IMR Press / RCM / Volume 21 / Issue 2 / DOI: 10.31083/j.rcm.2020.02.68
Open Access Systematic Review
Infective endocarditis after TAVI: a meta-analysis and systematic review of epidemiology, risk factors and clinical consequences
Show Less
1 Department of Cardiovascular Surgery, Cardiovascular Diseases Institute, Iasi 700503, Romania
2 'Grigore T. Popa' University of Medicine, Iasi 700115, Romania
3 Department of Interventional Cardiology, Cardiovascular Diseases Institute, Iasi 700503, Romania
*Correspondence: andrewtarus@gmail.com (Andrei Tarus)
Rev. Cardiovasc. Med. 2020, 21(2), 263–274; https://doi.org/10.31083/j.rcm.2020.02.68
Submitted: 22 April 2020 | Revised: 8 June 2020 | Accepted: 12 June 2020 | Published: 30 June 2020
Copyright: © 2020 Tinica et al. Published by IMR press.
This is an open access article under the CC BY-NC 4.0 license https://creativecommons.org/licenses/by-nc/4.0/.
Abstract

Infective endocarditis (IE) represents one of the most challenging clinical entities, requiring a multidisciplinary approach. The increasing number of surgical and transcatheter heart valves replacements performed annually lead to a higher incidence of prosthetic valve endocarditis. Transcatheter aortic valve implantation (TAVI) brought a new alternative for the treatment of aortic stenosis and a new subgroup of IE with its features. We aimed to compare the incidence of IE in TAVI and surgical valve replacement (SAVR) to identify risk factors for TAVI-IE, evaluate the possible impact on mortality, and clarify the best treatment strategies. A digital scan in PubMed and SCOPUS databases was performed. 68 publications were selected to perform a meta-analysis and systematic review on epidemiology, risk factors, and mortality predictors in TAVI-IE. No significant difference in IE rate was noted between patients with TAVI and those with SAVR for in-hospital, early, mid-term and late IE. Male gender, intubation, new pacemaker implantation IE and CKD were correlated with TAVI-IE. Surgical treatment was performed in 22.3% of cases. Overall mortality for the pooled cohort was 38.3%. In a multivariate logistic regression model, surgical treatment and self-expandable device were linked to lower mortality in TAVI-IE. Even if the invasive procedure can trigger bacteremia, exposing the TAVI valve to future infection, no significant difference in IE rate was noted in our analysis between patients with TAVI and those with SAVR for in-hospital, early, mid-term and late IE. Surgical treatment of TAVI-IE can be a viable option in patients with a prohibitive risk score.

Keywords
Aortic valve stenosis
transcatheter aortic valve implantation
surgical aortic valve replacement
infective endocarditis
1. Introduction

Infective endocarditis (IE) represents one of the most challenging clinical entities, which requires a multidisciplinary approach and a high level of expertise from practitioners (Habib et al., 2015). Despite being a rare complication of heart valve replacement, it can occur in 1-6% of patients (Vongpatanasin et al., 1996). An increasing number of surgical and transcatheter heart valves replacements performed annually lead to a higher incidence of prosthetic valve endocarditis (PVE) worldwide (Conen et al., 2020).

Even with all the advances in antimicrobial and surgical treatment, a proper management strategy is still not clarified, and mortality after PVE remains high (24-46%) (Akowuah et al., 2003; Cresti et al., 2017). Transcatheter aortic valve implantation (TAVI) brought not only a new alternative for the treatment of aortic stenosis but also a new subgroup of IE with its own morphological, microbiological, and clinical features. A recent meta-analysis of randomized control trials (RCT) comparing PVE after TAVI and SAVR were recently published (Ando et al., 2019), however, due to rigorous selection of patients enrolled in this type of studies, the results observed in daily medical practice could differ.

The purpose of this study was to compare the incidence of IE in TAVI and surgical valve replacement (SAVR), to identify risk factors for TAVI-IE, evaluate the possible impact on the mortality and clarify best treatment strategies. Our analysis included RCT, observational, and propensity match score studies to minimize the differences.

2. Materials and methods

All relevant papers were systematically searched in the electronic databases of PubMed and SCOPUS between May 2002 and December 2019, without any restriction for publication language. Two authors (A.T. and M.E.) independently screened titles and abstracts for eligibility of the studies using the following query terms: TAVI, TAVR, transcatheter aortic valve replacement, transcatheter aortic valve implantation, infective endocarditis. The systematic search of the literature was performed in accordance with PRISMA (the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement) see Fig. 1.

Figure 1.

PRISMA flow diagram of the selection process. PRISMA flow diagram representing the selection process of papers used for meta-analysis, study of the risk factors and individual cases pooled analysis in transcatheter aortic valve implantation infective endocarditis.

The International Prospective Register of Systematic Reviews (PROSPERO) registration number for this study is CRD42020165182 (https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=165182).

Both authors identified separately the relevant articles which fulfill the inclusion criteria: 1. randomized clinical trials, propensity score match studies, and observational studies which compared TAVI with SAVR and reported incidence of infective endocarditis 2. observational studies which compare risk factors in TAVI-IE group and TAVI without IE 3. case reports or case series on TAVI-IE. Exclusion criteria were as follow: 1. reports on TAVI-IE for aortic insufficiency 2. systematic reviews or meta-analysis. References of selected publications were reviewed to minimize the risk of overlooking relevant studies. When there was a lack of consensus, we asked the third senior reviewer (G.T.)

In-hospital endocarditis was defined as one which emerged during indexed hospitalization, early IE — diagnosed for first-year post-TAVI, mid-term IE — between first and second year, late IE — after two years.

We used the Review Manager (RevMan) Version 5.3 (Nordic Cochrane Centre, The Cochrane Collaboration, 2012, Copenhagen, Denmark) software to calculate the pooled effect size with odds ratio (OR) and 95% confidence intervals (CI) by Mantel-Haenszel method and random effect model. I2 statistics evaluated heterogeneity of studies, and we considered 0% to 25% as low, 26% to 50% as moderate, 51% to 75% as high, and > 75% as very high. The event number was calculated from the total cohort, and the described ratio in case the ratio of events and not the number of events was mentioned. A sensitivity analysis was performed, and each study was removed once at a time, and the pooled effect size was recalculated each time. Publication bias was assessed by the construction of the Funnel plot. A P-value of less than 0.05 was considered significant.

Publications that reported a comparison of the TAVI-IE group versus the TAVI NON-IE group were analyzed to reveal predictive variables. Manuscripts and online supplements were scanned when possible to complete data. We used Hozo et al. (2005) formula to convert the median to mean when needed. The pooled sample mean and the pooled standard deviation was calculated according to the recommendation of the Cochrane Handbook for Systematic Reviews. We extracted individual data of patients reported in case series and case presentations to perform epidemiological evaluation and reveal possible risk factors that influence the treatment outcome. Continuous variables were presented as mean with standard deviation or median with interquartile range (IQR) when necessary; categorical data were presented as proportions. A Chi-square test was used to analyze dichotomous data. Means and standard deviation between studied groups were compared with the Student t-test.

Variables significant for mortality were studied in a multivariate logistic regression model. Kaplan-Meier analysis was performed for time to event data. A P-value lower than 0.05 was considered significant for each test. Statistical analysis was performed with MedCalc Statistical Software version 14.8.1 (MedCalc Software bvba, Ostend, Belgium; http://www.medcalc.org; 2014)

3. Results

After screening the title and abstract of possible relevant publications, 68 papers were selected, retrieved as complete manuscripts and used for final synthesis as follows: 14 studies included in quantitative synthesis, six publications for analysis of risk factors, and 48 articles for individual cases pooled analysis Fig. 1.

For comparative analysis of PVE after TAVI and SAVR, we used 14 studies: 8 publications represented four randomized control trials (RCT) (Deeb et al., 2016; Kodali et al., 2012; Leon et al., 2016; Mack et al., 2015; Reardon et al., 2015; Smith et al., 2011; Søndergaard et al., 2019; Thyregod et al., 2015), 1 observational study (Shehada et al., 2018), 5 propensity score-matched studies (Johansson et al., 2016; Kolte et al., 2018; Latib et al., 2012; Thourani et al., 2016; Waksman et al., 2018) (Table 1).

