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In autoimmune diseases like rheumatoid arthritis (RA), mul-
tidrug resistance (MDR) transporters of the ATP-binding
cassette (ABC) transporter superfamily harbor dual func-
tions by extruding pro-inflammatory mediators and export-
ing disease modifying antirheumatics drugs (DMARDs),
hence contributing to diminished treatment response.
Herein we defermined the expression (MRNA/protein)
and functional efflux activities of multiple selected ABC
transporters in immune-effector cells of RA patients in re-
lation to DMARD response. ABC transporter profiling
included ABCB1 (P-glycoprotein), ABCC1-6/ABCC10-12
(multidrug resistance proteins 1-9) and ABCG2 (Breast
Cancer Resistance Protein). Analyses were performed
in peripheral blood lymphocytes (PBL) and monocyte-
derived macrophages (MDM) obtained from 52 RA pa-
tients (DMARD-naive and DMARD (non)-responders) and
HC (n = 19) using PCR, immunohistochemistry and flow cy-
tometry. Notwithstanding the large inter-patient variabili-
ties, PBLs from RA patients displayed significantly higher
mRNA levels of ABCC1 (2.140old), ABCC4 (1.6+old) and
ABCCI10 (1.9-old) compared with HC. Expression levels
of ABCB1, ABCC1, ABCC4 and ABCCI10 were signif-
icantly and positively correlated with each other. Fur-
thermore, significantly increased ABCG2 mRNA (2.8-
fold) and protein levels (2.4-fold) were observed in MDM
from RA patients compared to HC. Additional analyses
revealed that a 1.8-fold increased functional activity of
ABCB1 in CD3+ cells in RA patients receiving DMARD
treatment versus DMARD-naive patients, was exclusively
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contributed by DMARD non-responders. Although up to
1.7fold higher levels of MDR mRNA levels were noted
in PBL of DMARD non-responders over DMARD respon-
ders, these differences were not statistically significant. To-
gether, these results underscore the involvement of multiple
ABC transporters in immune-competent cells in relation to

RA and DMARD response.
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1. Introduction

Rheumatoid arthritis (RA) is a common autoimmune disease
characterized by chronic inflammation of the synovial joints and
infiltration by blood-derived inflammatory cells, e.g. T-cells, B-
cells and macrophages [1, 2]. From a therapeutic perspective,
Disease Modifying Anti-Rheumatic Drugs (DMARD:s), either as
single drug or in combination, find widespread application as
first line treatment option [2, 4, 5, 6]. In addition, the DMARD
methotrexate (MTX) is commonly used in combination schedules
with other DMARDs and biological agents [7, 8, 9, 10, 11, 12].
Monotherapy with a DMARD is initially successful in about 50-
60% of RA patients, depending on the specific anti-theumatic drug
used [13]. However, despite chronic treatment with DMARDs,
reactivation of inflammation often occurs, indicating that these
drugs lose their efficacy over time [14, 15, 16, 17, 18, 19, 20]. In
this respect, it has been recognized that RA patients remain on the
anchor drug MTX for a median period of 5-6 years, whereas for
the DMARDs (hydroxy)chloroquine ((h) CHQ) or sulfasalazine
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Fig. 1. Functional efflux activity of ABC transporters and relative mRNA expression in peripheral blood lymphocytes and CD3+ cells from RA
patients and healthy controls. (A) Functional efflux activity of ABCB1, ABCG2 and ABCC]1 in peripheral blood lymphocytes and (B) CD3+ cells in RA
patients and controls. (C) Relative mRNA expression of ABCB1, ABCG2 and ABCCI1 in peripheral blood lymphocytes from RA patients and controls,
and (D) Relative mRNA expression of ABCC2-6 and ABCC10 in peripheral blood lymphocytes from RA patients and controls. ABCC11 and ABCC12
mRNA levels were below the limit of detection. Data are presented in box plots, where the boxes represent the 25th to 75thpercentiles, the lines within

the boxes represent the median, and the lines outside the boxes represent the 10th and 90th percentiles. Statistically significant differences between RA

patients and HC are indicated with an asterisk when P < 0.05 or ** when P < 0.01. ABC transporter efflux activity was expressed as an Activity Index

(AI) by comparing the mean fluorescence level in the presence of the appropriate inhibitor with the fluorescence level in the absence of the inhibitor.

(SSZ) this period is much shorter being typically one to two years
[15, 16]. Apart from loss of efficacy, adverse effects are another
common reason for switching to other DMARDs or biological
agents [21, 22]. Currently, it is still an unresolved issue whether
tapering of DMARD efficacy is mechanistically associated with
the development of cellular drug resistance.

One important mechanism of drug resistance is based on cel-
lular extrusion of drugs, an efflux process that is mediated by spe-
cific members of the family of ATP-Binding Cassette (ABC) pro-
teins [23, 24, 25, 26, 27, 28, 29, 30]. These extrusion proteins me-
diate drug efflux thereby conferring multidrug resistance (MDR)
to a wide range of structurally and mechanistically unrelated drugs.
Resistance to several anticancer drugs has been associated with
overexpression of specific MDR proteins, including ABCB1 (P-
glycoprotein, P-gp, MDR1), ABCC1-6 and ABCC10-12 (Mul-
tidrug Resistance Proteins (MRP) 1-9) and ABCG2 (Breast Can-

48

cer Resistance Protein, BCRP) [31, 32, 33, 34, 35, 36, 37, 38,
39, 40]. Next to anticancer drugs, there is also cumulative ev-
idence, mostly based on in vitro data, that several DMARDs are
also potential transport substrates of ABC drug efflux transporters
and, upon chronic drug treatment they induce upregulation of se-
lected ABC transporters [24]. Specifically, MTX is known to be
transported by several ABC transporters, including ABCC1-5 and
ABCG2, while CHQ was identified as a transport substrate for
ABCCI1 whereas both SSZ and leflunomide were ABCG2 trans-
port substrates [41, 42, 43, 44, 45]. Moreover, studies with T-cell
subsets from RA patients revealed that efflux and resistance to
glucocorticoids can be mediated by enhanced activity of ABCB1
[46, 47, 48, 49, 50]. A putative role for ABCB1 was also sug-
gested in conferring drug resistance to MTX [50, 51]; however,
due to its anionic nature, MTX is apparently not a substrate for
ABCBI1 [24, 37]. Recently, we showed that the ABC transporters

Oerlemans et al.



