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Heart failure with preserved ejection fraction (HFpEF) is increasingly
prevalentand represents more than half of all heart failure cases. Itis
defined by the presence of heart failure signs and symptoms, identifi-
cation of cardiac structural abnormalities leading to high left ventric-
ular filling pressures, and an EF > 50%. Common imaging findings
in HFpEF include left ventricular hypertrophy, diastolic dysfunction,
left atrial enlargement, and elevated pulmonary artery pressure (>
35mm Hg). Echocardiographyisthe primaryimaging modality fordi-
agnosing HFpEF. It can be complemented by cardiac magnetic reso-
nance (CMR) when further characterization is needed. Advances like
real-time 3-dimensional echocardiography and speckle-tracking de-
rived strain, as well as tissue characterization by CMR, have furthered
our understanding of the mechanisms and aided in making the di-
agnosis of a diverse group of conditions that can present as HFpEF.
This review aims to touch upon the imaging methods of characteriz-
ing HFpEF and discuss their role in specific disease entities.

Keywords
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1. Definition

The definition of heart failure with preserved ejection
fraction (HFpEF) has evolved over the years. The American
College of Cardiology defines HFpEF simply as heart failure
symptoms in a patient with an EF > 50% where other non-
cardiac causes of dyspnea and alternate established cardiopul-
monary diseases had been excluded. However, the most re-
cent definition is inclusive of (but not restricted to) cardiac
structural abnormalities resulting from high filling pressures,
diastolic abnormalities, elevated biomarkers, and elevated left
heart filling pressures by invasive hemodynamic assessment
[1].

Diastolic dysfunction was initially thought to be a diagnos-
tic criterion for HFpEF [2]. However further studies demon-
strated that diastolic dysfunction was not universally present
in all HFpEF patients and other factors like systemic and
pulmonary hypertension, chronotropic reserve, right heart
function, and left atrial dysfunction can contribute to HFpEF
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presentation [3]. Arterial hypertension is the leading risk fac-
tor for the development of HFpEF [4].

2. Diagnosis

HF symptoms can be non-specific so clinicians should
maintain a high index of suspicion [5]. The first step is to
exclude non-cardiac dyspnea and alternate cardiac causes like
valvular heart disease, isolated right HF, and non-group 2
pulmonary hypertension [1].

The threshold to define preserved EF according to the
American College of Cardiology and the European Society of
Cardiology is > 50% [6, 7]. Once preserved EF has been doc-
umented the clinician should focus on determining if there
is evidence of an altered cardiac structure and function to
provide objective evidence of HF. Common imaging findings
in HFpEF include LV hypertrophy (LVH), LV diastolic dys-
function, left atrial enlargement, increased pulmonary artery
pressure (> 35 mm Hg), and right ventricular systolic dys-
function [5].

The LV end-diastolic dimension in HFpEF varies between
studies with some reporting it as smaller than control patients
while others reported more normal ranges [8, 9]. HFpEF pa-
tients have increased LV stiffness, impaired LV relaxation,
and higher LV end-diastolic pressures. LVH is commonly
seen in these patients, although it can also be seen in patients
with chronic hypertension without HF [8].

Diastolic dysfunction is not a prerequisite for HFpEF and
is present in approximately 70% of HFpEF patients [8-17].
A sub-analysis of the [-PRESERVE trial showed that 31% of
HFpEF patients had normal diastology, 29% had mild, 36%
had moderate, and 4% had severe diastolic dysfunction. Sim-
ilarly, diastolic dysfunction determined by echocardiography
can exist without clinical HF and may represent either pre-
clinical HFpEF or simply isolated diastolic dysfunction [18].