10.31083/j.rcm.2020.02.68.t0001 Table 1 Summary of included studies
Author, year Type of study No. of centers Valve type Approach Risk group Type of procedure Number of patients per arm Age, years Male, % EuroScore, mean ± SD STS score,mean ± SD
Smith et al., 2011Kodali et al., 2012Mack et al., 2015(PARTNER trial) RCT 25 EL Sapien TF, TA High TAVISAVR 348351 83.6 ± 6.8 84.5 ± 6.4 57.8 56.7 29.3 ± 16.5 29.2 ± 15.6 11.8 ± 3.3 11.7 ± 3.5
Reardon et al., 2015Deeb et al., 2016(US CoreVAlve) RCT 45 CoreValve TF, SC, TAo High TAVISAVR 390357 83.1 ± 7.1 83.2 ± 6.4 53.152.4 17.7 ± 13.1 18.6 ± 13.0 7.3 ± 3.0 7.5 ± 3.4
Leon et al., 2016(PERTNER 2) RCT 57 Sapien XT TF, TA Intermediate TAVISAVR 1,011 1,021 81.5 ± 6.7 81.7 ± 6.7 54.254.8 - 5.8 ± 2.1 5.8 ± 1.9
Thyregod et al., 2015Søndergaard et al., 2019(NOTION) RCT unblinded 3 CoreValve TF Low TAVISAVR 145 135 79.2 ± 4.9 79.0 ± 4.7 53.852.6 8.4 ± 4.0 8.9 ± 5.5 2.9 ± 1.6 3.1 ± 1.7
Shehada et al., 2018 Prospectiveobservation 1 - TF, TA, TAo High TAVISAVR 100100 81 ± 669 ± 11 5860 21.1 ± 13.88.7 ± 9.5 -
Thourani et al., 2016(SAPIEN 3 nested with PARTNER 2) Prospensity score matched study 51 Sapien 3 TF Intermediate TAVISAVR 1077944 81.9 ± 6.681.6 ± 6.76 6255 - 5.5 ± 0.65.5 ± 0.7
Waksman et al., 2018(LRT) Prospectiveunblinded,comparison to historical controls 11 Sapien 3CoreValveEvolutREvolut PRO TF Low TAVISAVR 200719 73.6 ± 6.170 ± 8.3 61.560.9 - 1.8 ± 0.51.6 ± 0.6
Johansson et al., 2016 Prospensity score matched study 1 Sapien, Sapien XT, Lotus TF, TA High TAVISAVR 166126 80 ± 978 ± 6 5163 23 ± 1520 ± 14 -
Latib et al., 2012 Prospensity score matched study 1 Sapien,Sapien XT,CoreValve TF Moderate/High TAVISAVR 111111 80.5 ± 6.979.4 ± 3 - 23 ± 15.124.4 ± 13.4 4.57 ± 2.284.6 ± 2.63
Kolte et al., 2018 Prospensity score matched study NationalUS - TF, TA, SC, TAo TAVISAVR 1513815030 78.1 ± 13.877.6 ± 12.0 53.453.5 - -

RCT: randomised clinical trial, TF - transfemoral, TA - transapical, TAo - transaortic, TAVI - transcatheter aortic valve implantation, SAVR - surgical aortic valve replaceme

No significant difference in IE rate was noted between patients with TAVI and those with SAVR for in-hospital, early, mid-term and late IE (TAVI vs SAVR: in-hospital IE: OR: 2.39, 95% CI, 0.60 to 9.44, I2 = 0%; early IE: OR: 1.21, 95% CI, 0.64 to 2.29, I2 = 0%; mid-term IE: OR: 1.11, 95% CI, 0.55 to 2.25, I2 = 4% and late IE: OR: 0.84, 95% CI, 0.44 to 1.58, I2 = 0%) (Fig. 2-5). Sensitivity analysis did not reveal any significant changes.

Figure 2.

In-hospital IE. Forest plots of the meta-analysis depicting the comparison of in-hospital infective endocarditis after transcatheter aortic valve implantation and surgical aortic valve replacement.

Figure 3.

Early IE. Forest plots of the meta-analysis depicting the comparison of the early infective endocarditis after transcatheter aortic valve implantation and surgical aortic valve replacement.

Figure 4.

Mid-term IE. Forest plots of the meta-analysis depicting a comparison of the mid-term infective endocarditis after transcatheter aortic valve implantation and surgical aortic valve replacement.

Figure 5.

Late IE. Forest plots of the meta-analysis depicting a comparison of the late infective endocarditis after transcatheter aortic valve implantation and surgical aortic valve replacement.

To evaluate the predictors of TAVI-IE, we pooled six cohort studies incorporating 507 patients suffering from TAVI-IE and 57531 patients free from IE (Amat-Santos et al., 2015; Mangner et al., 2016; Olsen et al., 2015; Regueiro et al., 2016; Rodriguez-Vidigal et al., 2018; Yeo et al., 2018). Patients with TAVI-IE were younger (TAVI-IE: 73.5 ± 4.2 vs. TAVI NON-IE: 79.9 ± 3.24, P < 0.001). Male gender was a risk factor for the TAVI-IE (RR: 1.24, 95% CI 1.15 to 1.33). Moreover, intubation, new pacemaker implantation, and CKD were risk factors for TAVI-IE (RR: 2.99, 95% CI 2.73 to 3.28; RR: 5.19, 95% CI 4.16 to 6.47; and RR: 1.17, 95% CI 1.05 to 1.29). Other variables showed no significant statistics and are presented in Table 2.

10.31083/j.rcm.2020.02.68.t0002 Table 2 Comparison of TAVI-IE with TAVI NON-IE groups
Risk factor No. of studies No. of patents TAVI-IE NON-IE TAVI RR (95% CI) P-value
Age(y), mean ± SD 6 57896 73.5 ± 4.2 79.9 ± 3.24 < 0.001
Male 5 55277 287 28140 1.24(1.15-1.33) < 0.001
COPD 5 53452 136 14049 1.03(0.89-1.19) NS
DM 5 51375 151 16761 1.02(0.89-1.16) NS
CKD 6 53171 211 18783 1.17(1.05-1.29) 0.003
Bleeding 3 6171 39 761 1.08(0.8-1.45) NS
OTI 3 53452 226 9066 2.99(2.73-3.28) < 0.001
New pacemaker 5 51518 70 1524 5.19(4.16-6.47) < 0.001
Self-expandable 3 10144 141 4303 1.03(0.9-1.16) NS
Paravalvular leak ≥ 2 5 16297 44 1887 0.97 (0.74-1.29) NS
PAD 3 43339 36 10137 0.79(0.59-1.06) NS
Vascular complications 3 14013 32 5801 0.85(0.61-1.19) NS

SD, standard deviation; COPD, chronic obstructive pulmonary disease; DM, diabetes Mellitus; CKD, chronic kidney disease; OTI, oro-tracheal intubation; PAD, peripheral artery disease; RR, relative risk; NS, not significant

A total of 51 articles which reported individual data of 157 patients were identified, 3 observational studies (Amat-Santos et al., 2015; Olsen et al., 2015; Rodriguez-Vidigal et al., 2018), 5 case series (Aung et al., 2013; Gallouche et al., 2018; Martinez-Selles et al., 2016; Puls et al., 2013; Scisło et al., 2019), 43 case reports (Ahmad et al., 2016; Campana et al., 2019; Carnero-Alcazar et al., 2010; Carrel and Eberle, 2019; Castiglioni et al., 2012; Cho et al., 2019; Chourdakis et al., 2017; Citro et al., 2013; Comoglio et al., 2009; Dapas et al., 2016; García-Pardo et al., 2012; Gonzalez et al., 2017; Gotzmann and Mugge, 2011; Gupta et al., 2019; Gürtler et al., 2019; Halapas et al., 2014; Head et al., 2011; Kesimci et al., 2014; Lane et al., 2015; Lee et al., 2014, 2019; Loh et al., 2013; Loverix et al., 2013; Montero-Cruces et al., 2019; Mori et al., 2019; Morioka et al., 2019; Nguyen et al., 2019; Ochiai et al., 2016; Ohori et al., 2018; Olsthoorn et al., 2019; Pabilona et al., 2015; Pichard et al., 2017; Rafiq et al., 2011; Ruchonnet et al., 2019; Russo et al., 2019; Santarpino et al., 2013; Sari et al., 2016; Seok Koh et al., 2014; Sugimura et al., 2019; Sulženko et al., 2014; Takimoto et al., 2015; Wilbring et al., 2014; Wong et al., 2009). The baseline characteristics of the pooled cohort are presented in Table 3. In all patients, the diagnosis was established according to modified Duke criteria. Echocardiographic data were available in 89 out of 157 patients. In 6 patients, additional computer tomography was performed. Most patients received antibiotic prophylaxis before the procedure according to the local protocols with cephalosporin group or Vancomycin.