ABCG?2 and to a minor extent ABCC1 were expressed on synovial
tissue macrophages from RA patients; this correlated with an at-
tenuated response to MTX and leflunomide [52]. It is now being
appreciated that various ABC transporters can be differentially ex-
pressed in immune-effector cells where they may have dual func-
tions; on the one hand they may neutralize potential toxic effects of
xenobiotic environmental compounds [25, 53], while on the other
hand they may facilitate the extrusion of intracellular substrates
that serve as mediators of immunological and inflammatory pro-
cesses [54].

Taken together, there is consensus that ABC transporters could
play a role in DMARD resistance. Since thus far most studies
on this topic either focussed on one specific ABC transporters or
specific cell types, there is a need to extend these studies to mul-
tiple MDR/ABC transporters on immune cells derived from RA
patients in relation to clinical status of DMARD (non) responsive-
ness [55]. For this purpose, we herein determined the expression
levels of key ABC transporters (ABCB1, ABCC1-6, ABCCI10-
12 and ABCG2) on peripheral blood lymphocytes (PBLs) and
monocyte-derived macrophages (M@) from HC and RA patients
and assessed whether or not these parameters correlated with the
clinical response to DMARD:s.

2. Materials and Methods
2.1 Reagents

Iscove's modified Dulbecco's medium (IMDM) and fetal calf
serum (FCS) were obtained from Gibco Chemical Co (Grand Is-
land NY, USA). The ABCG2 inhibitor Ko143 was kindly pro-
vided by Prof. G. J. Koomen (University of Amsterdam, Ams-
terdam, The Netherlands) and the ABCCI1 inhibitor MK571 and
the ABCBI inhibitor Reversin-121 (P121) were obtained from
Alexis Benelux, Breda, The Netherlands. The BCRP substrate
bodipy-prazosin, the ABCB1 substrate Sytol6 and the ABCCl1
substrate Calcein-AM were obtained from Invitrogen, Breda, The
Netherlands. Fluorescein isothiocyanate (FITC)-conjugated CDS8
and phycoerythrin (PE)-conjugated CD3, CD4, CD20 and CD25
were obtained from Becton-Dickinson (Alphen aan den Rijn, The
Netherlands).
was obtained from R&D systems (Minneapolis, USA).

2.2 Subjects

During the period 2002-2006, blood samples were obtained
from 52 patients fulfilling the American College of Rheumatism
(ACR) criteria for RA and 19 healthy individuals. The clinical
disease activity of the RA patients was determined by using the

Macrophage colony stimulating factor (M-CSF)

disease activity score evaluating 28 joints (DAS28) [56]. Subjects
were categorized into four sub-groups: (1) Healthy controls (HC),
(2) DMARD-naive RA patients (defined as not receiving any
DMARD therapy in the present and past), (3) DMARD-responders
(defined as having a DAS28 score < 3.2 under DMARD therapy)
and (4) DMARD non-responders (defined as having a DAS28 of
> 3.2 under DMARD therapy as described before [57]). Patients
taking DMARDs were on a stable dose for at least 3 months. Pa-
tients taking glucocorticoids within 3 months before entering the
study were excluded. The study protocol entitled "DMARD re-
sistance' was approved by the local Medical Ethics Committee of
the VU University Medical Centre (Amsterdam, The Netherlands)
and all subjects gave written informed consent before entering the
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study.

2.3 Isolation of Blood Mononuclear Cells (PBMCs) and
Culture Conditions

Peripheral blood mononuclear cells (PBMCs) were isolated
from freshly obtained blood samples by gradient centrifugation
(35 minutes at 400x g) on Ficoll-Paque Plus (Amersham Bio-
sciences, Amersham, UK) according to the manufacturer's instruc-
tions. After centrifugation, the interphase was carefully collected
and washed 3 times using phosphate-buffered saline (PBS) supple-
mented with 1% BSA. The lymphocyte fraction was counted and
resuspended in IMDM culture medium supplemented with 10%
FCS, 2 mM L-glutamine and 100 pg/ml penicillin and strepto-
mycin. Monocytes were isolated by adherence after 2 hours of in-
cubation at 37 °C in culture flasks followed by RNA extraction. A
portion of the adhered monocytes were used for macrophage (M)
differentiation by culturing the monocytes for 7 days in the pres-
ence of 50 ng/ml M-CSF and RNA was extracted. Peripheral blood
lymphocytes (PBLs) remaining in the suspension after monocyte
adherence were collected for analysis of ABC transporter mRNA
expression and functional efflux activity of ABC transporters.

