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Poly (ADP-ribose) polymerase (PARP) proteins mediate var-
ious cellular processes such as DNA repair, regulation
of transcription, protein-protein interaction, expression of
inflammatory genes and programmed cell death. PARP
proteins have a key role in DNA repair and recent find-
ings have established the role of PARP inhibitors as po-
tent chemotherapeutic drugs. Among the 18 members,
PARP1 and PARP2 have been identified as the main tar-
gets for the development of pharmacological inhibitors to
enhance the cytotoxic efficacy of established anticancer
drugs. Furthermore, certain PARP1 and PARP2 inhibitors
are being used in combination with other drugs for the
treatment of various types of cancer. In different drug resis-
tant cancer cell types, PARP inhibitors have been identified
as compounds that reverse the resistance to topoisomerase
inhibitors, DNA alkylating and methylating drugs by en-
hancing the DNA damage induced by these agents. In
BRCA mutant cells, with abnormal homologous recombi-
nation (HR) repair mechanism, BER (Base Excision Repair
Pathway) is responsible for survival of the cells. PARP en-
zymes play a major role in BER and PARP inhibitors effec-
tively target BRCA mutant cells sparing normal cells via the
concept of synthetic lethality, producing minimal toxicity to
PARP inhibitors also have a significant role in treating pan-

creatic adenocarcinoma and castration-resistant prostate
cancer. The aim of the current paper is to provide a re-
view on PARP inhibitors and their application in the treat-
ment of various cancer cells which are resistant to standard
chemotherapeutic drugs.
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1. Introduction
Cancer is the abnormal growth of cells due to a dysregula-

tion of cell proliferation [1, 2, 3]. Malignant cells from the pri-
mary tumor readily undergo metastasis and invade other tissues
and distant organs [4, 5, 6, 7]. The tumor cell microenviron-
ment has a significant impact on the progression and metasta-
sis of human cancer cells [8, 9, 10]. Numerous studies indicate
that the abnormal growth and proliferation of cancer cells re-
sults from gene mutations, genetic disorders, angiogenesis, tis-
sue invasion, lack of response to anti-apoptotic signals and eva-
sion from immune response [2, 11]. One of the mainstays for the
therapy of several types of cancer is chemotherapy [12, 13, 14].
Chemotherapeutic drugs achieve their cytotoxic activity via dis-
tinct inhibitory mechanisms including for example: 1) DNA alky-
lation [15]; 2) Inhibition of DNA replication [16, 17]; 3) Blocking
the response to growth and proliferation signals [18, 19] ; 4) In-
hibition of microtubule assembly and disruption of mitosis [20];
5) Inducing apoptosis [21]; and 6) Augmenting the immune re-
sponse to tumors [22, 23]. However, it is well established that
the efficacy of anticancer drugs can be attenuated or abrogated
by the development of multiple mechanisms of drug resistance
[24, 25, 26, 27, 28, 29, 30]. Consequently, there is a burning need
to develop novel drugs that can overcome drug resistant cancers
[31, 32]. One potential class of compounds that may be useful in
treating certain types of drug resistant cancers are inhibitors of the
enzyme poly (ADP-ribose) polymerase (PARP).

The poly (ADP-ribose) polymerase (PARP) family of enzymes
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catalyzes the posttranslational ribosylation of proteins by utilizing
NAD+ as a substrate and thereby target proteins undergo mono-
or polyADP ribosylation (PARylation) [33, 34]. The ADP-ribose
moiety is negatively charged and after addition to the target pro-
teins, it produces structural and functional changes [35, 36, 37].
The PARP enzyme was first characterized in 1963 [38] and cur-
rently 18 distinct protein members have been identified in this fam-
ily [34, 39, 40]. PARP is a multidomain enzyme [41, 42, 43]. The
C terminus of PARP contains the catalytic site and is highly con-
served, whereas the N terminus has a variable and regulatory mo-
tif, a ubiquitin binding site and zinc fingers [44, 45]. Numerous
studies indicate that PARP plays a major role in mediating cel-
lular processes such as DNA repair, regulation of transcription,
protein-protein interaction, expression of inflammatory genes and
programmed cell death [46, 47, 48]. PARP is a bona fide target
for the advancement of drugs for the treatment of breast, ovarian
and prostate cancer [40, 49, 50]. PARP1 and PARP2 are known
as polyADP ribose transferases because they catalyze the trans-
fer of ADP-ribosyl to target proteins [51, 52]. PARP enzymes
have a very short half-life (i.e., < 1 minute) [53, 54] and they
are biotransformed and inactivated by the enzymes polyglycohy-
drolase, ADP-ribosyl ligase and ADP-ribosyl-acceptor hydrolase-
3 [46, 55]. PARPs are primarily active in the nucleus, and typically
have low activity in the cytoplasm [56, 57].