The presence of atrial fibrillation can be part of the diag-
nostic workup for clinicians since it has been found to be pro-
gressively more common in HFpEF compared with reduced
ejection fraction patients [19].
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3. Echocardiographic assessment of
diastology

Elevated LV filling pressure is the main consequence of
diastolic dysfunction [20]. LV filling pressures include the
mean pulmonary capillary wedge pressure (PCWP) or mean
left atrial pressure (in the absence of atrioventricular obstruc-
tion), LV end-diastolic pressure, and pre-A LV diastolic pres-
sure [21]. Increased LV filling pressure is defined as a PCW/P
> 12 mm Hg or an LV end-diastolic pressure > 16 mm Hg
[22]. These filling pressures are determined mainly by the
compliance of the LV wall and may be altered by incomplete
myocardial relaxation and variations in diastolic myocardial
tone [21].

Traditionally, cardiac catheterization has been the gold
standard to measure LV filling pressures but being invasive, it
can be impractical, especially for repeat measurements [23].
Currently recommended non-invasive methods to quantify
filling abnormalities include the Doppler transmitral flow
patterns, pulsed tissue Doppler of the mitral annulus, and the
calculated left atrial volume index [24-26].

Different mitral inflow patterns can be determined by
calculating the E/A ratio: normal, impaired LV relaxation,
pseudonormal, and restrictive LV filling [26].

However, this method using inflow velocities alone to as-
sess LV filling pressures has multiple limitations. It is not
ideal to recognize pseudonormal filling patterns and restric-
tive LV filling in patients with normal LVEF. Electrophys-
iological abnormalities such as first-degree atrioventricular
block and sinus tachycardia can cause partial or complete fu-
sion of the mitral E and A waves, making the E/A ratio un-
interpretable. In this context, the mitral DT cannot be mea-
sured either. Rhythms like atrial flutter, 3: 1 or 4 : 1 atri-
oventricular block make the E/A and DT unmeasurable [26].
Further, mitral inflow velocities are highly sensitive to and
may vary with changing preload conditions [27].

PW Doppler tissue imaging (DTI) uses Doppler princi-
ples to quantify high-amplitude and low velocity signals from
myocardial motion and quantify mitral annulus displacement
velocity during the cardiac cycle [27, 28]. DTI mitral mea-
surements include early () and late (4) diastolic velocities
from the septal and lateral sides of the mitral annulus. Unlike
early mitral inflow velocity (E), early diastolic tissue veloc-
ity (é) can be interpreted as a preload-independent index of
LV relaxation [29, 30]. Reduced é velocities are indicative of
diastolic dysfunction (Fig. 1). On account of intrinsic differ-
ences in the myocardial fiber orientation, lateral é velocities
are slightly higher than septal é velocities [27]. In adults >
30 years old, lateral é velocities > 12 cm/second reflect a nor-
mal diastolic function [31]. Late diastolic velocities (4) have a
positive correlation with LA systolic function and a negative
correlation with LV end-diastolic pressure (LVEDP) [30].

Calculations performed with these measurements can
provide additional information regarding diastolic function
[26]. The mitral E velocity measured through PW Doppler
can be corrected for the influence of relaxation by divid-
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ing it by é (i.e., E/é ratio), which correlates well with the
mean PCWP and can be used to estimate LV filling pressures
[28, 32]. E/lateral é > 10 or E/septal é > 15 correlates with
an increased LV end-diastolic pressure, whereas, a E/é < 8 is
considered normal [27]. The average of lateral and septal é
should be used to estimate the E/¢é ratio if there are regional
wall motion abnormalities [33].

This method has limitations as well. DTI measures
the absolute tissue velocity without the capacity to differ-
entiate between active and passive motion (fiber shorten-
ing/lengthening vs translation/tethering) [27]. Moreover,
there is significant variability depending on the location of
the sample, angle-dependence, load-dependence, variability
caused by the cardiac cycle, and low reproducibility [26, 34].
The E/é ratios should not be used to determine diastolic
dysfunction in subjects with significant annular calcification,
surgical rings, mitral stenosis, prosthetic mitral valves, mod-
erate to severe mitral regurgitation, or constrictive pericardi-
tis [26].