10.31083/j.rcm.2020.02.68.t0003 Table 3 Summary of individual pooled data and results of multiple logistic regression
Baseline characteristics OR 95% CI P-value
Age (y), mean ± SD 79.1 ± 7.63 0.97 0.92-1.02 NS
Gender
Male 91/61.1% 0.67 0.28-1.61 NS
Female 58/38.9% - - -
Time TAVI to IE (m), median (IQR) 5.4 (1.6-12.2) 1.00 0.96-1.05 NS
Valve type
Balloon-expandable 72/47.4% - - -
Self-expandable 80/52.6% 0.39 0.16-0.98 < 0.05
Type of microorganism
Gram-positive 125/79.6% 0.62 0.13-2.97 NS
Gram-negative 10/6.4% 1.76 0.20-15.47 NS
Fungi 6/3.8% 0.53 0.03-10.28 NS
Polymicrobial 2/1.3% - - -
Unknown 14/8.9% - - -
Possible source of bacteremia 78/49.7% 1.28 0.55-3.01 NS
Affected cardiac structure
TAVI prosthesis 102/73.4% - - -
Mitral valve 24/17.3% 0.95 0.30-2.97 NS
Complex 11/7.9% 0.95 0.15-5.84 NS
Others 2/1.4% - - -
Treatment
Surgery 35/22.3% 0.15 0.04-0.62 < 0.05
Antibiotic therapy 122/77.7% - - -
Total mortality 59/38.3% - - -

Median time from TAVI to IE for overall group was 5.5 months with IQR 1.8-12.5, for Gram-positive IE it was 5.4 (2.3-12.52), Gram-negative - 1.5 (0.9-6.2), mycotic infection - 5.15 (2.0-9.0) and unknown etiology- 12.0 (5.75-16.32), polymicrobial - 21.0 (9.0-33.2). The highest incidence was during the first seven months after implantation. There was no difference in IE's onset between self-expandable and balloon-expandable devices groups (Fig. 6).

Figure 6.

Comparison of time from TAVI to IE according to the type of valve. Kaplan-Meier analysis comparing the time from transcatheter aortic valve implantation procedure to the onset of infective endocarditis according to the type of the used device.

The most frequently isolated pathogens in blood culture were as follows: streptococci (25.3%), staphylococci (25.3%), enterococci (24.1%). Blood culture was negative in 12.7%; in three cases, it was polymicrobial. The highest prevalence in the staphylococci group had Staphylococcus aureus (60%); for the enterococci group, it was Enterococcus faecalis (65.8%). There were 6 cases of mycotic IE, 5 with Candida spp. (Amat-Santos et al., 2015; Carrel and Eberle, 2019; Martinez-Selles et al., 2016; Morioka et al., 2019; Russo et al., 2019) and 1 with Histoplasma capsulatum (Head et al., 2011). Gram-negative flora was represented by 3 cases of IE with Escherichia coli (Gallouche et al., 2018; Olsen et al., 2015; Puls et al., 2013), 2 cases of Acinetobacter spp (Amat-Santos et al., 2015; Martinez-Selles et al., 2016), Pseudomonas aeruginosa (Dapas et al., 2016; Scisło et al., 2019) and 1 case of Serratia (Amat-Santos et al., 2015), Salmonella enteritidis (Martinez-Selles et al., 2016), and Moraxella nonliquefaciens (Rafiq et al., 2011). A Source of bacteremia was identified in 49.7% of the patients. In staphylococci TAVI-IE, an entry door was found in 58%, soft tissue infections being most common (6 cases), for enterococci group in 44.7% (10 cases of urinary origin).

TAVI prosthesis was affected by 73.4%; this included vegetation on prosthetic leaflets, frame, and peri-annular complications. In 17.3%, only the mitral valve was interested. Multiple valves IE was presented in 7.9%, 9 cases of TAVI prosthesis and mitral valve, and 2 cases of TAVI prosthesis and tricuspid valve. In 86 patients were possible to identify the severity of intracardiac lesions, thus in 66.3%, it was simple injury with a single valve or prosthesis implication. In 33.7% of the cases, it was complex injury with periannular extension, intracardiac shunts, or multiple valves lesions.

Surgical treatment was performed in 22.3%; it included isolated SAVR or in combination with mitral valve replacement/repair, minimally invasive approach, replacement of aortic root, TAVI in TAVI procedure (only 2 cases), or pacemaker removal.

Overall mortality for the pooled cohort was 38.3%. There were no statistically significant differences for mortality between streptococci, staphylococci, and enterococci groups - 35%, 30%, and 21% (P > 0.05). Mortality in surgery and antibiotic treatment groups was 16.7% and 37.4% (P < 0.05) (Fig. 7). In a multivariate logistic regression model surgical treatment (OR 0.15 95% CI 0.04 to 0.62 P < 0.05) and self-expandable device (OR 0.39 95% CI 0.16 to 0.98 P < 0.05) were factors linked to lower mortality in TAVI-IE (Table 3).

Figure 7.

Survival rate in TAVI-IE according to treatment strategy. Bar chart depicting the comparison of the survival rate in transcatheter aortic valve implantation infective endocarditis according to the treatment strategy.

4. Discussions

PVE is the most severe form of infective endocarditis and accounts for up to 20% of IE (Cahill and Prendergast, 2016), with an incidence of 0.54% per person-years for SAVR (Valdes et al., 2008). Incidence of TAVI-IE ranges from 1.1 to 3.4 per person-years (Kaur et al., 2020; Mangner et al., 2016; Puls et al., 2013; Regueiro et al., 2016). The present study reported no significant difference for in-hospital, early, mid-term, or late incidence of IE between patients with TAVI or SAVR. Summers et al. (2019) reported a PVE incidence rate of 5.06 [95% CI, 4.19 to 6.12] per 1,000 person-years in PARTNER trials with no statistical difference in the incidence of TAVR and SAVR-PVE (Incidence rate ratio [IRR] 1.27 [95% CI, 0.70 to 2.32; P = 0.44]).

Younger age emerged to be one of the risk factors for TAVI-IE. A possible explanation for this finding may be the selection criteria of patients for TAVI, specifically the more severe comorbidities, which made them eligible candidates for a percutaneous approach. In a pooled analysis, male gender, OTI, new pacemaker implantation, and CKD were identified as risk factors for TAVI-IE. Although the higher prevalence of IE among males is yet to be elucidated, several factors like dental and urologic hygiene could be speculated to influence this relation. (Olsen et al., 2015). General anesthesia with OTI compared to local anesthesia has a higher risk of pulmonary complications and can be a source of bacteremia (Valdes et al., 2008). An increased rate of IE in this group can be triggered by associated severe comorbidities and cardiac insufficiency, making it challenging to tolerate a conscious supine position. Pacemaker implantation can create entry routes for pathogens and cause endocardial lesions. CKD can induce persistent bacteremia due to frequent intravascular manipulations. In our meta-analysis, paravalvular leak (PVL) was not identified as a risk factor for TAVI-IE, despite the general opinion that the mechanical injury resulted from regurgitation jet can create necessary conditions for bacterial fixation and proliferation (Ambrosioni et al., 2017).

Diagnosis of infective endocarditis necessitates an integration of clinical findings, microbiological analysis, and imaging results (Harding et al., 2020). The modified Duke clinical diagnostic criteria incorporate these three domains and weigh findings as either major or minor criteria (Cahill and Prendergast, 2016). It can be particularly challenging to make a diagnosis of PVE after TAVI. Detection of small vegetations by TEE is challenging due to the shadowing effect and reflectance of prosthesis material. Some degree of PVL and regurgitation are joint after TAVI due to calcifications, which do not allow the valve to expand properly (Puls et al., 2013).

Median time from TAVI to IE in our study group was 5.4 months, Kolte et al. reported a median of 66 days (Kolte et al., 2018) while others indicated a median of 4.6 to 9.6 months (Amat-Santos et al., 2015; Gallouche et al., 2018; Martinez-Selles et al., 2016; Regueiro et al., 2016). The onset for gram-negative IE was much earlier, with a median of 1.1 months. These pathogens seem to be responsible for severe cases of in-hospital and early endocarditis. This suggests immediate device contamination during implantation. Gram-negative multidrug-resistant organisms could frequently colonize groin region (Weintrob et al., 2010). Thus a shift towards broader spectrum antibiotics as prophylactic agents is recommended. Regueiro et al., showed no difference in the onset of IE according to the type of implanted device (Regueiro et al., 2019), the same results were observed in our analysis.

The primary causative pathogens for TAVI-IE were in the order of frequency: streptococci (25.3%), staphylococci (25.3%), enterococci (24.1%). Mangner et al. (2016) found staphylococci in 38.2%, enterococci in 30.9% and atypical organism in 18.2%, in contrast, Regueiro et al. (2016) presented 24.6% for enterococci and 23.8% for staphylococci etiology of IE. Such a high prevalence of Enterococcus spp. could be explained by frequent use of transfemoral implantation route, this agent being a common groin contaminant. A potential source of bacteremia was identified in about 49.7% of patients; in previous studies, this ranged between 50% to 77.3% (Mangner et al., 2016). Epidemiology of IE changed considerably compared to previous decades (Ambrosioni et al., 2017). The microbiological profile in TAVI-IE is different from the surgical counterpart, and antibiotic prophylaxis suitable for sternotomy may not be the best choice for the transfemoral approach.

The implication of TAVI prosthesis in infectious process varied among studies, vegetations on prosthetic leaflets were found in 39.6%-47.9% of patients, on stent frame in 17%-18.2%, peri annular complications (abscesses, fistulas, pseudoaneurysms) 18%-22.6% (Amat-Santos et al., 2015; Regueiro et al., 2016). We reported a total of 73.4% of isolated TAVI prosthesis IE, including all perivalvular extensions.