The current PARP inhibitors target PARP1 and PARP2 and
there are at least 42 compounds known to inhibit these enzymes,
4 inhibitors of which (i.e., olaparib, rucaparib, niraparib and ta-
lazoparib) are approved by the United States Food and Drug Ad-
ministration (FDA) for the treatment of various human malignan-
cies [58, 59, 60, 61]. PARP1 plays a vital role in repairing DNA
single strand breaks (SSB), which are caused by oxidative stress
through the base excision repair/SSB repair (BER/SSBR) pathway
[62]. PARP1 has three domains: a DNA binding domain, a cat-
alytic domain and an auto-modification domain [35, 63, 64]. The
DNA binding domain interacts with damaged DNA segments and
has three zinc finger motifs that confines PARP1 to the nucleus
[65, 66]. Zinc finger 2 has a high affinity for DNA fragments,
whereas zinc fingers 1 and 3 mediate DNA-dependent PARP1 ac-
tivation [67, 68]. The automodification domain dissociates the
protein from the DNA substrate [42, 69] and the catalytic domain
facilitates the binding of NAD+, thereby catalyzing ADP ribosy-
lation of target proteins [35, 48]. PARP 1 and PARP2 are struc-
turally similar in many aspects except that PARP 2 does not have
zinc fingers and has a short N-terminal DNA binding domain [70].
PARP 2 was first shown to be in the cells of PARP1 knockout mice
that generated an ADP-ribose polymer from NAD+ in response to
DNA damage [71]. Since the discovery of PARP1 and PARP2,
a family of 17 proteins has been identified that are similar to the
catalytic domain of PARP1, but only PARP3, Vault PARP as well
as PARP 5a and 5b (also known as Tankyrases 1 and 2, respec-
tively) have been shown to have ADP-ribose polymerization ac-
tivity [72, 73].

As a result of their role in cellular processes that are involved
in cancer, specific PARP enzymes have been investigated as tar-
gets for novel anticancer drugs [40, 74, 75]. Dysregulation of cell
proliferation, DNA repair and cell cycle induce tumorigenesis and
are regulated by the PARP family of enzymes [52, 76]. For ex-

ample, if single stranded DNA breaks occur, PARP 1 and PARP 2
are promptly activated and rapidly bind to the DNA damage site,
where they activate the DNA repair process [44, 77]. The inhi-
bition of PARP by small molecules has been shown to increase
the efficacy of chemotherapy and radiotherapy in certain types of
cancers [78, 79, 80]. Indeed, PARP inhibitors increase the effi-
cacy of cytotoxic drugs including: 1) Compounds that methylate
DNA such as temolozolomide, 2) topoisomerase 1 inhibitors in-
cluding irinotecan and topotecan, as well as 3) ionizing radiother-
apy [81, 82, 83]. Numerous studies have reported that defective
DNA repair pathways can enhance tumorigenesis [84, 85, 86]. Re-
cent studies have shown that specific types of tumor cells with
a defective homologous recombination (HR) repair pathway are
very sensitive to certain PARP inhibitors [87, 88]. For example,
BRCA1/2-deficient cancer cells are more sensitive to PARP inhi-
bition, which causes decreased base excision repair (BER), lead-
ing to persistent DNA damage, a concept called synthetic lethal-
ity (Fig. 1). As under normal conditions, DNA damage would be
repaired via HR [89, 90, 91]. However, HR defects are not lim-
ited to BRCA-deficient tumors and other types of cancer may also
be enriched by HR defects which make the PARP inhibitors suit-
able for treating other classes of cancers. For example, if cancer
cells have somatic mutations or epigenetic silencing in any part
of the HR pathway, PARP inhibitors could induce the death of
these cells [91]. In addition, the activity in any other part of the
HR pathway could also been monitored by other proteins [92].
Mutations in the gene that encodes for the tumor suppressor pro-
tein phosphatase and tensin homolog (PTEN) have been shown to
enhance the likelihood of cancer [93]. Furthermore, PTEN defi-
ciency can decreaseHR andwas successfully targeted by the PARP
inhibitor olaparib [94]. There are anticancer drugs whose effi-
cacy is due to DNA damage, which causes the cancer cell death
[95]. In several of the completed preclinical studies, PARP in-
hibition enhance DNA damage induced by cisplatin and gemc-
itabine [96, 97, 98]. The efficacy of such drugs can be attenu-
ated or abolished by activation of the cellular DNA repair path-
ways [99]. Furthermore, these pathways can be upregulated in tu-
mors, resulting in drug resistance [100]. PARP1 plays a role in the
removal and repair of DNA single strand breaks caused by ion-
izing radiation, methylating and alkylating agents, topoisomerase
I inhibitors and other cytotoxic drugs that damage DNA such as
bleomycin [81, 83, 96]. Therefore, drugs that inhibit PARP1 can
enhance the antitumor activity of chemotherapeutic drugs which
inflict DNA damage [96]. Clinical studies indicate that the combi-
nation of the PARP inhibitor iniparib and CEP-9722, and the plat-
inum drugs, carboplatin and cisplatin, respectively, significantly
improves the prognosis in breast cancer patients, indicating that
PARP inhibitors enhance the efficacy of drugs that produce DNA
damage [80, 96, 101].

