooth muscle cell proliferation [39].
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Fig. 5. The protein-protein interaction (PPI) network. Yellow circles and green prisms indicate upregulated and downregulated genes, respectively. The
nodes with higher degrees are large.

Circulating miR-23a could serve as a diagnostic biomarker to
indicate the presence and severity of coronary lesions in pa-
tients with CAD. Moreover, miR-23a regulates vasculogene-
sis in CADby inhibiting EGFR expression [40]. In the present
study, bothTGFBR2 andEGFwere involved in theMAPK sig-
naling pathway, thus indicating their potential roles in CAD
development.

Plasma levels of miR-122 and miR-370, which are upreg-
ulated in patients with hyperlipidemia, are positively asso-
ciated with CAD severity; therefore, they may be corre-
lated with the development and progression of CAD in pa-

tients with hyperlipidemia [41]. The expression of circulat-
ing miR-122-5p is reportedly elevated in patients with acute
myocardial infarction, suggesting its application as a promis-
ing biomarker [42, 43]. The plasma levels of miR-122, miR-
140-3p, miR-720, miR-2861, and miR-3149 are higher in acute
coronary syndrome samples than in control samples; thus,
they can be employed as potential markers in patients with
acute coronary syndrome [44]. These results indicate that
miR-122 plays a critical role in CAD pathogenesis.

LRP is known to possess biological functions in multiple
vascular biology-associated processes. Moreover, LRP poly-
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Fig. 6. Modules A (A), B (B), C (C), and D (D) identified from the protein-protein interaction (PPI) network. Yellow circles and green prisms indicate
upregulated and downregulated genes, respectively. The nodes with higher degrees are large.

morphisms are risk factors, especially in Caucasianswith pre-
mature CAD [45]. In cardiac fibroblasts, LRP1 contributes to
the expression of matrix metallopeptidase 9 (MMP9), which
has been associated with ventricular remodeling following
myocardial infarction [46]. IQGAP1 reportedly affects neo-
vascularization after ischemia by mediating endothelial cell-
regulated angiogenesis, macrophage infiltration, and reac-
tive oxygen species production; therefore, IQGAP1 is a valu-
able therapeutic target for ischemic cardiovascular diseases
[47, 48]. As a scaffold for the extracellular signal-regulated
kinase (ERK)1/2 cascade, IQGAP1 mediates the integration
of hypertrophy and survival signals in the heart, facilitating
left ventricular remodeling following pressure overload [49].
Therefore, both LRP10 and IQGAP1 were targeted by miR-
122A in the regulatory network, implying a probable correla-
tion between miR-122A and CAD via the regulation of LRP10
and IQGAP1.

5. Conclusions

In total, 456 DEGs were screened in CAD samples.
Herein, we revealed the probable involvement of TGFBR2,
EGF, LRP10, IQGAP1, andmiR-122 in CAD pathogenesis. The
functions of these genes and miRNAs in CAD pathogenesis
need to be comprehensively validated in future experimental
research.
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Table 2. The GO functional terms enriched for the nodes in modules A, B, C, and D.
Module Biological process Count P value Genes

Module A GO:0006954 inflammatory response 5 3.70E× 10−6 C3AR1, C5AR1, C3, CXCR1, CXCR2

GO:0045766 positive regulation of angiogenesis 4 6.17× 10−6 C3AR1, C5AR1, C3, CXCR2

GO:0006935 chemotaxis 4 7.37× 10−6 C3AR1, C5AR1, CXCR1, CXCR2

GO:0007204 positive regulation of cytosolic calcium ion concentration 4 9.77× 10−6 C3AR1, C5AR1, S1PR4, CXCR2

GO:0090023 positive regulation of neutrophil chemotaxis 3 2.45× 10−6 C3AR1, C5AR1, CXCR2

GO:0010575 positive regulation of vascular endothelial growth factor produc-
tion

3 3.72× 10−5 C3AR1, C5AR1, C3

GO:0030449 regulation of complement activation 3 4.61× 10−5 C3AR1, C5AR1, C3

GO:0007200 phospholipase C-activating G-protein coupled receptor signaling
pathway

3 2.26× 10−4 C3AR1, C5AR1, CXCR2

GO:0038112 interleukin-8-mediated signaling pathway 2 7.15× 10−4 CXCR1, CXCR2

GO:0007186 G-protein coupled receptor signaling pathway 4 2.71× 10−3 C3AR1, C3, S1PR4, CXCR1

GO:0010759 positive regulation of macrophage chemotaxis 2 3.92× 10−3 C3AR1, C5AR1