Patients undergoing TAVI represent a group with high surgical risk, quantified by different risk scores, like Euroscore II or STS prom. The association of IE and its related complications leads to an escalation of the operative risk. Thus, surgical treatment in patients with TAVI-IE is analyzed with great caution. In a cohort of 224 patients with TAVI-IE, Kolte et al. (2018) reported not a single case of surgical treatment. Despite this, aortic valve replacement can be a viable option for treatment of TAVI-IE, in a series of 250 patients, 37 underwent surgical treatment with 11 related deaths (Regueiro et al., 2016). In the present analysis, the surgical procedure was performed in 22.3% of cases. Only 2 cases in the group where TAVI in TAVI procedures. Surgical removal of the all potentially compromised synthetic material is “a must do” strategy for the treatment success and prevention of further recurrences in space/organ infection. This can explain such un-popular opinion on using TAVI in TAVI for IE. Mortality in surgery and antibiotic group was 16.7% and 37.4%, respectively. The probability of publishing cases with positive outcomes is higher; that's why the results must be interpreted with precaution.

Mortality in IE is one of the highest among heart-related diseases; it can reach up to 24% for native valve IE (Cresti et al., 2017) and surpass 46% for PVE (Akowuah et al., 2003). Moriyama et al. (2019) reported 30-days and one-year mortality in TAVI-IE of 37.7% and 52.5%. In the pooled series, it was 38.3% for overall reported follow up. In multiple logistic regression models, surgical treatment and the use of self-expandable devices proved to be related to lower mortality. Keeping in mind that TAVI was developed as an alternative for surgical treatment in patients with a high or prohibitive operative score, an association of IE in these patients increases, even more, the surgical risk. Despite this, the results of open-heart surgery in this group are inspiring. The findings related to survival according to the type of valve are quite controversial, and it is difficult to judge the advantage of self-expandable over balloon-expandable valves. Regueiro et al. (2019) reported no difference in mortality between balloon-expandable and self-expandable valves. Despite this, further studies must be performed.

5. Conclusion

PVE remains a rare but devastating complication with no difference in incidence between TAVI and SAVR. Evidence from analyzed papers suggests a higher risk for TAVI-IE among younger males, but future studies are required to confirm these data. Since invasive vascular procedures can trigger bacteremia, exposing the TAVI valve to future infection, antibiotic prophylaxis is mandatory. However, no significant difference in IE rate was noted in our analysis between patients with TAVI and those with SAVR for in-hospital, early, mid-term and late IE. Surgical treatment of TAVI-IE can be a viable option in patients with prohibitive risk score due to the wide variation in outcomes. Still, it should be performed in large valve centers of excellence.

Authors' contributions

Concept/design: AT, AB, GT;

Data collection: AT, AB;

Data analysis/interpretation: all authors;

Drafting article: all authors;

Critical revision of article: AB, GT;

Approval of article: all authors.

Acknowledgments

Thanks to all the peer reviewers and editors for their opinions and suggestions

Conflict of interest

The authors declare no conflict of interest.