Finally, PARP inhibitors can also be used to treat sporadic,
high-grade serous ovarian cancer (HGS-OC) and additional types
of cancers which also have DNA repair deficiencies, including en-
dometrial, pancreatic, and prostate and cancer [78, 102, 103, 104].
In this review, we outline the different PARP inhibitors and their
mechanisms in cancer treatment (Table 1); their structures are de-
picted in Fig. 2.
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Figure 1. Synthetic lethality of Poly (ADP-ribose) polymerase (PARP) inhibitors. PARP enzymes play a vital role in DNA damage repair. DNA
damage can be repaired via homologous repair (HR) mechanisms in normal cells. BRCA mutant tumors are inherently defective in HR repair.
PARP inhibitors cause DNA damage which cannot be repaired by HR mechanisms, thereby cause the selective apoptosis of these cells.

Figure 2. The structures of PARP inhibitors that sensitize cancer cells to conventional chemotherapeutic drugs.

2. PARP inhibitors-Detailed description
2.1 Talazoparib

Talazoparib's inhibitory activity depends on its unique bind-
ing interactions with the NAD+ site as well as the active
enantiomer (trans) configuration, which is responsible for π-
stacking and hydrogen-bonding interactions mediated by wa-
ter between the fluorophenyl and 1,2,4-triazole groups of ta-
lazoparib with Tyr889 and Tyr896 residues of PARP1 [105].
Talazoparib (5-fluoro-8-(4-fluorophenyl)-9-(1-methyl-1H-1,2,4-
triazol-5-yl)-2,7,8,9-tetrahydro-3H-pyrido[4,3,2-de] phthalazine-
3-one) was recently approved by the FDA for the treatment of pa-
tients with deleterious or suspected deleterious inherited BRCA
germline mutations [106] and human epidermal growth factor
receptor-2 (HER-2) negative breast cancer [107, 108]. Talazoparib
irreversibly inhibits PARP1 and PARP2 which regulate cell cycle
progression, initiation of the DNA damage response, and apop-
tosis [105, 109, 110]. Talazoparib traps PARP on single-stranded

DNA breaks, producing cytotoxicity [111]. PARP inhibition by ta-
lazoparib causes lethality in cancer cells with BRCA1/2 mutations
due to their deficiency in HR-dependent DNA repair and the ac-
cumulation of irreversible DNA damage which induces cell death
[112, 113, 114]. Furthermore, talazoparib has greater PARP in-
hibitory efficacy than olaparib [115], as it inhibits double stranded
DNA break repair, producing alternative non-homologous end
joining instead of HR [116], leading to cytotoxicity. Preclinical
studies in both human and animal tumormodels indicated that tala-
zoparib had a pharmacokinetic profile suitable for progression into
clinical trials [117, 118]. The oral bioavailability of talazoparib in
rats was more than 40% and based on this, it was predicted that
talazoparib could be administered once a day [118]. Pharmacoki-
netic data have been evaluated from phase I, phase II and phase
III studies in cancer patients, over a dose range of 0.025-2 mg/day
[119]. Talazoparib undergoes cysteine conjugation to form mono-
desfluoro-talazoparib, dehydrogenation, monooxidation and glu-
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Table 1. The different PARP inhibitors and their mechanisms in cancer treatment

Compound Target of interaction FDA status Dose Route Adverse effects

Talazoparib Inhibits PARP 1 and 2 Approved for advanced

breast cancer

1 mg, once a day oral Anemia, neutropenia and throm-

bocytopenia.

Niraparib Inhibits PARP 1 and 2 Approved for ovarian and

fallopian cancer

300 mg, once a day oral Thrombocytopenia, fatigue and

anemia.

Olaparib Inhibits PARP 1 and 2 and 3 Approved for advanced

ovarian cancer

300 mg, twice a day oral Vomiting, anemia and diarrhea

Veliparib Inhibits PARP 1 and 2 Phase III for breast and

ovarian cancer

120 mg, twice a day oral Grade 2 nausea, vomiting, fatigue,

and anemia

Rucaparib Inhibits PARP 1,2 and 3 Approved for advanced

ovarian cancer

600 mg, twice a day oral Anemia, nausea, vomiting, throm-

bocytopenia, shortness of breath.