2.4 Assessment of ABCBI, ABCCI and ABCG2 Efflux Ac-
tivity by Flow Cytometry

Measurement of ABCB1, ABCC1 and ABCG?2 transport ac-
tivity was performed essentially as previously described [58, 59].
Assays were validated using human cell lines overexpressing either
ABCC1 (GLC4/ADR [60]), ABCB1 (CEM/VBL [61]) or ABCG2
(MCF7/MR [62]). In short, cells were incubated in a total volume
of 500 pL at a cell density of 3 x 10° cells/ml for 60 minutes in
a 37 °C water bath in the presence of a fluorescent transport sub-
strate; Calcein-AM (4 nM), Syto16 (1 nM) and Bodipy-prazosin
(25 nM) for the detection of ABCC1, ABCB1 and ABCG2 efflux
activities, respectively. To measure functional ABC transporter-
mediated efflux activity, cells were also incubated with specific
transport inhibitors; MK571 (50 uM), P121 (10 uM) and Ko143
(200 nM) for the inhibition of ABCC1, ABCBI1 and ABCG?2,
respectively. After incubation with the chromophoric substrates
alone or in the presence of the specific transport inhibitor, cells
were washed twice using ice-cold PBS supplemented with 0.1%
bovine serum albumin (BSA) and kept on ice protected from light
for 30 minutes. Flow cytometric analysis was performed using
a FACS Scan (Becton Dickinson) equipped with a 488-nm argon
laser with 530 nm (FL1), 585 nm (FL2) and a 670 nm (FL3) band
pass filter. Cell Quest software (Becton Dickinson) was used for
data acquisition and analysis. ABC/MDR transporter activity was
expressed as an Activity Index (AI) described by the following for-
mula:

Al= Mean Fluorescence level in the presence of inhibitor-non-loaded cells (1)

Mean Fluorescence level in the absence of inhibitor-non-loaded cells

An index of > 1.10 is representative for functional MDR efflux
activity.

2.5 Isolation of RNA and Real-Time PCR Analysis

RNA from PBLs and M¢ was isolated using the Qiagen
RNeasy Plus isolation kit (Qiagen, Hilden, Germany) according
to the instructions of the manufacturer. Total RNA concentra-
tions were determined using a Nanodrop ND-1000 spectropho-
tometer (Nanodrop Technologies, Wilmington, USA). RNA was
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reverse-transcribed to copy DNA (cDNA) using random hexam-
ers as described previously [63] using 1 pug of RNA. Real time
PCR analysis was performed using the LightCycler 2.0 (LC) in-
strument (Roche Diagnostics, Penzberg, Germany) and Hybridiza-
tion Probes, essentially as described earlier [64]. All samples
were tested by using the LightCycler FastStart DNA MasterPLUS
HybProbe kit (Roche Diagnostics) according to manufacturer's
recommendations. PCR reactions were performed in duplicates
using 5 ul cDNA, equivalent to 20 ng RNA, which was added
to 15 ul of reaction mixture in a final volume of 20 ul. The
primers and probes were as previously published [65, 66]. The
primer/probe sequences and their concentrations are depicted in
the Supplementary Table S1. The PCR program for all targets
consisted of an initial denaturation step at 95 °C for 10 min and
45 cycles of warming up to 95 °C, immediately followed by 15 s
at 60 °C. After the final cycle, capillaries were cooled for 30 s at
40 °C. Fluorescence curves were analyzed with the LC software
(version LCS4 4.0.5.415). This software uses the second deriva-
tive maximum method to calculate the fractional cycle numbers
where the fluorescence signals are above background (crossing
point, CP), being the point at which the rate of change of fluo-
rescence is greatest. The relative mRNA expression levels of the
target genes were calculated using Qbase analysis software [67]
in which -glucuronidase (GUS) and GAPDH were used as con-
trol housekeeping genes. For correction of inter-run variation,
a calibrator sample based on a cDNA pool derived from vari-
ous ABC transporter-overexpressing human cell lines, including
2008/MRP1-3 (ABCC1-3), HEK/MRP4-7 (ABCC4-6, ABCC10),
MCF7/MR (ABCG2), CEM/VBL (ABCBI1), was used in every
PCR analysis. The calibrator sample was also used as a reference
sample, to calculate the relative mRNA expression levels in all
tested samples.

2.6 Immunohistochemistry

Immunohistochemistry was performed as previously described
[68, 69] and all antibody dilutions were prepared in PBS sup-
plemented with 1% (w/v) BSA. In short, cytocentrifuge prepara-
tions with 20,000 cells/spot were air-dried overnight and fixed with
100% acetone for 10 minutes. Non-specific binding sites were
blocked for 30 minutes at room temperature with PBS contain-
ing 5% normal rabbit serum (DakoCytomation). Next, cells were
incubated for one hour at room temperature with primary mono-
clonal antibodies against ABCG2 (BXP-21, 1 : 50 and BXP-53, 1
: 25) [68], ABCB1 (JSB-1, 1 : 25) [70], ABCC1 (MRPrl, 1 : 50)
[69], ABCC2 (M211I6, 1 : 50) [69], ABCC4 (M4110, 1 : 50) [69],
ABCC5 (M5I1, 1 : 50) [69]) and ABCC6 (M6II3, 1 : 25) [69]
together with the appropriate negative controls, IgG subclass with
appropriate secondary antibody. The slides were then washed 3
times in PBS and incubated with biotinylated rabbit-anti-mouse
(1: 150, DakoCytomation) or biotinylated rabbit-anti-rat (1 : 100,
DakoCytomation) as secondary antibody. After one hour of incu-
bation at room temperature, the slides were washed 3 times in PBS
and incubated with streptavidin conjugated to horseradish peroxi-
dase (1 : 500; Zymed, San Francisco, CA) for 30 minutes. After
washing 5 times with PBS, bound peroxidase was developed with
0.02% (w/v) 3-amino-9-ethylcarbazole and 0.02% (v/v) H,O, in
0.1 M sodium acetate (pH 5.0) and nuclei were stained with hema-
toxylin. The staining results were scored by determining staining
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intensity of 100 cells utilizing the following scores: 0 (negative
cells), 1 (weakly positive cells), 2 (positive cells) and 3 (strongly
positive cells). The total scores ranged from 0 (100% x 0) to 3.0
(100% x 3).