A subset of patients with HFpEF can have normal resting
hemodynamics with an elevation of filling pressures only af-
ter exercise. The evaluation of hemodynamics during exer-
cise can reveal increased LV filling pressures a aid in mak-
ing the diagnosis [35, 36]. This phenomenon is possibly
explained by the fact that HFpEF patients are highly sensi-
tive to volume shifts [37]. The combination of cardiopul-
monary exercise testing with echocardiography and invasive
PCWP measurement allows clinicians to identify hemody-
namic changes during exertion. It can provide robust in-
formation in both HFrEF and HFpEF patients [38]. Inva-
sive hemodynamic measurements during exercise can detect
increased peripheral oxygen consumption in patients with
heart failure and signs of systo-diastolic dysfunction and pul-
monary congestion [39-44].

Exercise capacity can be significantly decreased in patients
with HFpEF. An impaired left atrial compliance seems to be
closely associated with a limited exercise capacity in these pa-
tients [45]. Left atrial strain, an indicator of atrial compli-
ance, is impaired in patients with HFpEF. In the future, left
atrial strain could be part of the diagnostic evaluation of di-
astolic function and aid in the diagnosis of HFpEF [45-49].

4. Left ventricular hypertrophy

Echocardiography is sensitive in diagnosing LVH (Fig. 2)
and can aid in stratifying patients at a higher risk for car-
diovascular and renal complications [50, 51]. LV mass can
be measured more accurately by real-time 3D echocardiogra-
phy based reconstruction techniques and compares favorably
with CMR [52]. Foreshortening of the LV apex and poor
acoustic windows limiting epicardial and endocardial visual-
ization remains a challenge. CMR evaluation of LV mass is
discussed in detail later.
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Fig. 1. Tissue Doppler velocity profile from the septum in a patient with HFpEF: Reduced septal early (é) velocity indicates diastolic dysfunction.

In normal hearts with preserved diastolic function, the é velocity should be higher than 4.

5. Speckle tracking echocardiography

Speckle tracking echocardiography is a major advance-
ment that allows the assessment of global and regional my-
ocardial strain by tracking the displacement of acoustic mark-
ers placed on the myocardium through the cardiac cycle [53].
Global longitudinal strain (GLS) refers to the apex-base de-
formation measured from apical views, whereas global cir-
cumferential (GCS) and radial strains are measured from the
parasternal short-axis views. Myocardial strain is more sen-
sitive at picking up subclinical myocardial disease than 2D as-
sessment alone [54] and can help distinguish underlying eti-
ologies of HFpEF (Fig. 3). This is discussed in detail in the
following sections.

6. Cardiac magnetic resonance imaging in
HFpEF

CMR is not widely used as the first line imaging modality
for diastolic assessment due to the ready availability, portabil-
ity, and cost-effectiveness of echo. However, due to its vol-
umetric coverage, it is the gold standard for measuring LV
mass, LA and LV volumes, and LVEF (Fig. 4) [55]. It is free
of geometric assumptions made by 2D echo and is not limited
by acoustic windows.

Phase-contrast CMR can provide measurements of mitral
inflow and tissue velocities that correlate well with echo as
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well as invasive PCWP [56-58]. but are limited by lower
temporal resolution (30-40 ms compared to < 10 ms with
echo) and image degradation with arrhythmias [59]. More-
over, such replication of echo techniques does not play to the
strengths of CMR.

CMR derived tagging sequences can be used to evaluate
LV strain. Tagged grids generated over the myocardium us-
ing radiofrequency pulses and tracked over the cardiac cy-
cle can provide measures of myocardial deformation [60].
Speckle tracking echo was initially validated against this tech-
nique. Advances in CMR post-processing (Fig. 5) have en-
abled feature tracking on cine CMR images remitting the
need for tagged sequences [60]. GLS and GCS with CMR
feature tracking correlate closely with speckle tracking echo
[61].