References
[1]
Ahmad, K., Klaaborg, K. E., Hjortdal, V., Nørgaard, B. L., Terkelsen, C. J., Jensen, K., Christiansen, E. H., Terp, K. A., Andersen, G., Hvitfeldt, S. and Andersen, H. R. (2016) Prosthetic valve endocarditis after transcatheter aortic valve implantation-diagnostic and surgical considerations. Journal of Thoracic Disease 8, E1213-E1218. 10.21037/jtd.2016.10.2827867590https://www.ncbi.nlm.nih.gov/pubmed/27867590
[2]
Akowuah, E. F., Davies, W., Oliver, S., Stephens, J., Riaz, I., Zadik, P. and Cooper, G. (2003) Prosthetic valve endocarditis: early and late outcome following medical or surgical treatment. Heart 89, 269-272. 10.1136/heart.89.3.26912591827https://www.ncbi.nlm.nih.gov/pubmed/12591827
[3]
Amat-Santos, I. J., Messika-Zeitoun, D., Eltchaninoff, H., Kapadia, S., Lerakis, S., Cheema, A. N., Gutierrez-Ibanes, E., Munoz-Garcia, A. J., Pan, M., Webb, J. G., Herrmann, H. C., Kodali, S., Nombela-Franco, L., Tamburino, C., Jilaihawi, H., Masson, J. B., de Brito, F. S., Jr., Ferreira, M. C., Lima, V. C., Mangione, J. A., Iung, B., Vahanian, A., Durand, E., Tuzcu, E. M., Hayek, S. S., Angulo-Llanos, R., Gomez-Doblas, J. J., Castillo, J. C., Dvir, D., Leon, M. B., Garcia, E., Cobiella, J., Vilacosta, I., Barbanti, M., R, R. M., Ribeiro, H. B., Urena, M., Dumont, E., Pibarot, P., Lopez, J., San Roman, A. and Rodes-Cabau, J. (2015) Infective endocarditis after transcatheter aortic valve implantation: results from a large multicenter registry. Circulation 131, 1566-1574. 10.1161/CIRCULATIONAHA.114.01408925753535https://www.ncbi.nlm.nih.gov/pubmed/25753535
[4]
Ambrosioni, J., Hernandez-Meneses, M., Tellez, A., Pericas, J., Falces, C., Tolosana, J. M., Vidal, B., Almela, M., Quintana, E., Llopis, J., Moreno, A. and Miro, J. M. (2017) The changing epidemiology of infective endocarditis in the twenty-first century. Current Infectious Disease Reports 19, 21. 10.1007/s11908-017-0574-928401448https://www.ncbi.nlm.nih.gov/pubmed/28401448
[5]
Ando, T., Ashraf, S., Villablanca, P. A., Telila, T. A., Takagi, H., Grines, C. L., Afonso, L. and Briasoulis, A. (2019) Meta-analysis comparing the incidence of infective endocarditis following transcatheter aortic valve implantation versus surgical aortic valve replacement. American Journal of Cardiology 123, 827-832. 10.1016/j.amjcard.2018.11.03130545481https://www.ncbi.nlm.nih.gov/pubmed/30545481
[6]
Aung, T., Poon, K., Horvath, R., Coulter, C. and Walters, D. L. (2013) A case series of medically managed infective endocarditis after transcatheter aortic valve replacement. Scandinavian Journal of Infectious Diseases 45, 489-493. 10.3109/00365548.2012.75410523286779https://www.ncbi.nlm.nih.gov/pubmed/23286779
[7]
Cahill, T. J. and Prendergast, B. D. (2016) Infective endocarditis. The Lancet 387, 882-893. 10.1016/S0140-6736(15)00067-7https://linkinghub.elsevier.com/retrieve/pii/S0140673615000677
[8]
Campana, P., Petraglia, L., Leosco, D., Conte, M., Grieco, F. V., Perrotta, G., Prastaro, M., Franzone, A., Abete, P. and Parisi, V. (2019) Infectious endocarditis after transcatheter aortic valve implantation in a patient on oral therapy with glucocorticoids. Aging Clinical and Experimental Research 32, 539-541. 10.1007/s40520-019-01401-531728844https://www.ncbi.nlm.nih.gov/pubmed/31728844
[9]
Carnero-Alcazar, M., Maroto Castellanos, L. C., Carnicer, J. C. and Rodriguez Hernandez, J. E. (2010) Transapical aortic valve prosthetic endocarditis. Interactive Cardiovascular and Thoracic Surgery 11, 252-253. 10.1510/icvts.2010.23951720570978https://www.ncbi.nlm.nih.gov/pubmed/20570978
[10]
Carrel, T. and Eberle, B. (2019) Candida Endocarditis after TAVR. The New England Journal of Medicine 380, e1. 10.1056/NEJMicm180994830601749https://www.ncbi.nlm.nih.gov/pubmed/30601749
[11]
Castiglioni, A., Pozzoli, A., Maisano, F. and Alfieri, O. (2012) Endocarditis after transfemoral aortic valve implantation in a patient with Osler-Weber-Rendu syndrome. Interactive Cardiovascular and Thoracic Surgery 15, 553-554. 10.1093/icvts/ivs230c2da76b5-c085-450a-abea-4b22fd89b41dhttp://dx.doi.org/10.1093/icvts/ivs230
[12]
Cho, J. H., Han, J. K., Yang, H. M., Koo, B. K. and Kim, H. S. (2019) Acute ST-elevation myocardial infarction due to prosthetic valve endocarditis after transcatheter aortic valve implantation. Korean Journal of Internal Medicine (in press).
[13]
Chourdakis, E., Koniari, I., Hahalis, G., Kounis, N. G. and Hauptmann, K. E. (2017) Early prosthetic valve endocarditis after transcatheter aortic valve implantation with periannular complication. Journal of Geriatric Cardiology 14, 711. 10.11909/j.issn.1671-5411.2017.11.00729321802https://www.ncbi.nlm.nih.gov/pubmed/29321802
[14]
Citro, R., Mirra, M., Baldi, C., Prota, C., Palumbo, B., Piscione, F. and La Canna, G. (2013) Concomitant dynamic obstruction and endocarditis after "valve in valve" TAVI implantation. International Journal of Cardiology 167, e27-e29. 10.1016/j.ijcard.2013.03.0182356192069d8ad8c-14be-4b0b-8be9-6b1f62d1f967https://www.ncbi.nlm.nih.gov/pubmed/23561920
[15]
Comoglio, C., Boffini, M., El Qarra, S., Sansone, F., D'Amico, M., Marra, S. and Rinaldi, M. (2009) Aortic valve replacement and mitral valve repair as treatment of complications after percutaneous core valve implantation. Journal of Thoracic and Cardiovascular Surgery 138, 1025-1027. 10.1016/j.jtcvs.2008.11.00519660329https://www.ncbi.nlm.nih.gov/pubmed/19660329
[16]
Conen, A., Stortecky, S., Moreillon, P., Hannan, M. M., Franzeck, F. C., Jeger, R. and Widmer, A. F. (2020) A review of recommendations for infective endocarditis prevention in patients undergoing transcatheter aortic valve implantation. EuroIntervention (in press).
[17]
Cresti, A., Chiavarelli, M., Scalese, M., Nencioni, C., Valentini, S., Guerrini, F., D'Aiello, I., Picchi, A., De Sensi, F. and Habib, G. (2017) Epidemiological and mortality trends in infective endocarditis, a 17-year population-based prospective study. Cardiovascular Diagnosis and Therapy 7, 27-35. 10.21037/cdt.2016.08.0928164010https://www.ncbi.nlm.nih.gov/pubmed/28164010
[18]
Dapas, J. I., Rivero, C., Burgos, P. and Vila, A. (2016) Pseudomonas aeruginosa infective endocarditis following aortic valve implantation: a note of caution. Open Cardiovascular Medicine Journal 10, 28-34. 10.2174/187419240161001002827014375https://www.ncbi.nlm.nih.gov/pubmed/27014375
[19]
Deeb, G. M., Reardon, M. J., Chetcuti, S., Patel, H. J., Grossman, P. M., Yakubov, S. J., Kleiman, N. S., Coselli, J. S., Gleason, T. G., Lee, J. S., Hermiller, J. B., Jr., Heiser, J., Merhi, W., Zorn, G. L., 3rd, Tadros, P., Robinson, N., Petrossian, G., Hughes, G. C., Harrison, J. K., Maini, B., Mumtaz, M., Conte, J., Resar, J., Aharonian, V., Pfeffer, T., Oh, J. K., Qiao, H., Adams, D. H. and Popma, J. J. (2016) 3-Year outcomes in high-risk patients who underwent surgical or transcatheter aortic valve replacement. Journal of the American College of Cardiology 67, 2565-2574. 10.1016/j.jacc.2016.03.50627050187https://www.ncbi.nlm.nih.gov/pubmed/27050187
[20]
Gallouche, M., Barone-Rochette, G., Pavese, P., Bertrand, B., Vanzetto, G., Bouvaist, H., Pierre, I., Schmitt, D., Fauconnier, J., Caspar, Y., Recule, C., Picot-Guéraud, R., Stahl, J. P., Mallaret, M. R. and Landelle, C. (2018) Incidence and prevention of infective endocarditis and bacteraemia after transcatheter aortic valve implantation in a French university hospital: a retrospective study. Journal of Hospital Infection 99, 94-97. 10.1016/j.jhin.2017.11.01329191610https://www.ncbi.nlm.nih.gov/pubmed/29191610
[21]
García-Pardo, H., Revilla, A., Sevilla, T., López, J., Ortiz, C. and San Román, J. A. (2012) Staphylococcus aureus endocarditis on transcatheter aortic valves. Revista Española de Cardiología (English Edition) 65, 771-773. 10.1016/j.rec.2011.11.004https://linkinghub.elsevier.com/retrieve/pii/S1885585711006736
[22]
Gonzalez, Y. O., Ung, R., Blackshear, J. L. and Laman, S. M. (2017) Three-dimensional echocardiography for diagnosis of transcatheter prosthetic aortic valve endocarditis. CASE (Phila) 1, 155-158.
[23]
Gotzmann, M. and Mugge, A. (2011) Fatal prosthetic valve endocarditis of the CoreValve ReValving System. Clinical Research in Cardiology 100, 715-717. 10.1007/s00392-011-0315-22146197755148a64-131e-4004-b216-09f6ecb1feefhttps://www.ncbi.nlm.nih.gov/pubmed/21461977
[24]