2.7 Statistical Analysis

Statistical analyses for 2-group comparisons were performed
using Student's #-test or Mann-Whitney U test, where appropriate.
Correlation analyses were performed using a Pearson or Spearman
test, where appropriate. These data were analyzed using GraphPad
Prism 5.01 software. A two-tailed P-value < 0.05 was considered
to be statistically significant.

3. Results
3.1 Patient Demographics

Blood was obtained from 52 RA patients and 19 HC and their
baseline characteristics are summarized in Table 1. Nine RA pa-
tients were DMARD-naive with an average DAS28 score of 5.2 &
1.2 (SD). DMARD responder and non-responder groups included
15 and 28 patients with an average DAS28 score of 2.2 £ 0.7 and
4.8 £ 0.6), respectively. Mean treatment duration was 27 months
(SD = 36) and 43 months (SD = 40) for patients in the DMARD
responder and non-responder group, respectively. Among the ma-
jority of the RA patients, 36 out of 43, MTX was included in the
treatment schedule. Mean age was not significantly different be-
tween the selected groups.
3.2 MDR Transporter Expression and Efflux Activities in

Peripheral Blood Lymphocytes from RA Patients

Flow cytometry with fluorescent substrates was used to deter-
mine the functional activities of ABCB1, ABCC1 and ABCG2 in
PBLs (Fig. 1A) and in CD3+ cells (Fig. 1B) from RA patients and
HC. ABCB1 and ABCCI1 efflux activities were readily detectable
in all tested samples of both PBL and CD3+ fractions of periph-
eral blood cells, whereas ABCG2 activity was below the pre-set
threshold indicative for functional efflux activity; activity index >
1.1. Mean values for the transport activity index (Al) of ABCB1
activity were slightly higher in PBLs and significantly higher in
CD3+ cells of RA patients vs. controls (Al: 2.6 vs. 2.0, P =0.058
and Al: 2.4 vs. 1.7, P = 0.012). Consistently, the mean ABCB1
mRNA levels relative to GUS, were significantly higher in RA pa-
tients vs. controls (ratio: 2.5 vs. 1.9, P = 0.009; Fig. 1C). Regard-
ing ABCC1 and ABCG2, very low and no significant differences
were observed in functional efflux activities between PBLs and
the CD3+ fraction from RA patients and HC (AI: 1.1 for ABCG2
and 1.3 for ABCC1, Fig. 1A and 1B).

Evaluation of mRNA expression levels of ABCB1, ABCCI-
6, ABCC10-12 and ABCG?2 in PBLs from RA patients over HC
showed significantly higher values for ABCC1 (2.1-fold, P =
0.005), ABCC4 (1.6-fold, P = 0.014) and ABCC10 (1.9-fold, P
= 0.015) (Fig. 1C and 1D). However, no significant differences
were observed for ABCC2, ABCC3, ABCC5 and ABCC6, while
expression levels of ABCCI11 and ABCC12 mRNA were below
the limit of detection (data not shown). Collectively, these re-
sults indicate that mRNA levels of four ABC transporters includ-
ing ABCB1, ABCC1, ABCC4 and ABCC10 were differentially
expressed in PBLs from RA patients relative to HC, but regarding
the functional activities of 3 central MDR transporters (ABCB1,
ABCC1 and ABCG2, only ABCBI1 efflux activity was signifi-
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Table 1. Patient characteristics

RA patients (n = 52)

Controls DMARD Naive = DMARD Responders DMARD Non-responders
Total (n) 19 9 15 28
male/female 10/9 4/5 5/10 820
Age (year) 54.3 (£ 16.3) 58.9 (£ 19.8) 56.1 (£20.3) 55.5(x13.2)
DAS28 NA 5.22 (£ 1.23) 2.20 (£ 0.72) 4.79 (£ 0.57)
ESR (mm/hr) NA 46 (+30) 13 (x13) 28 (£ 22)
Treatment duration (months) 27 (£ 36) 43 (£ 40)
DMARD treatment
Methotrexate (n) NA NA 13 24
Sulphasalazine (n) 3 5
Hydroxychloroquine (n) 1 10
Combination therapy (n) NA NA 2 8

Overview of subjects who participated in the study. 19 HC, 9 DMARD-naive (patients who had not received DMARD treatment in the
past or present), 15 DMARD responders (defined as having a DAS28 score < 3.2 under DMARD therapy) and 28 DMARD non-responders
(defined as having a DAS28 of > 3.2 under DMARD therapy) were included in the study. For each group the average age, DAS28 and
ESR are depicted. Patients used methotrexate, sulphasalazine or hydroxychloroquine either as mono-therapy or in combination regimens.
Values depicted represent mean £ SD. Abbreviations: NA: Not Applicable; DMARD: Disease Modifying Anti Rheumatic Drug; DAS:

Disease Activity score; ESR: Erythrocyte Sedimentation Rate.

cantly increased.