However, the most important contribution of CMR is
non-invasive tissue characterization. Late gadolinium en-
hancement (LGE) imaging is the oldest and most well estab-
lished method of tissue characterization. Intravenously ad-
ministered gadolinium chelate accumulates and persists in ar-
eas of expanded extracellular matrix-like fibrous tissue. T1-
weighted imaging performed 10-15 minutes after gadolin-
ium administration can detect areas of replacement fibrosis
which appear hyper-enhanced or bright against a background
of normal dark myocardium [62].
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Fig. 2. M-mode echocardiography at mid papillary level on the short axis view showing concentric LVH. There is increased thickness of the

interventricular septum (IVS) and the posterior wall (PW).

The development of native T1 mapping and extracellu-
lar volume (ECV) measurements have further extended our
ability to detect diffuse fibrosis [63, 64]. T1 or longitudi-
nal relaxation time constant is a magnetic property of a tis-
sue detectable by CMR. The difference in native myocardial
T1 and post-gadolinium myocardial T1 can give a measure
of the ECV since gadolinium primarily deposits in the extra-
cellular space. Interstitial fibrosis can be detected by CMR as
increased native T1 and ECV [63, 65].

In terms of cost-benefit, a 2010 analysis of Medicare data
(361 patient sample) showed that the overall benefits of per-
forming cardiac MRI scans outweigh its cost. This study
showed that CMR imaging was capable of resulting in a new
diagnosis in 27% of patients, avoidance of invasive proce-
dures in 11% of patients, and prevented additional diagnostic
testing in 7% of patients. A comparison of health care savings
using CMR as more traditional standards of care showed a
potential savings of costs overall [66].

A detailed list of advantages and disadvantages of both
echocardiography and CMR is shown in Table 1.
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7. Imaging for specific cardiomyopathies
Causing HFpEF
7.1 Hypertensive heart disease

Hypertensive heart disease is perhaps the most common
cause of diastolic dysfunction. Chronically elevated after-
load in hypertension causes LV walls to thicken and cavity
size to shrink. This change in LV geometry is an adaptive
response to reduce wall stress (LaPlace’s Law: wall stress =
(pressure x radius)/(2 x wall thickness)) and results in con-
centric LVH/remodeling [67]. This is accompanied by an in-
crease in the extracellular matrix as well. A thick ventricle
with a small cavity impairs diastolic relaxation and over time
adequate filling can only occur at elevated filling pressures.

Echocardiography is the primary imaging modality for
evaluating hypertensive heart disease and protocols follow
the general outline described above including morphological
(LV wall thickness, LA size) and physiological assessments
(mitral inflow, DTI, pulmonary vein flow, tricuspid regur-
gitation velocity, etc.) [68]. Accurate measurements of LV
mass and LVEF can be obtained from 3D echo and CMR as
discussed.
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Global longitudinal strain (GLS) is reduced in hyperten-
sive heart disease (Fig. 3). A study comparing hypertensive
patients with preserved EF to control subjects found reduced
GLS with hypertension even though the LVEF was compa-
rable [69]. GLS was further reduced in hypertensive patients
with clinical HFpEF [70]. In contrast, athletes with physi-
ological hypertrophy have a higher GLS despite increases in
wall thickness [71].

The mechanism of HFpEF has also been explored using
strain. A very interesting study comparing 120 hypertensive
patients with similar EF but higher relative wall thickness and
LV mass index to age and gender-matched volunteers found
that while global longitudinal strain was reduced in hyper-
tension, global circumferential strain and LV twist were in-
creased [72]. Thus, an increased circumferential strain may
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counterbalance reduced longitudinal strain to maintain EF
in hypertensive patients with diastolic dysfunction. Drop-in
longitudinal strain in hypertension also correlates with tissue
inhibitor of matrix metalloproteinase-1 [73], a serum marker
of fibrosis, suggesting that increased wall thickness is a func-
tion of cardiomyocyte hypertrophy and interstitial fibrosis.
Chronic hypertension leads to the deposition of fibrous
tissue, primarily type 1 fibrillar collagen, in the extracellular
compartment, thereby increasing myocardial stiffness, and
worsening diastolic dysfunction [74-76]. CMR can detect re-
placement fibrosis using LGE imaging. One study found up
to 50% of hypertensive individuals to have some form of LGE
without a specific pattern [77]. Another study showed an in-
cremental increase in the prevalence of LGE with worsening
diastolic dysfunction (13% in normal, 48% in impaired relax-