GO:0002407 dendritic cell chemotaxis 2 6.06× 10−3 CXCR1, CXCR2

GO:0006955 immune response 3 8.80× 10−3 C5AR1, C3, S1PR4

GO:0007202 activation of phospholipase C activity 2 9.26× 10−3 C5AR1, S1PR4

GO:0031623 receptor internalization 2 1.53× 10−2 CXCR1, CXCR2

GO:0006968 cellular defense response 2 2.20× 10−2 C5AR1, CXCR2

GO:0060326 cell chemotaxis 2 2.30× 10−2 C3AR1, C5AR1

GO:0030593 neutrophil chemotaxis 2 2.34× 10−2 C5AR1, CXCR2

GO:0070098 chemokine-mediated signaling pathway 2 2.51× 10−2 CXCR1, CXCR2

GO:0050900 leukocyte migration 2 4.28× 10−2 C3AR1, C5AR1

Module B GO:0042787 protein ubiquitination involved in ubiquitin-dependent protein
catabolic process

4 2.95× 10−6 KLHL21, SIAH1, RNF19B, RNF111

GO:0000209 protein polyubiquitination 4 5.14× 10−6 SIAH1, RNF19B, UNKL, RNF111

GO:0043161 proteasome-mediated ubiquitin-dependent protein catabolic
process

2 4.75× 10−2 SIAH1, RNF111

Module C GO:0015031 protein transport 3 5.27× 10−3 RAB5B, VAMP8, NECAP1

GO:0007173 epidermal growth factor receptor signaling pathway 2 1.66× 10−2 REPS2, EGF

Module D GO:0070125 mitochondrial translational elongation 5 3.05× 10−9 MRPL24, MRPL12, MRPS33, MRPL15, MRPS7

GO:0070126 mitochondrial translational termination 5 3.19× 10−9 MRPL24, MRPL12, MRPS33, MRPL15, MRPS7

GO:0006412 translation 4 3.31× 10−5 MRPL24, MRPS33, MRPL15, MRPS7

Table 3. The 10 overlapped pathways in VENN analysis for pathways.
Disease
name

Disease
ID

Category Term Count P value Genes

CAD MESH:D003324 KEGG_PATHWAY hsa04672:Intestinal immune
network for IgA production

4 2.10× 10−2 CD86, IL15, HLA-DMB, HLA-DMA

CAD MESH:D003324 KEGG_PATHWAY hsa00561:Glycerolipid
metabolism

4 3.62× 10−2 AKR1A1, DGKH, AGK, ALDH3A2

CAD MESH:D003325 KEGG_PATHWAY hsa04144:Endocytosis 14 4.61× 10−4 CHMP2A, RAB5B, TGFBR2, CXCR1, CXCR2, VPS37C,

EPS15L1, KIT, IGF2R, HSPA6, GIT2, RAB11A, EGF, IQSEC1

CAD MESH:D003326 KEGG_PATHWAY hsa04068:FoxO signaling
pathway

9 2.09× 10−3 EP300, S1PR4, SOS1, PRKAB2, TGFBR2, SOS2, RAF1, EGF,

BCL2L11

CAD MESH:D003327 KEGG_PATHWAY hsa05219:Bladder cancer 5 5.18× 10−3 RPS6KA5, E2F3, RAF1, DAPK2, EGF

CAD MESH:D003328 KEGG_PATHWAY hsa04010:MAPK signaling
pathway

11 1.22× 10−2 RPS6KA5, SOS1, TGFBR2, SOS2, MAP2K4, HSPA6, RAF1,

CACNB4, RAPGEF2, EGF, DUSP6

CAD MESH:D003329 KEGG_PATHWAY hsa05215:Prostate cancer 6 1.75× 10−2 E2F3, EP300, SOS1, SOS2, RAF1, EGF

CAD MESH:D003330 KEGG_PATHWAY hsa05212:Pancreatic cancer 5 2.53× 10−2 E2F3, RALBP1, TGFBR2, RAF1, EGF

CAD MESH:D003331 KEGG_PATHWAY hsa05200:Pathways in cancer 13 3.74× 10−2 E2F3, RALBP1, TGFBR2, STAT5B, RAF1, FADD, KIT,

DAPK2, EP300, SOS1, SOS2, TPR, EGF

CAD MESH:D003332 KEGG_PATHWAY hsa05161:Hepatitis B 7 3.87× 10−2 E2F3, EP300, DDX3X, STAT5B, MAP2K4, RAF1, FADD

CAD, coronary artery disease.
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Fig. 7. The transcription factor (TF)-microRNA (miRNA) target regulatory network. Yellow circles and green prisms indicate upregulated and down-
regulated genes, respectively. Blue hexagons and red triangles indicate TFs and miRNAs, respectively. Arrows indicate regulatory directions.

Fig. 8. The results of Venn analysis using the CTD database. (A) Venn diagram showing 429 overlapping genes between CAD-associated genes and
differentially expressed genes. (B) Venn diagram showing 10 overlapping pathways between CAD-associated pathways and 18 significant KEGG pathways.
CTD, Comparative Toxicogenomics Database; CAD, Coronary artery disease; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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