3.3 Correlations of mRNA Expression of ABC Transporters
in PBLs

Given the large inter-individual differences in mRNA expres-
sion levels of ABC transporters in PBL of RA patients and HC,
we next examined whether expression levels were correlated for
selective transporters. Indeed, Fig. 2 shows highly significant cor-
relations (P value and Spearman r value) for mRNA expression of
ABCC1 and ACB1 (P < 0.001, r = 0.707; Fig. 2A), ABCC1 and
ABCC2 (P < 0.001, r = 0.684; Fig. 2B), ABCC1 and ABCC10
(P < 0.001, r=0.758; Fig. 2C), ABCC10 and ABCBI1 (P < 0.001,
r = 0.587; Fig. 2D), ABCC2 and ABCCI10 (P = 0.001, r = 0.577,
Fig. 2E) as well as ABCC4 and ABCC10 (P = 0.002, r = 0.534;
Fig. 2F). Moderate correlations were also observed for other ABC
transporter combination (Supplementary Fig. 1), and the com-
plete overview of P-values and Spearman r values for all ABC
transporter combinations is summarized in Table 2. From this ta-
ble, a weak, but non-significant, negative correlation is noted for
ABCG2 mRNA and other ABC transporters. Collectively, these
data illustrate a positive interconnection between expression of
ABCB1, ABCC1, ABCC4 and ABCCI10 in PBL of RA patients
and healthy individuals.

3.4 ABC Transporter Protein and mRNA Expression in
Monocyte-Derived Macrophages from RA Patients
Macrophages represent a cell type of key relevance in driv-
ing RA disease and thus serve as a target for DMARD therapy.
To investigate expression levels of ABC transporters in human
monocyte-derived macrophages (MDM), protein and mRNA lev-
els were analyzed by immunohistochemistry and RT-PCR, respec-
tively. A large inter-individual variation in ABCG2, ABCB1 and
ABCCI1 protein levels was observed both in the MDM of the
control group and in the RA patients group (Fig. 3A and 3B).
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Of note, ABCG2 protein levels were significantly higher (2.4-
fold, P = 0.025) in the RA group (mean: 1.27) compared to HC
(mean: 0.53) (Fig. 3B). No significant differences in protein ex-
pression were observed for ABCB1, ABCC1, ABCC4-6 and the
macrophage marker 3AS5 (Fig. 3B). Consistent with ABCG2 pro-
tein data (Fig. 3B), relative ABCG2 mRNA expression (Fig. 3C)
was also significantly increased (2.8-fold, P = 0.036) in RA pa-
tients (mean: 0.074) compared to HC (mean: 0.026). In addi-
tion, relative mRNA expression of ABCC3 was 1.4-fold higher (P
= 0.019) in MDM from RA patients (mean: 1.43) compared to
HC (mean: 1.02). As to the remaining ABC transporters tested,
ABCBI1, ABCC1-2, ABCC4-6, ABCCI10 and ABCC11-12 (data
not shown), no significant differences in relative mRNA levels
were found between RA patients and controls (Fig. 3C). Collec-
tively, these results demonstrate that ABCG2 expression both at
the mRNA and protein levels, is the most differentially upregu-
lated ABC transporter in MDM from RA patients.

3.5 ABC Transporter mRNA Expression and Functional
Efflux Activity in Peripheral Blood Lymphocytes and
CD3+ Cells from DMARD-Treated RA Patients

To analyze whether expression of ABC transporters in RA pa-
tients is affected by DMARD treatment per se, ABC transporter
expression levels in PBL and CD3+ cells of DMARD-naive RA
patients were initially compared with those of DMARD-treated

RA patients (regardless of their clinical DMARD response). It

is noteworthy that the functional activity of ABCB1 was 2-fold

higher in PBLs of DMARD-treated patients versus DMARD-

naive patients (median Al: 2.9 vs. 1.5, respectively, P = 0.08)

(Fig. 4A). In CD3+ cells from DMARD-treated patients a sig-

nificant (P = 0.022) 1.5-fold increase in ABCB1 efflux activity

was also observed in DMARD-treated versus DMARD-naive RA
patients (median Al: 2.4 vs. 1.6) (Fig. 4B). No differences were
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Fig. 2. Correlations of mRNA expression levels of various ABC transporters in PBL of RA patients and healthy controls. Selected significant
correlations of mRNA expression of multiple ABC transporters from PBL of RA patients and HC: (A) ABCC1 and ABCBI, (B) ABCC1 and ABCC2,
(C) ABCCI and ABCCI10, (D) ABCC10 and ABCBI, (E) ABCC2 and ABCC10 and (F) ABCC4 and ABCCI10. Significance is indicated by P value and

Spearman r values.

Table 2. Correlations of ABC transporter mRNA expression in PBL samples from RA patients and healthy controls

Pairs (n) ABCB1 (31) ABCC1 (31) ABCC2 (31) ABCC3 (31) ABCC4 (31) ABCC5 (31) ABCC6 (9) ABCC10 (31) ABCG2 (20) DAS28 (20) BSE (20)

ABCB1 0.7069 0.3456 -0.0460 0.5121 0.4069 -0.2333 0.5867 -0.0902 0.2842 0.1724
ABCC1  <0.0001 0.6843 0.2399 0.5081 0.3718 0.4667 0.7589 -0.1970 0.2045 0.0497
ABCC2 0.0569 <0.0001 0.1815 0.4798 0.2851 0.6333 0.5766 -0.0526 0.1429 0.1340
ABCC3 0.8060 0.1936 0.3286 -0.0948 0.5044 0.4167 0.0232 0.1925 -0.1579  -0.0633
ABCC4 0.0032 0.0035 0.0063 0.6121 0.6294 0.3167 0.5335 0.1985 0.2992 0.4593
ABCC5 0.0231 0.0395 0.1201 0.0038 0.0001 0.0977 0.5698 0.1351 0.1775 0.0572
ABCC6 0.5517 0.2125 0.0760 0.2696 0.4101 0.8025 0.1000 -0.1774 -0.8340  -0.5798
ABCC10  0.0005 <0.0001 0.0007 0.2086 0.0020 0.0008 0.8100 -0.4451 0.2165 0.1845
ABCG2 0.7052 0.4052 0.8256 0.4162 0.4015 0.5071 0.6479 0.0492 0.3632 0.3927
DAS28 0.2246 0.3871 0.5480 0.5061 0.1999 0.4539 0.0390 0.2165 0.2722 0.7643
BSE 0.4672 0.8352 0.5732 0.7911 0.0416 0.8106 0.2417 0.4362 0.2366 <0.0001