Table 1. Advantages and disadvantages of echocardiography and CMR

Modality Advantages Disadvantages
Economic technology, readily available Quality of images dependent on anatomy (e.g., obesity, thoracic deforma-
tions, emphysema)
Echocardiography  Accuracy and prognostic value extensively demon-  Lower resolution compared to CMR
strated
Accurate ventricular function assessment Operator-dependent
No radiation exposure High inter-observer variability
Ideal for emergent bedside evaluation
Allows comprehensive evaluation of strain and strain
rate analysis. GLS measures are useful and reproducible
in HFpEF
High-quality image independent of patient anatomy Certain relative contraindications such as: claustrophobia, end-stage renal
disease, arrhythmias
CMR No radiation exposure Absolute contraindications: non-compatible metallic material

Accurate quantification of myocardial mass

Evaluation of myocardial inflammatory disease

Allows evaluation of scar with LGE. Further tissue

characterization with T1 and T2 mapping

Limited availability
Higher cost compared with echocardiography
Longer scan times

Strain analysis cumbersome

CMR, cardiac magnetic resonance imaging
GLS, Global Longitudinal Strain
LGE, Late Gadolinium Enhancement

ation, 78% in pseudonormal, and 87% in restrictive filling)
[78]. Despite a high prevalence, qualitative visualization of
localized replacement fibrosis by LGE may, in fact, miss the
majority of the diffuse interstitial fibrosis. Diastolic dysfunc-
tion in asymptomatic patients with hypertension predicts the
eventual development of symptomatic HFpEF and its compli-
cations [79].

ECV using T1 mapping technique can detect interstitial
fibrosis. Two studies showed ECV to be higher in hyperten-
sive patients with LVH when compared to those with hyper-
tension but without hypertrophy and with controls [80, 81].
A third study evaluating morphological variants in hyperten-
sion found interstitial fibrosis as detected by ECV to be the
highest in eccentric hypertrophy, followed by concentric hy-
pertrophy, concentric remodeling, and normal LV [82]. Ele-
vated ECV also correlates well with strain [81].

7.2 Aortic stenosis

In aortic stenosis, LV systolic pressure increases, as the
aortic valve orifice gets smaller. Chronic pressure overload
leads to increased myocardial hypertrophy and interstitial fi-
brosis resulting in impaired early filling and poor compliance.
Once fibrosis has become established further scarring accu-
mulates rapidly [83]. In late stages, the LV can maintain di-
astolic volume only at elevated filling pressures. This mech-
anism of diastolic dysfunction is very similar to hypertensive
heart disease. Reversal of diastolic dysfunction may take years
after aortic valve replacement.

Initial echo based diastolic assessment of aortic stenosis is
also similar to hypertensive heart disease. GLS goes down
with increasing severity of aortic stenosis and is an indepen-
dent predictor of mortality [84]. Among those with asymp-
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tomatic severe aortic stenosis, lower GLS portends poorer
exercise tolerance and worse prognosis [85].

Mid-wall fibrosis is the most common form of LGE seen
in aortic stenosis and predicts poor outcomes [86-89]. Na-
tive T1 and ECV are also elevated with aortic stenosis. Fur-
ther, both ECV and intracellular volume (ICV) appear to de-
crease after aortic valve replacement suggesting a regression
in interstitial fibrosis and cellular hypertrophy respectively
[90, 91].