Gupta, R., Ranchal, P., Raza, A., Sayed, A., Pattarkine, R. and Dhand, A. (2019) Successful treatment of transcatheter aortic valve replacement infective endocarditis presenting with aortic root abscess in an immunocompromised host. American Journal of Therapeutics (in press).
[25]
Gürtler, N., Osthoff, M., Rueter, F., Wüthrich, D., Zimmerli, L., Egli, A. and Bassetti, S. (2019) Prosthetic valve endocarditis caused by Pseudomonas aeruginosa with variable antibacterial resistance profiles: A diagnostic challenge. BMC Infectious Diseases 19, 10.1186/s12879-019-4686-831864307https://www.ncbi.nlm.nih.gov/pubmed/31864307
[26]
Habib, G., Lancellotti, P., Antunes, M. J., Bongiorni, M. G., Casalta, J. P., Del Zotti, F., Dulgheru, R., El Khoury, G., Erba, P. A., Iung, B., Miro, J. M., Mulder, B. J., Plonska-Gosciniak, E., Price, S., Roos-Hesselink, J., Snygg-Martin, U., Thuny, F., Tornos Mas, P., Vilacosta, I., Zamorano, J. L. and Group, E. S. C. S. D. (2015) 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). European Heart Journal 36, 3075-3128. 10.1093/eurheartj/ehv31926320109https://www.ncbi.nlm.nih.gov/pubmed/26320109
[27]
Halapas, A., Chrissoheris, M. and Spargias, K. (2014) Challenging transfemoral valve-in-valve implantation in a degenerated stentless bioprosthetic aortic valve. Journal of Invasive Cardiology 26, E106-E108. f4c0919c-9e8b-4530-80ac-77012562dbd0WOS:000342356200001
[28]
Harding, D., Cahill, T. J., Redwood, S. R. and Prendergast, B. D. (2020) Infective endocarditis complicating transcatheter aortic valve implantation. Heart 106, 493. 10.1136/heartjnl-2019-31533831932285https://www.ncbi.nlm.nih.gov/pubmed/31932285
[29]
Head, S. J., Dewey, T. M. and MacK, M. J. (2011) Fungal endocarditis after transfemoral aortic valve implantation. Catheterization and Cardiovascular Interventions 78, 1017-1019. 10.1002/ccd.23038af750934-0d05-4702-9cfe-ddce5f1f92dfhttp://dx.doi.org/10.1002/ccd.23038
[30]
Hozo, S. P., Djulbegovic, B. and Hozo, I. (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Medical Research Methodology 5, 13. 10.1186/1471-2288-5-1315840177https://www.ncbi.nlm.nih.gov/pubmed/15840177
[31]
Johansson, M., Nozohoor, S., Bjursten, H., Ragnarsson, S., Gotberg, M., Kimblad, P. O., Zindovic, I. and Sjogren, J. (2016) Late survival and heart failure after transcatheter aortic valve implantation. Asian Cardiovascular and Thoracic Annals 24, 318-325. 10.1177/021849231663771226966020https://www.ncbi.nlm.nih.gov/pubmed/26966020
[32]
Kaur, S., Misbah Rameez, R., Jaber, W., Griffin, B. P. and Xu, B. (2020) Transcatheter aortic valve replacement associated infective endocarditis: a clinical update. Structural Heart 4, 1-7.
[33]
Kesimci, E., G̈ü̧mus, T., Taştan, S., But, A. and Kanbak, O. (2014) Anesthetic management in aort valve surgery with infective endocarditis following transcatheter aortic valve implantation. Journal of Cardio-Vascular-Thoracic Anaesthesia and Intensive Care Society 20, 129-132. (In Turkish)
[34]
Kodali, S. K., Williams, M. R., Smith, C. R., Svensson, L. G., Webb, J. G., Makkar, R. R., Fontana, G. P., Dewey, T. M., Thourani, V. H., Pichard, A. D., Fischbein, M., Szeto, W. Y., Lim, S., Greason, K. L., Teirstein, P. S., Malaisrie, S. C., Douglas, P. S., Hahn, R. T., Whisenant, B., Zajarias, A., Wang, D., Akin, J. J., Anderson, W. N. and Leon, M. B. (2012) Two-year outcomes after transcatheter or surgical aortic-valve replacement. The New England Journal of Medicine 366, 1686-1695. 10.1056/NEJMoa120038422443479https://www.ncbi.nlm.nih.gov/pubmed/22443479
[35]
Kolte, D., Goldsweig, A., Kennedy, K. F., Abbott, J. D., Gordon, P. C., Sellke, F. W., Ehsan, A., Sodha, N., Sharaf, B. L. and Aronow, H. D. (2018) Comparison of incidence, predictors, and outcomes of early infective endocarditis after transcatheter aortic valve implantation versus surgical aortic valve replacement in the United States. American Journal of Cardiology 122, 2112-2119. 10.1016/j.amjcard.2018.08.05430292332https://www.ncbi.nlm.nih.gov/pubmed/30292332
[36]
Lane, A. B., Cahill, M. S., Letizia, A. G., Hartzell, J. D. and Villines, T. C. (2015) Multimodality imaging of multivalvular endocarditis after transcatheter aortic valve replacement. Journal of Cardiovascular Computed Tomography 9, 68-70. 10.1016/j.jcct.2014.11.00225740417https://www.ncbi.nlm.nih.gov/pubmed/25740417
[37]
Latib, A., Maisano, F., Bertoldi, L., Giacomini, A., Shannon, J., Cioni, M., Ielasi, A., Figini, F., Tagaki, K., Franco, A., Covello, R. D., Grimaldi, A., Spagnolo, P., Buchannan, G. L., Carlino, M., Chieffo, A., Montorfano, M., Alfieri, O. and Colombo, A. (2012) Transcatheter vs surgical aortic valve replacement in intermediate-surgical-risk patients with aortic stenosis: a propensity score-matched case-control study. Am Heart J 164, 910-917. 10.1016/j.ahj.2012.09.00583037efa-c974-4fa2-b072-1a2cc62dc998http://www.sciencedirect.com/science/article/pii/S0002870312006060
[38]
Lee, H. S., Lee, S. P., Jung, J. H., Kim, H. M., Kim, C. H., Park, J. B., Kim, H. K., Kim, Y. J., Kim, H. S. and Sohn, D. W. (2014) Infective endocarditis associated with transcatheter aortic valve replacement: Potential importance of local trauma for a deadly nidus. Journal of Cardiovascular Ultrasound 22, 134-138. 10.4250/jcu.2014.22.3.13425309690https://www.ncbi.nlm.nih.gov/pubmed/25309690
[39]
Lee, J. H., Nam, J. H., Park, J. S. and Lee, D. H. (2019) Early transcatheter aortic valve failure accompanied with leaflet perforation. Korean Circulation Journal 49, 642-643. 10.4070/kcj.2018.045731190481https://www.ncbi.nlm.nih.gov/pubmed/31190481
[40]
Leon, M. B., Smith, C. R., Mack, M. J., Makkar, R. R., Svensson, L. G., Kodali, S. K., Thourani, V. H., Tuzcu, E. M., Miller, D. C., Herrmann, H. C., Doshi, D., Cohen, D. J., Pichard, A. D., Kapadia, S., Dewey, T., Babaliaros, V., Szeto, W. Y., Williams, M. R., Kereiakes, D., Zajarias, A., Greason, K. L., Whisenant, B. K., Hodson, R. W., Moses, J. W., Trento, A., Brown, D. L., Fearon, W. F., Pibarot, P., Hahn, R. T., Jaber, W. A., Anderson, W. N., Alu, M. C. and Webb, J. G. (2016) Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. The New England Journal of Medicine 374, 1609-1620. 10.1056/NEJMoa151461627040324https://www.ncbi.nlm.nih.gov/pubmed/27040324
[41]
Loh, P. H., Bundgaard, H. and Søndergaard, L. (2013) Infective endocarditis following transcatheter aortic valve replacement -: Diagnostic and management challenges. Catheterization and Cardiovascular Interventions 81, 623-627. 10.1002/ccd.2436832963630-486f-45de-8ea9-1b4b630b0433http://dx.doi.org/10.1002/ccd.24368
[42]
Loverix, L., Timmermans, P. and Benit, E. (2013) Successful non-surgical treatment of endocarditis caused by staphylococcus haemolyticus following transcatheter aortic valve implantation (tavi). Acta Clinica Belgica 68, 376-379. 10.2143/ACB.334424579245https://www.ncbi.nlm.nih.gov/pubmed/24579245
[43]
Mack, M. J., Leon, M. B., Smith, C. R., Miller, D. C., Moses, J. W., Tuzcu, E. M., Webb, J. G., Douglas, P. S., Anderson, W. N., Blackstone, E. H., Kodali, S. K., Makkar, R. R., Fontana, G. P., Kapadia, S., Bavaria, J., Hahn, R. T., Thourani, V. H., Babaliaros, V., Pichard, A., Herrmann, H. C., Brown, D. L., Williams, M., Akin, J., Davidson, M. J. and Svensson, L. G. (2015) 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet 385, 2477-2484. 10.1016/S0140-6736(15)60308-725788234https://www.ncbi.nlm.nih.gov/pubmed/25788234
[44]
Mangner, N., Woitek, F., Haussig, S., Schlotter, F., Stachel, G., Hollriegel, R., Wilde, J., Lindner, A., Holzhey, D., Leontyev, S., Mohr, F. W., Schuler, G. and Linke, A. (2016) Incidence, predictors, and outcome of patients developing infective endocarditis following transfemoral transcatheter aortic valve replacement. Journal of the American College of Cardiology 67, 2907-2908. 10.1016/j.jacc.2016.03.58827311532https://www.ncbi.nlm.nih.gov/pubmed/27311532
[45]
Martinez-Selles, M., Bouza, E., Diez-Villanueva, P., Valerio, M., Farinas, M. C., Munoz-Garcia, A. J., Ruiz-Morales, J., Galvez-Acebal, J., Antorrena, I., de la Hera Galarza, J. M., Navas, E. and Munoz, P. (2016) Incidence and clinical impact of infective endocarditis after transcatheter aortic valve implantation. EuroIntervention 11, 1180-1187. 10.4244/EIJY15M02_0525671426https://www.ncbi.nlm.nih.gov/pubmed/25671426
[46]