Lower left area depicts P-values for ABC transporter combinations, Upper right area Pearson or Spearman r correlations where appro-

priate. Bold numbers in light grey shaded boxes indicate significant correlations.

observed for ABCC1 efflux activity between PBL/CD3+ cells of
DMARD-treated and DMARD-naive RA patients (Fig. 4A and
4B).

In line with the functional activity of ABCB1 in PBLs, median
relative ABCB1 mRNA levels were also increased (1.7-fold) in
DMARD-treated over DMARD-naive RA patients, even though
this difference was not statistically significant (Fig. 4C). For all
other ABC transporters tested (ABCG2, ABCC2-6 and ABCC10),
no significant differences in relative mRNA expression levels were
observed between DMARD-naive and DMARD-treated RA pa-
tients (Results not shown).

Finally, no marked differences in relative mRNA levels of
ABCBI1, ABCG2, ABCC1-6 and ABCC10 were observed with
MDM from DMARD-naive and DMARD-treated RA patients
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(Results not shown). Together, these findings indicate that
DMARD treatment markedly affects the functional activity of
ABCBI1 in PBLs from RA patients, while those of ABCCI,
ABCG2 and other ABC transporters are just marginally influ-
enced.

3.6 Associations of ABC Transporter Expression Levels

with DMARD Responsiveness

Next, the expression of ABC transporters in DMARD non-
responders (DAS28 > 3.2 under therapy) was compared with
DMARD-responding patients (DAS28 < 3.2 under therapy). No
significant differences could be observed between DMARD re-
sponders and DMARD non-responders. Similar levels of ABCB1
efflux activity were noted in both PBLs and CD3+ cells of

Oerlemans et al.
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staining was performed.

DMARD-responders vs. non-responders (Fig. 5A). In concor-
dance with the functional activity of ABCBI1, no statistically
significant difference in relative mRNA levels was observed for
this transporter in PBLs (Fig. 5B), even though mRNA levels of
ABCBI tended to be slightly increased (1.5-fold) in DMARD non-
responders. Modest ABCC1 and neglible ABCG2 functional ac-
tivity was found in PBL samples from DMARD non-responders,
but insufficient samples sizes in the group of DMARD-responders
did not allow an assessment of significant differences between
these two groups. For all other ABC transporters tested, mRNA
levels in the non-responder group were up to 1.7-fold higher in
the DMARD non-responder group vs. DMARD responder group,
with significant differences for ABCC2 (P = 0.05) and ABCC4
(P = 0.018) (Fig. 5C). Additionally, ABC transporter mRNA lev-
els were compared in MDM from DMARD-responders versus
DMARD non-responders (Fig. 5D), revealing no significant dif-
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ferences.

One other set of comparisons included ABCB1 functional ac-
tivity and mRNA levels in PBL and CD3+ cells of DMARD non-
responders vs. DMARD-naive patients. An increased ABCB1
efflux activity was observed in PBLs (1.5-fold, P = 0.076) and
CD3+ cells (1.8-fold, P = 0.019 respectively) of DMARD non-
responders (Fig. 6A). In line with this observation, a 2-fold
increase of ABCB1 mRNA expression was found in PBLs of
DMARD non-responders when compared with DMARD-naive
patients (Fig. 6B). No additional significant differences were ob-
served in mRNA levels of the other ABC transporters in PBLs (not
shown).

Lastly, we assessed by linear regression analysis whether ABC
transporter expression is correlated with clinical parameters of
DMARD response, including DAS28 and ESR. Overall, no cor-
relation was found between the functional activity of any of the
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tested MDR transporters in PBL/CD3+ cells and the DAS28 score
or ESR from DMARD responders and DMARD non-responders,
although ABCB1, ABCC1, ABCC2 and ABCC10 mRNA levels in
PBLs of RA patients trended to increase with increasing DAS28
activity (Results not shown). For MDM however, a significant cor-
relation was observed for ABCB1 protein levels and DAS28 values
(P = 0.0207, Spearman r = 0.7129, Fig. 6C). Taken collectively,
these results demonstrate that selective ABC transporters includ-
ing ABCB1, ABCC1, ABCC2, ABCC4 and ABCCI10 differen-
tially upregulated in either PBLs or MDM following DMARD
treatment or in conjunction with disease activity.

4. Discussion

This study demonstrates that selected members of the ABC
superfamily of MDR efflux transporters are differentially upreg-
ulated in immune-effector cells from RA patients as compared
to HC. In particular, mRNA levels of ABCB1, ABCC1, ABCC4
and ABCCI0 are upregulated in PBLs from RA patients, whereas
ABCG2 mRNA and protein levels were markedly upregulated in
MDM from RA patients. Furthermore, ABCBI1 functional activity
and mRNA levels were increased in PBLs from RA patients that
had an attenuated clinical response to DMARD:s.

Table 3. Summary of significant changes in ABC transporter
expression in PBL and MDM in RA vs. healthy controls.