7.3 Hypertrophic cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is the most com-
mon genetic cardiomyopathy characterized by myocardial
hypertrophy, myofibril disarray, fibrosis, and mitral valve ab-
normalities. Both American and European guidelines suggest
a wall thickness > 15 mm in the absence of other underlying
causes as the diagnostic threshold for HCM [92, 93]. Hyper-
trophy in HCM is often localized with asymmetric septal hy-
pertrophy being the most common phenotype. Other mor-
phological variants include concentric hypertrophy, mid-
ventricular hypertrophy, apical hypertrophy, and focal hy-
pertrophy [94]. Systolic anterior motion of the mitral leaflet
and mid-cavitary obliteration causing dynamic outflow ob-
struction are other known perturbations. Mitral regurgita-
tion and left atrial enlargement are also commonly seen.

The mechanism of diastolic dysfunction in HCM is com-
plex and includes 1. altered global and regional relaxation
from hypertrophy and myofibril disarray; 2. smaller LV cav-
ity size; 3. reduced compliance due to fibrosis; 4. pressure
overload from dynamic obstruction; and 5. ischemia from
demand-supply mismatch [95]. This complex interplay ex-
plains why parameters like E/A, DT, IVRT correlate poorly
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Fig. 5. Feature tracking is a novel method for the assessment of dias-

tolic function on CMR. It measures regional and global LV strain. Panel

A shows a diastolic frame and Panel B shows a systolic frame.

with filling pressures in HCM [57]. E/é has a modest corre-
lation with invasive left atrial pressure [96, 97] and predicts
adverse outcomes [98].

GLS reduction in HCM is typically greater than the hyper-
tensive heart [71] and is associated with poor prognosis and
increased hospitalization [99, 100]. Regional depression in
strain correlates well with fibrosis seen on CMR [101, 102].
Low GLS, higher mechanical dispersion (calculated as the
standard deviation of time from Q/R on ECG to peak lon-
gitudinal strain), and LGE on CMR are all associated with
higher rates of ventricular tachyarrhythmia [101].

CMR can help distinguish morphological variants of
HCM where acoustic windows are poor and also facilitate ac-
curate measurement of LV mass. But the strength of CMR
lies in the identification and quantification of fibrosis. Re-
placement fibrosis in HCM, as detected by LGE, has a patchy
and mid-wall distribution and primarily affects the right ven-
tricular insertion points and areas of maximal wall thickness
(Fig. 6). LGE in HCM is an independent predictor of all-cause
mortality and cardiac mortality [103, 104]. LGE involving
> 15% of the myocardium doubles the risk of sudden car-
diac death. The addition of LGE increases the performance
of risk prediction models in HCM (net reclassification index
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13%) [105]. Studies with T1 mapping have aimed at detect-
ing interstitial fibrosis missed with LGE. Both native T1 and
ECV tend to be higher in HCM compared to hypertensive pa-
tients and controls [106]. T1 and ECV elevation in genotype
(+) phenotype (-) individuals suggests their possible utility in
early detection of disease [107].

74 Infiltrative cardiomyopathies — cardiac amyloidosis

Infiltrative heart disease includes conditions like cardiac
amyloidosis, sarcoidosis, and Anderson-Fabry disease.

Cardiac amyloidosis is characterized by amyloid protein
fibril (immunoglobulin light chain in AL and transthyretin in
ATTR type) deposition in the extracellular space. This extra-
cellular expansion gives the appearance of LVH on echocar-
diography. The classical “speckle appearance” of amyloid on
2D echo is less reliable in the age of harmonic imaging. Low
voltage on ECG (in contrast to hypertension and HCM) and
renal dysfunction are other clues that can point towards amy-
loid.

Diastolic dysfunction worsens with the progression of
amyloid with grade 1 in initial stages and grade 3 in late stages
[108]. Advanced stages show restrictive physiology with mi-
tral E/A > 2.5, DT < 150 msec, IVRT < 50 msec, decreased
septal and lateral é velocities (3-4 cm/sec), and E/é > 14 [68].
Lateral é remains higher than septal é which helps to distin-
guish this restrictive cardiomyopathy from constrictive phys-
iology [109].