Montero-Cruces, L., Luque-Díaz, T. S., Ramchandani-Ramchandani, B., Carnero-Alcázar, M. and Maroto-Castellanos, L. C. (2019) Early prosthetic valve endocarditis after transfemoral transcatheter aortic valve implantation. Cirugia Cardiovascular 26, 229-231.
[47]
Mori, Y., Kazuno, Y., Sasaki, S. and Hirokami, M. (2019) Transcatheter aortic valve implantation associated prosthetic valve endocarditis with hypo-attenuated leaflet thickening seen on multislice computed tomography. European Heart Journal - Case Reports 3, ytz010. 10.1093/ehjcr/ytz01031020254https://www.ncbi.nlm.nih.gov/pubmed/31020254
[48]
Morioka, H., Tokuda, Y., Oshima, H., Iguchi, M., Tomita, Y., Usui, A. and Yagi, T. (2019) Fungal endocarditis after transcatheter aortic valve replacement (TAVR): Case report and review of literature. Journal of Infection and Chemotherapy 25, 215-217. 10.1016/j.jiac.2018.08.01730243901https://www.ncbi.nlm.nih.gov/pubmed/30243901
[49]
Moriyama, N., Laakso, T., Biancari, F., Raivio, P., Jalava, M. P., Jaakkola, J., Dahlbacka, S., Kinnunen, E. M., Juvonen, T., Husso, A., Niemela, M., Ahvenvaara, T., Tauriainen, T., Virtanen, M., Maaranen, P., Eskola, M., Rosato, S., Makikallio, T., Savontaus, M., Valtola, A., Anttila, V., Airaksinen, J. and Laine, M. (2019) Prosthetic valve endocarditis after transcatheter or surgical aortic valve replacement with a bioprosthesis: results from the FinnValve Registry. EuroIntervention 15, e500-e507. 10.4244/EIJ-D-19-0024731113766https://www.ncbi.nlm.nih.gov/pubmed/31113766
[50]
Nguyen, T. C., Rice, R. D., Umana-Pizano, J. B. and Loyalka, P. (2019) Minimally invasive removal of an infected Edwards S3 transcatheter aortic valve. Journal of Thoracic and Cardiovascular Surgery 157, e113-e116. 10.1016/j.jtcvs.2018.09.08830901793https://www.ncbi.nlm.nih.gov/pubmed/30901793
[51]
Ochiai, T., Tanaka, Y., Aso, K., Shishido, K., Hachinohe, D., Sugitatsu, K., Yamanaka, F. and Saito, S. (2016) Rapid diagnosis of prosthetic valve endocarditis from Janeway lesions in a transcatheter aortic valve implantation patient. Journal of Cardiology Cases 13, 63-66. 10.1016/j.jccase.2015.10.00730524558https://www.ncbi.nlm.nih.gov/pubmed/30524558
[52]
Ohori, S., Fujita, K., Morimoto, K., Suzuki, M., Baba, T., Yokoyama, H., Nomura, F., Ohkawa, Y., Sugiki, K. and Ohno, T. (2018) Surgical treatment of acute infective endocarditis after transcatheter aortic valve replacement. Kyobu Geka 71, 929-931. (In Japanese) 30310004https://www.ncbi.nlm.nih.gov/pubmed/30310004
[53]
Olsen, N. T., De Backer, O., Thyregod, H. G. H., Vejlstrup, N., Bundgaard, H., Søndergaard, L. and Ihlemann, N. (2015) Prosthetic valve endocarditis after transcatheter aortic valve implantation. Circulation: Cardiovascular Interventions 8, e001939.
[54]
Olsthoorn, J. R., Lam, K. and Verberkmoes, N. J. (2019) Endocarditis after transcatheter aortic valve replacement; a new nightmare in cardiac surgery. Journal of Cardiac Surgery 34, 1420-1421. 10.1111/jocs.1425731523842https://www.ncbi.nlm.nih.gov/pubmed/31523842
[55]
Pabilona, C., Gitler, B., Lederman, J. A., Miller, D. and Keltz, T. N. (2015) Prosthetic valve endocarditis with valvular obstruction after transcatheter aortic valve replacement. Texas Heart Institute 42, 172-174.
[56]
Pichard, S., Gibault-Genty, G., Vienet-Legue, A., Baron, N., Convers-Domart, R., Georges, J. L. and Livarek, B. (2017) Complicated transcatheter aortic-valve endocarditis with abscess and pseudoaneurysm: Value of the ECG-gated multidetector computed tomography angiography. Annales de Cardiologie et d'Angeiologie 66, 338-342. (In French) 10.1016/j.ancard.2017.09.00729050736https://www.ncbi.nlm.nih.gov/pubmed/29050736
[57]
Puls, M., Eiffert, H., Hünlich, M., Schöndube, F., Hasenfuß, G., Seipelt, R. and Schillinger, W. (2013) Prosthetic valve endocarditis after transcatheter aortic valve implantation: The incidence in a single-centre cohort and reflections on clinical, echocardiographic and prognostic features. EuroIntervention 8, 1407-1418. 10.4244/EIJV8I12A214097d7370-a02d-49a3-a369-eb0e9d2e3b83http://dx.doi.org/10.4244/EIJV8I12A214
[58]
Rafiq, I., Parthasarathy, H., Tremlett, C., Freeman, L. J. and Mullin, M. (2011) Infective endocarditis caused by Moraxella nonliquefaciens in a percutaneous aortic valve replacement. Cardiovascular Revascularization Medicine 12, 184-186. 10.1016/j.carrev.2010.03.082ece6d00c-e24f-4507-8a3d-8bbac3826b3ehttp://www.sciencedirect.com/science/article/pii/S1553838910001272
[59]
Reardon, M. J., Adams, D. H., Kleiman, N. S., Yakubov, S. J., Coselli, J. S., Deeb, G. M., Gleason, T. G., Lee, J. S., Hermiller, J. B., Chetcuti, S., Heiser, J., Merhi, W., Zorn, G. L., Tadros, P., Robinson, N., Petrossian, G., Hughes, G. C., Harrison, J. K., Maini, B., Mumtaz, M., Conte, J. V., Resar, J. R., Aharonian, V., Pfeffer, T., Oh, J. K., Qiao, H. and Popma, J. J. (2015) 2-Year outcomes in patients undergoing surgical or self-expanding transcatheter aortic valve replacement. Journal of the American College of Cardiology 66, 113-121. 10.1016/j.jacc.2015.05.01726055947https://www.ncbi.nlm.nih.gov/pubmed/26055947
[60]
Regueiro, A., Linke, A., Latib, A., Ihlemann, N., Urena, M., Walther, T., Husser, O., Herrmann, C., Nombela-Franco, L., Cheema, A., Le Breton, H., Stortecky, S., Kapadia, S., Bartorelli, L., Sinning, J. M., Amat-Santos, I., Munoz-Garcia, J., Lerakis, S., Gutierrez-Ibanes, E., Abdel-Wahab, M., Tchetche, D., Testa, L., Eltchaninoff, H., Livi, U., Castillo, J. C., Jilaihawi, H., Webb, G., Barbanti, M., Kodali, S., de Brito Jr, S., Ribeiro, B., Miceli, A., Fiorina, C., Actis Dato, G. M., Rosato, F., Serra, V., Masson, J. B., Wijeysundera, C., Mangione, A., Ferreira, M. C., Lima, C., Carvalho, A., Abizaid, A., Marino, A., Esteves, V., Andrea, C. M., Messika-Zeitoun, D., Himbert, D., Kim, W. K., Pellegrini, C., Auffret, V., Nietlispach, F., Pilgrim, T., Durand, E., Lisko, J., Makkar, R., Lemos, P., Leon, B., Puri, R., San Roman, A., Vahanian, A., Sondergaard, L., Mangner, N. and Rodes-Cabau, J. (2019) Infective endocarditis following transcatheter aortic valve replacement: comparison of balloon- versus self-expandable valves. Circulation: Cardiovascular Interventions 12, e007938.
[61]
Regueiro, A., Linke, A., Latib, A., Ihlemann, N., Urena, M., Walther, T., Husser, O., Herrmann, H. C., Nombela-Franco, L., Cheema, A. N., Le Breton, H., Stortecky, S., Kapadia, S., Bartorelli, A. L., Sinning, J. M., Amat-Santos, I., Munoz-Garcia, A., Lerakis, S., Gutierrez-Ibanes, E., Abdel-Wahab, M., Tchetche, D., Testa, L., Eltchaninoff, H., Livi, U., Castillo, J. C., Jilaihawi, H., Webb, J. G., Barbanti, M., Kodali, S., de Brito, F. S., Jr., Ribeiro, H. B., Miceli, A., Fiorina, C., Dato, G. M., Rosato, F., Serra, V., Masson, J. B., Wijeysundera, H. C., Mangione, J. A., Ferreira, M. C., Lima, V. C., Carvalho, L. A., Abizaid, A., Marino, M. A., Esteves, V., Andrea, J. C., Giannini, F., Messika-Zeitoun, D., Himbert, D., Kim, W. K., Pellegrini, C., Auffret, V., Nietlispach, F., Pilgrim, T., Durand, E., Lisko, J., Makkar, R. R., Lemos, P. A., Leon, M. B., Puri, R., San Roman, A., Vahanian, A., Sondergaard, L., Mangner, N. and Rodes-Cabau, J. (2016) Association between transcatheter aortic valve replacement and subsequent infective endocarditis and in-hospital death. JAMA 316, 1083-1092. 10.1001/jama.2016.1234727623462https://www.ncbi.nlm.nih.gov/pubmed/27623462
[62]
Rodriguez-Vidigal, F. F., Nogales-Asensio, J. M., Calvo-Cano, A., Gonzalez-Fernandez, R., Martinez-Carapeto, A., Gomez-Sanchez, I., Bengla-Limpo, B., Merchan-Herrera, A., Nogales-Munoz, N., Vera-Tome, A., Munoz-Sanz, A. and Lopez-Minguez, J. R. (2018) Infective endocarditis after transcatheter aortic valve implantation: Contributions of a single-centre experience on incidence and associated factors. Enfermedades Infecciosas y Microbiología Clínica 37, 428-434. 10.1016/j.eimc.2018.09.009https://linkinghub.elsevier.com/retrieve/pii/S0213005X18302696
[63]
Ruchonnet, E. P., Roumy, A., Rancati, V. and Kirsch, M. (2019) Prosthetic valve endocarditis after transcatheter aortic valve implantation complicated by paravalvular abscess and treated by pericardial patches and sutureless valve replacement. Heart Surgery Forum 22, E155-E158. 10.1532/hsf.234731013227https://www.ncbi.nlm.nih.gov/pubmed/31013227
[64]