PBL:

ABCBI functional efflux activity 1
ABCB1 mRNA 1

ABCC1 mRNA 1

ABCC4 mRNA 1

ABCC10 mRNA 1

MDM :

ABCG2 mRNA 1
ABCG?2 protein 1
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Although the current treatment of RA with DMARDs has
proven its effectiveness, patients are still confronted either with
inherent or acquired resistance phenomena to DMARD therapy
[14, 15, 16, 19, 20, 23, 24, 48, 71] for which the underlying molec-
ular mechanisms remain still unclear. It has been recognized
that enhanced cellular drug extrusion, facilitated by MDR efflux
pumps of the ABC superfamily, could contribute to an attenu-
ated response/resistance to DMARDs [23, 24, 26, 27, 52, 55].
Moreover, there is cumulative evidence that beyond a pharma-
cological function of ABC transporters, some of them may also
elicit a physiological function by mediating the efflux of pro-
inflammatory factors, thereby promoting (anti) inflammatory re-
sponses [23,25,53,72,73,74,75,76,77,78]. The objectives of the
current study were to focus on a selected group of 11 ABC trans-
porters (ABCB1, ABCG2, ABCC1-6 and ABCC10-12) and inves-
tigate whether: (a) the expression and activity of ABC transporters
was differentially upregulated in RA patients compared to HC, (b)
ABC transporter expression is provoked following DMARD treat-
ment, and/or (c) is implicated in DMARD responsiveness. These
questions were addressed in two populations of immune cells,
PBLs and MDMs, implicated in the pathophysiology of RA [1, 2],
obtained from healthy donors and DMARD-naive and DMARD-
(non) responding RA patients.

Previously other groups also demonstrated that ABCB1 ex-
pression (mRNA levels and functional efflux activity) can be
increased in PBLs/CD3+ cells of RA patients [46, 50] and for
other auto-immune diseases [49, 74, 79]. On top of this, the
present study also revealed that ABCC1, ABCC4 and ABCC10
mRNA expression were significantly increased (Fig. 1). Inter-
estingly, important immuno-regulatory functions of ABCC1 and
ABCC4 have been demonstrated in dendritic cells [80, 81, 82, 83]
as well as for ABCB1 in T-cells [84]. Notably, within the T
cell population, particularly pro-inflammatory Th17 cells express
Pgp [85]. The presence of these ATP-driven efflux transporters
could also be involved in conferring resistance to anti-rheumatic
drugs, e.g. glucocorticoids by ABCBI1 [29, 47, 49, 85], chloro-
quine by ABCC1 [42], and MTX by ABCC1 and ABCC4 [24, 86].
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ABCCI10 has not been previously investigated in the context of RA
and no DMARD substrates for ABCC10 have yet been reported.
However, ABCC10 has been characterized for exporting several
physiological substrates like Leukotriene C4 and estrogen conju-
gates, and is subject to inhibiting by various tyrosine kinase in-
hibitors and phosphodiesterase type 5 inhibitors (e.g. sildenafil)
[87, 88, 89, 90, 91]. Hence the role of ABCC10 in RA disease and
DMARD response warrants further investigations.