Cardiac amyloid reduces both longitudinal and circumfer-
ential strain more profoundly than HCM and hypertensive
heart disease [110]. A study found EF/GLS ratio (normally
3) to be higher in amyloid (5.7) compared to HCM (3.7) and
normal healthy controls (3.2) [111]. The authors suggested
an EF/GLS ratio of 4.1 be used as a threshold to distinguish
amyloid from HCM. However, differences in severity and re-
gional involvement are bound to cause fluctuations.

Regional strain is perhaps the most useful to distinguish
amyloid from other causes of LVH. Amyloid deposition af-
fects the basal segments more than the apex in both AL and
TTR forms of amyloid such that there is an “apical sparing”
pattern is seen on strain mapping [112, 113]. Apical sparing
picked up visually on polar maps [114] or quantified by a rela-
tive regional strain ratio (average apical strain/(average basal
strain + average mid strain)) [115, 116] can be a sensitive
and specific echo marker for cardiac amyloidosis. Both GLS
and regional strain have prognostic implications for amyloid
[117].

Amyloid, especially in advanced disease, has a characteris-
tic CMR appearance (Fig. 7). Due to its rapid accumulation
in the expanded extracellular compartment, gadolinium con-
trast clears rapidly from the blood pool. On LGE imaging, it
is difficult to “null” the normal myocardium which is diffusely
involved. Global subendocardial and diffuse patchy LGE pat-
terns are typically seen [118]. LGE also predicts prognosis in
cardiac amyloid [119] but may miss the early stages of disease.
Native T1 mapping and ECV are quantifiable [120] and are
elevated even in early disease. ECV is typically higher and T1
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Fig. 6. Late Gadolinium Enhancement (LGE) on CMR. This represents replacement fibrosis. This can be assessed qualitatively as well as quantitatively -

as a percentage or grams of myocardial tissue. Red arrows show area of fibrosis (bright) while yellow arrows denote normal myocardium (dark).

lower in TTR compared to AL amyloidosis [121]. Changes in
these values can potentially be used as biomarkers for treat-
ment response.

7.5 Infiltrative cardiomyopathies - Anderson Fabry Disease

Anderson Fabry Disease (AFD) is a X-linked lysosomal
storage disease that results in glycosphingolipid accumulation
within lysosomes. Increased wall thickness is the most com-
mon echo finding, while atrial enlargement, right ventricular
hypertrophy, mitral valve thickening and prolapse, and sinus
of Valsalva dilatation have also been described [122]. The
“binary sign”, referring to hyperechoic endocardium adjacent
to a hypoechoic sub-endocardium due to selective deposition
of sphingomyelin does not appear to be a consistent finding
[55]. Thickened papillary muscles have also been reported.
Due to morphological similarity, up to 10% of HCM and un-
differentiated LVH turn out to be AFD [123, 124].

Diastolic dysfunction is a consistent feature of AFD
and worsens with increasing wall thickness and fibrosis
[122]. Genotype (+) patents without LVH have lower tis-
sue Doppler velocities and higher E/é compared to controls
suggesting that these could be used as early markers of disease
[125]. Longitudinal and radial strain, and peak systolic strain
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rate are significantly reduced in AFD compared with con-
trols and appear to reverse with enzyme replacement therapy
[126]. Strain is reduced the most in the basal inferolateral
and anterolateral segments and correlates with LGE on MRI
[127].

LGE is present in up to 50% of AFD and primarily in-
volves the inferolateral wall in a mid-wall distribution [128].
Myocardial T1 characteristically goes down in AFD since fat
(sphingolipid in AFD) is known to decrease T1 [129, 130].
This finding can be used to distinguish AFD from other
causes of LV thickening.