Russo, M., Golia, E., Calabro, P., Morioka, H., Tokuda, Y., Oshima, H., Iguchi, M., Tomita, Y., Usui, A. and Yagi, T. (2019) Fungal endocarditis after transcatheter aortic valve replacement (TAVR): Case report and review of literature. Angiology 25, 215-217.
[65]
Santarpino, G., Fischlein, T. and Pfeiffer, S. (2013) Prosthetic valve endocarditis 6 months after transcatheter aortic valve implantation. Giornale Italiano di Cardiologia 14, 138-140. (In Italian) 10.1714/1218.1352723389317https://www.ncbi.nlm.nih.gov/pubmed/23389317
[66]
Sari, C., Durmaz, T., Karaduman, B. D., Keles, T., Bayram, H., Bastug, S., Ozen, M. B., Bayram, N. A., Bilen, E., Ayhan, H., Kasapkara, H. A. and Bozkurt, E. (2016) Prosthetic valve endocarditis 7 months after transcatheter aortic valve implantation diagnosed with 3D TEE. Hellenic Journal of Cardiology 57, 119-123. 10.1016/j.hjc.2015.03.00127445028https://www.ncbi.nlm.nih.gov/pubmed/27445028
[67]
Scisło, P., Grodecki, K., Wilimski, R., Rymuza, B., Kochman, J., Opolski, G. and Huczek, Z. (2019) Different types of endocarditis after transcatheter aortic valve implantation. Echocardiography 36, 1132-1138. 10.1111/echo.1434631012135https://www.ncbi.nlm.nih.gov/pubmed/31012135
[68]
Seok Koh, Y., Hyoung Moon, M., Hyun Jo, K. and Wook Kim, H. (2014) Infective endocarditis in transcatheter aortic valve implantation. European Journal of Cardio-Thoracic Surgery 45, 582. 10.1093/ejcts/ezt3122380350746d84420-742e-40b1-933f-47496f65031bhttps://www.ncbi.nlm.nih.gov/pubmed/23803507
[69]
Shehada, S. E., Wendt, D., Peters, D., Mourad, F., Marx, P., Thielmann, M., Kahlert, P., Lind, A., Janosi, R. A., Rassaf, T., Rath, P. M., Thoenes, M., Jakob, H. and Gabry, M. E. (2018) Infections after transcatheter versus surgical aortic valve replacement: Mid-term results of 200 consecutive patients. Journal of Thoracic Disease 10, 4342-4352. 10.21037/jtd.2018.06.5430174882https://www.ncbi.nlm.nih.gov/pubmed/30174882
[70]
Smith, C. R., Leon, M. B., Mack, M. J., Miller, D. C., Moses, J. W., Svensson, L. G., Tuzcu, E. M., Webb, J. G., Fontana, G. P., Makkar, R. R., Williams, M., Dewey, T., Kapadia, S., Babaliaros, V., Thourani, V. H., Corso, P., Pichard, A. D., Bavaria, J. E., Herrmann, H. C., Akin, J. J., Anderson, W. N., Wang, D. and Pocock, S. J. (2011) Transcatheter versus surgical aortic-valve replacement in high-risk patients. The New England Journal of Medicine 364, 2187-2198. 10.1056/NEJMoa110351021639811https://www.ncbi.nlm.nih.gov/pubmed/21639811
[71]
Søndergaard, L., Ihlemann, N., Capodanno, D., Jørgensen, T. H., Nissen, H., Kjeldsen, B. J., Chang, Y., Steinbrüchel, D. A., Olsen, P. S., Petronio, A. S. and Thyregod, H. G. H. (2019) Durability of transcatheter and surgical bioprosthetic aortic valves in patients at lower surgical risk. Journal of the American College of Cardiology 73, 546-553. 10.1016/j.jacc.2018.10.08330732707https://www.ncbi.nlm.nih.gov/pubmed/30732707
[72]
Sugimura, Y., Katahira, S., Lopez, R. L., Rellecke, P., Lichtenberg, A. and Akhyari, P. (2019) Surgical aortic valve replacement due to infective endocarditis after transcatheter aortic valve implantation with the self-expanding Portico valve prosthesis. Annals of Cardiothoracic Surgery 8, 699-701. 10.21037/acs.2019.05.0731832365https://www.ncbi.nlm.nih.gov/pubmed/31832365
[73]
Sulženko, J., Toušek, P. and Línková, H. (2014) Infective endocarditis as a mid-term complication after transcatheter aortic valve implantation: Case report and literature review. Catheterization and Cardiovascular Interventions 84, 311-315. 10.1002/ccd.254544ce3f5ac-d847-4e01-90b7-5f37bbc410f4http://dx.doi.org/10.1002/ccd.25454
[74]
Summers, M. R., Leon, M. B., Smith, C. R., Kodali, S. K., Thourani, V. H., Herrmann, H. C., Makkar, R. R., Pibarot, P., Webb, J. G., Leipsic, J., Alu, M. C., Crowley, A., Hahn, R. T., Kapadia, S. R., Tuzcu, E. M., Svensson, L., Cremer, P. C. and Jaber, W. A. (2019) Prosthetic valve endocarditis after TAVR and SAVR: Insights from the PARTNER trials. Circulation 140, 1984-1994. 10.1161/CIRCULATIONAHA.119.04139931690104https://www.ncbi.nlm.nih.gov/pubmed/31690104
[75]
Takimoto, S., Minakata, K., Yamazaki, K., Hirao, S., Watanabe, K., Saito, N., Imai, M., Watanabe, S., Watanabe, H., Daijo, H., Kimura, T. and Sakata, R. (2015) Successful surgical aortic valve replacement for prosthetic valve infective endocarditis following transcatheter aortic valve implantation. Journal of Cardiology Cases 12, 20-22. 10.1016/j.jccase.2015.03.01230546564https://www.ncbi.nlm.nih.gov/pubmed/30546564
[76]
Thourani, V. H., Kodali, S., Makkar, R. R., Herrmann, H. C., Williams, M., Babaliaros, V., Smalling, R., Lim, S., Malaisrie, S. C., Kapadia, S., Szeto, W. Y., Greason, K. L., Kereiakes, D., Ailawadi, G., Whisenant, B. K., Devireddy, C., Leipsic, J., Hahn, R. T., Pibarot, P., Weissman, N. J., Jaber, W. A., Cohen, D. J., Suri, R., Tuzcu, E. M., Svensson, L. G., Webb, J. G., Moses, J. W., Mack, M. J., Miller, D. C., Smith, C. R., Alu, M. C., Parvataneni, R., D'Agostino, R. B., Jr. and Leon, M. B. (2016) Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: a propensity score analysis. Lancet 387, 2218-2225. 10.1016/S0140-6736(16)30073-327053442https://www.ncbi.nlm.nih.gov/pubmed/27053442
[77]
Thyregod, H. G., Steinbruchel, D. A., Ihlemann, N., Nissen, H., Kjeldsen, B. J., Petursson, P., Chang, Y., Franzen, O. W., Engstrom, T., Clemmensen, P., Hansen, P. B., Andersen, L. W., Olsen, P. S. and Sondergaard, L. (2015) Transcatheter versus surgical aortic valve replacement in patients with severe aortic valve stenosis: 1-year results from the all-comers NOTION randomized clinical trial. Journal of the American College of Cardiology 65, 2184-2194. 10.1016/j.jacc.2015.03.01425787196https://www.ncbi.nlm.nih.gov/pubmed/25787196
[78]
Valdes, C., Tomas, I., Alvarez, M., Limeres, J., Medina, J. and Diz, P. (2008) The incidence of bacteraemia associated with tracheal intubation. Anaesthesia 63, 588-592. 10.1111/j.1365-2044.2008.05449.x18477269https://www.ncbi.nlm.nih.gov/pubmed/18477269
[79]
Vongpatanasin, W., Hillis, L. and Lange, R. (1996) Prosthetic heart valves. New England Journal of Medicine 335, 407-416. 10.1056/NEJM1996080833506078676934https://www.ncbi.nlm.nih.gov/pubmed/8676934
[80]
Waksman, R., Rogers, T., Torguson, R., Gordon, P., Ehsan, A., Wilson, S. R., Goncalves, J., Levitt, R., Hahn, C., Parikh, P., Bilfinger, T., Butzel, D., Buchanan, S., Hanna, N., Garrett, R., Asch, F., Weissman, G., Ben-Dor, I., Shults, C., Bastian, R., Craig, P. E., Garcia-Garcia, H. M., Kolm, P., Zou, Q., Satler, L. F. and Corso, P. J. (2018) Transcatheter aortic valve replacement in low-risk patients with symptomatic severe aortic stenosis. Journal of the American College of Cardiology 72, 2095-2105. 10.1016/j.jacc.2018.08.103330170075https://www.ncbi.nlm.nih.gov/pubmed/30170075
[81]
Weintrob, A. C., Roediger, M. P., Barber, M., Summers, A., Fieberg, A. M., Dunn, J., Seldon, V., Leach, F., Huang, X. Z., Nikolich, M. P. and Wortmann, G. W. (2010) Natural history of colonization with gram-negative multidrug-resistant organisms among hospitalized patients. Infect Control Hosp Epidemiol 31, 330-337. 10.1086/65130420175687https://www.ncbi.nlm.nih.gov/pubmed/20175687
[82]
Wilbring, M., Tugtekin, S. M., Matschke, K. and Kappert, U. (2014) Surgery for fulminant prosthetic valve endocarditis after transapical transcatheter aortic valve-in-valve implantation. Thoracic and Cardiovascular Surgeon 62, 80-82. 10.1055/s-0032-133022595b2afe4-bfe2-4608-a407-15cc14ad27d1http://dx.doi.org/10.1055/s-0032-1330225
[83]
Wong, D. R., Boone, R. H., Thompson, C. R., Allard, M. F., Altwegg, L., Carere, R. G., Cheung, A., Ye, J., Lichtenstein, S. V., Ling, H. and Webb, J. G. (2009) Mitral valve injury late after transcatheter aortic valve implantation. Journal of Thoracic and Cardiovascular Surgery 137, 1547-1549. 10.1016/j.jtcvs.2008.06.01819464478https://www.ncbi.nlm.nih.gov/pubmed/19464478
[84]
Yeo, I., Kim, L. K., Park, S. O. and Wong, S. C. (2018) In-hospital infective endocarditis following transcatheter aortic valve replacement: a cross-sectional study of the National Inpatient Sample database in the USA. Journal of Hospital Infection 100, 444-450. 10.1016/j.jhin.2018.05.01429803809https://www.ncbi.nlm.nih.gov/pubmed/29803809
Publisher’s Note: IMR Press stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Share
Back to top