The present study has its limitations due to its cross-sectional
design, the small sample size of the 3 subgroups of RA patients,
and limited functional activity test in DMARD-responders, which
underpowered statistical analyses. Thus, caution should be made
in jumping to conclusive statements what proportion of the up-
regulated expression of multiple ABC transporters is attributable
to the inflammatory process and/or disease activity and what pro-
portion is a DMARD treatment- and/or resistance-induced phe-
nomenon. We noted that ABCB1 expression in monocyte-derived
macrophages was correlated with disease activity (DAS28) in RA
patients. Also ABCB1, ABCC1, ABCC2 and ABCC10 mRNA
levels in PBLs of RA patients trended to increase with increasing
DAS28 activity, suggesting that disease activity is a contributing
factor in the upregulation of specific ABC transporters. Interest-
ingly, a recent study by Li et al. [92] demonstrated that ABCB1
mRNA PBL of RA patients is upregulated by the inflammatory
cytokine IL17A. Additionally, gene expression profiling studies
by Blits ef al. [93] that concurrent with an immune-activation
in DMARD-naive RA patients, expression levels of several ABC
transporters, notably ABCC2 and ABCCS5, were increased. Upon
MTX treatment, up to concentrations of 25 mg/week at which pa-
tients were clinically refractory to this drug, mRNA expression
levels did not further increase as a primary mediator of resistance.
Rather, MTX normalized ABCC1-5 and ABCG?2 levels to those
observed in HC, thus pointing to lowered ABC transporter expres-
sion being associated with immune-suppressive effects. Consis-
tently, Hider et al. [94] and Micsik ef al. [95] showed that treat-
ment of primary RA patients with a constant low dose of MTX
reduced disease activity as well as ABCC1 expression in PBLs. In
addition, Agarwal et al. showed that with refractoriness to MTX
therapy, ABCBI1 protein expression on PBLs was increased and
associated with disease activity, but ABCB1 was not a common
cause of methotrexate resistance [96, 97]. This is further supported
by the fact that MTX, as a hydrophilic drug, is not a substrate for
ABCBI; its cellular export is primarily mediated by ABCC1-5 and
ABCG2 [24, 37, 86]. A prominent role for ABCB1 in disease ac-
tivity and drug resistance has been particularly indicated for gluco-
corticoid resistance in RA, consistent with the notion that ABCB1
primarily export hydrophobic drugs [30, 49]. Treatment with the
anti-TNF biological etanercept suppressed ABCB1 expression on
lymphocytes of RA patients and concomitantly increased intracel-
lular levels of glucocorticoids [98]. Similarly, chemical blocking
of ABCBI1 with tacrolimus overcame glucocorticoids resistance
in treatment refractory RA patients [99]. Altogether, these stud-
ies indicate that increased disease activity comes with a chronic
inflammation driven upregulation of specific ABC transporters,
having pharmacological implications of diminished responsive-
ness when DMARD:s are substrates for one of these specific ABC
transporters.
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Little information is available as to whether ABCG2 in PBL
is involved in DMARD non-responsiveness. Consistent with low
ABCG2 mRNA expression levels in PBL (Fig. 1C), no apprecia-
ble functional ABCG2 activity was detected in PBLs and CD3+
cells of either DMARD response or non-responsive RA patients
(Fig. 1A and 1B). Interestingly, Atisha-Fregoso et al. [100] re-
ported increased ABCG2 activity in PBLs of RA patients with
active disease compared with those in remission. ABCG2 activ-
ity, however, was only noted in small fractions of PBLs; median
3.9% of PBLs of patients with active disease and median 0.9% in
patients in remission. Methodological differences may account
for the apparent discrepancies in ABCG2 activity in PBLs. In
the present study we analyzed functional ABCG2 activity with
low non-toxic concentrations (25 nM) of bodipy-prazosin as fluo-
rochromic ABCG2 substrate, whereas in studies by Atisha-Freoso
[100] high concentrations (500 uM) of the fluorescent
anticancer drug mitoxantrone was used as an ABCG2 substrate.
The sensitivity and specificity fluorescent substrates for functional
analysis of ABCB1, ABCC1 and ABCG2 was critically reviewed
by Lebedeva et al. [101].
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The present study also revealed that the profile of ABC trans-
porter expression in MDM differs considerably from that of
PBLs/CD3+ cells from RA patients and controls. In particular,
ABCG2 mRNA and protein levels were differentially and signifi-
cantly increased in MDMs obtained from RA patients as compared
to those from controls. Intriguingly, the data for ABCG2 expres-
sion on MDM is very much reminiscent of the marked expression
of ABCG2 on macrophages in the synovial lining and sublining
layers in inflamed synovial tissue from RA patients [52]. In fact,
ABCG?2 expression on macrophages residing in the synovial sub-
lining correlated with a diminished response to two DMARD sub-
strates of ABCG2; MTX and leflunomide [52]. However, in the
current study, ABCG2 expression on MDMs was not significantly
correlated with DMARD-responsiveness, neither were expression
levels of the other ABC transporters. It is conceivable that a 7 day
ex vivo/in vitro culture period of MDMs could have deranged pos-
sible correlative effects as opposed to macrophages directly stained
for ABCG2 within the synovial architecture of RA patients [52].
Furthermore, it should also be considered that ABCG2 expres-
sion on synovial macrophages was observed already prior to the
initiation of treatment with the DMARDs MTX and leflunomide
[52], while in the present study ABCG2 expression was noted on
MDMs from patients of whom the majority received MTX treat-
ment. Hence, when ABCG2 expression would be dominantly in-
fluenced by micro-environmental factors (e.g. hypoxia [102]) in
synovial tissue rather than being DMARD therapy induced, this
may also account for an apparent lack of correlation of ABCG2 ex-
pression on MDMs with MTX response. Whether this also holds
for other DMARDs or combinations of DMARDs, remains to be
established.

Finally, the present study evaluated ABC transporter expres-
sion in two dominant immune cell subtypes, lymphocytes and
macrophages, being implicated in evaluated in RA disease on-
set and progression [2]. However, a recent study also reported
ABCBI1 overexpression in fibroblast-like synoviocytes (FLS) of
RA patients as a possible contributor of resistance in RA treatment
[103]. This study did not report expression levels of other ABC
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transporters (e.g. ABCG2, ABCC1-6 and ABCC10), so whether
ABCBI is most differentially expressed in FLS remains to be in-
vestigated.

In conclusion, this is the first study that investigated the poten-
tial involvement of a broad panel of ABC transporters in immune
cells in relation to DMARD treatment and clinical response pa-
rameters. The study confirms that ABCB1 in PBL and ABCG2 in
MDM are potential determinants that could contribute to DMARD
resistance. The knowledge of the preferred DMARD transport
substrates of ABC transporters [24, 52], combined with the analy-
sis of expression levels of ABC transporters on various subpopu-
lations of immune-competent cells implicated in RA disease, may
facilitate the selection of the proper treatment for individual RA
patients with those DMARDs or experimental drugs that are not
ABC transport substrates for either of the upregulated drug efflux
transporters. The present study has its limitations due to its cross-
sectional design and the small sample size of 3 RA subgroups of
patients, which underpowered statistical analyses. However, the
encouraging results obtained warrant further evaluation in stud-
ies with a longitudinal design to monitor alterations in expres-
sion/functional activity of ABC transporters during the course of
treatment of individual RA patients.

5. Conclusions

Peripheral blood lymphocytes of RA patients differentially
express higher mRNA levels of the ABC transporters ABCB1,
ABCCI1, ABCC4 and ABCCI0, and exhibit higher functional
efflux activity of ABCBI1 over healthy individuals. Monocyte-
derived macrophages of RA patients express significantly higher
mRNA and protein levels of ABCG2 when compared with healthy
individual counterparts.

ABC transporter transcript levels in PBL of DMARD of non-
responding RA patients are increased over DMARD-responders,
but did not attain statistical significance.

Elevated ABC transporter expression in 2 types of blood cell
types of RA patients may underscore both a physiological role of
ABC transporters in extrusion of inflammatory mediators and a
pharmacological role in exporting DMARDs.
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