7.6 Endomyocardial fibrosis

Endomyocardial fibrosis manifests as diffuse fibrosis of the
endocardial surfaces of one or both ventricles and is often as-
sociated with ventricular thrombus formation. It causes a re-
strictive pattern of myocardial relaxation on echocardiogra-
phy. Typical appearance of endomyocardial fibrosis on late
gadolinium enhanced CMR is described as a “double V” sign
signifying dark normal myocardium outside, bright layer of
fibrosis in between and dark layer of thrombus in the LV cav-

ity [131].
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Fig.7. Late gadolinium enhancement on CMR in a case of cardiac amyloidosis. Panel A shows rapid clearing of contrast from the LV cavity and diffuse

delayed enhancement of the myocardium, valves and inter-atrial septum (red arrows). Panel B shows a 2 chamber view with diffuse delayed enhancement of

the myocardium. A left atrial appendage thrombus is incidentally noted (yellow arrows).

7.7 Myocarditis

The American Heart Association defines myocarditis as
inflammation of the myocardium identified through clinical,
imaging, and microscopic findings. An inflammatory car-
diomyopathy can be defined as myocarditis associated with
cardiac dysfunction [132]. Due to the nonspecific clini-
cal, echocardiographic, and electrocardiographic findings in
myocarditis, multimodality imaging is critical for diagnosis.
TTE can be used for initial workup and determine presence
of cardiac dysfunction. CMR is the noninvasive reference
standard for assessing myocarditis. CMR, through a com-
bination of T2- and T1-weighted imaging, has a sensitivity
and specificity of 80% for its diagnosis. T2-weighted imaging
can identify edema with a sensitivity of up to 81%. Late de-
layed gadolinium enhancement can identify inflammation or
fibrosis with different patterns suggestive of distinct etiolo-
gies. CMR can further guide clinicians to identify patients
who should undergo an endomyocardial biopsy [133].

The following are the diagnostic CMR criteria for my-
ocarditis, the Lake Louise Consensus Criteria. CMR findings
are consistent with myocardial inflammation if two or more
of the following are found:

i. Regional or global myocardial signal intensity increase
in T2-weighted imaging.

ii. Increased global myocardial early gadolinium enhance-
ment ratio between myocardium and skeletal muscle in T1-
weighted imaging.

iii. There is at least one focal lesion with non-ischemic
regional distribution in inversion-recovery prepared
gadolinium-enhanced T1-weighted images. Characteris-
tics consistent with myocyte injury and/or scarring.
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It is recommended to repeat a CMR between 1-2 weeks if
none of the criteria are present but there is sufficient clinical
suspicion or if only one of the criteria is present. In addi-
tion, LV dysfunction and/or pericardial effusion provide ad-
ditional, supportive evidence for myocarditis [134].

7.8 Pericardial disease

Disease of the pericardium like constrictive pericarditis
can mimic the clinical presentation of restrictive cardiomy-
opathy and HFpEF [135]. Echocardiography can help assess
pericardial effusion size and location, increased pericardial
thickness (> 3 mm), and hemodynamic consequence (cham-
ber collapse, respiratory variation). CT and CMR can be used
to better define pericardial thickness, calcification, inflam-
mation and enhancement. Better delineation of pericardial
pathology can help distinguish it from HFpEF since treat-
ment of the two conditions differ [136, 137].

8. Future direction

HFpEF remains a challenging clinical syndrome however
the field is evolving rapidly. Radiomic texture analysis of
CMR derived T1 images has been shown to distinguish hy-
pertrophic cardiomyopathy from hypertensive heart disease
[138]. A recent publication shows the utility of cardiac CT
derived ECV to help diagnose cardiac amyloidosis in up to
15% of patients with aortic stenosis undergoing transcatheter
aortic valve replacement (TAVR) evaluation [139]. High
clinical suspicion and targeted testing is critical to early di-
agnosis and management. Advanced multi-modality imag-
ing can help with accurate diagnosis and initiation of specific
therapy.
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