CEP-9722 Inhibits PARP 1 and 2 Phase I for urothelial can-

cer

150-1000 mg, once a day oral Neutropenia, leukopenia, and ane-

mia

curonidation and is excreted primarily in the urine in its parent
form [106, 119]. The mean plasma half-life is approximately 90 hr
in cancer patients [106]. A dose of 1 mg/day is recommended in
patients to reduce the occurrence of adverse effects, but the dose
must be decreased in patients with moderate and severe renal im-
pairment [106, 119]. In vitro, talazoparib does not significantly in-
hibit or induce hepatic CYP1A2, CYP2C9, CYP2C19, CYP2D6
and CYP3A4 [108].

Talazoparib has been considered as monotherapy for neoadju-
vant patients [120]. A study with 13 breast cancer patients with a
germline BRCA mutation that received talazoparib as monother-
apy for 2 months before neoadjuvant therapy (anthracycline and
taxane based chemotherapy ±carboplatin) and surgery displayed a
significant decrease (approximately 88%) in tumor volume [107].
Another study (NCT02282345) with 20 advanced breast cancer
patients with a germline BRCA mutation indicated that adminis-
tration of talazoparib 6 months prior to surgery produced a com-
plete pathologic response [113]. The combinations of talazoparib
with other anticancer drugs has yielded significant therapeutic ef-
ficacy. Talazoparib, when used in combination with temozolo-
mide, produced a 59-, 35- and 1500-fold greater cytotoxic effi-
cacy in Lovo cells (colon cancer cells) compared to monother-
apy treatment with the PARP inhibitors olaparib, rucaparib and
veliparib, respectively [105]. In BRCA-deficient breast cancer pa-
tients, combination therapy of talazoparib, with cisplatin or temo-
zolomide, produced significant positive response rates up to 73%
[121]. Previously, talazoparib was reported to be more efficacious
than olaparib or talazoparib as a radiosensitizer in glioblastoma
stem cells in vitro [122]. Furthermore, talazoparib (12.5 nM),
compared to veliparib and olaparib, displayed greater efficacy in
sensitizing the olaparib-resistant breast cancer cell line, CAL51 by
targeting genes involved in Homologous repair/Double stranded
DNA break repair pathways such as BRCA1/2(breast cancer re-
sistance protein), SHFM1 (split hand/foot malformation gene),
PKNB (protein kinase B gene), PALB2 (Partner and localizer of
BRCA2 gene), ATM (Ataxia-Telangiesctasia gene), ATR(Ataxia-
Telangiesctasia and Rad3 related gene), CHEK1 (Checkpoint ki-
nase 1 gene), FANCM (Fanconi anemia complementation group
M), FANCA (Fanconi anemia complementation group A) etc.
[118]. The common untoward toxicity produced by talazoparib

was anemia, neutropenia and thrombocytopenia, which can be
minimized by a dose reduction [113, 114].

2.2 Niraparib
Niraparib (2-{4-[(3S)-piperidin-3-yl]phenyl}-2H-2H-indazole

-7-carboxamide) was approved by U.S. FDA on March 2017 and
EMA for the maintenance treatment of recurrent epithelial ovarian
and fallopian tube or primary peritoneal cancer patients [123]. Ni-
raparib not only blocks the DNA repair mechanism by inhibiting
the BER pathway, but also traps PARP-1 and PARP-2 at the sites
of DNA damage, producing cytotoxicity [124, 125]. Niraparib has
displayed higher PARP binding affinities as it mimics the structure
of the amide group of nicotinamide binding domain and is respon-
sible for three important hydrogen bonds to the hydroxyl group of
Ser904 and the amide backbone of Gly863, along with the pyridyl
ring which is responsible for π−π interactions with Tyr907 [125].

Pre-clinical data indicate that niraparib (1 µM) augments
the effect of radiation therapy in tumor cell-based and murine
xenograft models, independent of p53 status [126]. In human de-
rived lung and breast cancer xenograft models, including a triple
negative breast cancer xenograft, niraparib (50 mg/kg, orally) sen-
sitized the xenografts to radiation therapy in a p53-independent
manner [127].

A phase I dose escalation trial has shown that niraparib does
not produce significant adverse effects up to a maximum dose of
300 mg/day in patients harboring a BRCA mutation and in pa-
tients with sporadic cancers [128]. Niraparib is primarily biotrans-
formed by hepatic carboxylesterase which produces inactive drug
metabolites that are glucuronidated and excreted into the urine and
feces [129, 130]. Similar to talazoparib, naraparib does not signif-
icantly interact with cytochrome P450 hepatic enzymes [131]. Ni-
raparib has a mean half-life of 36 h following multiple daily doses,
with an oral bioavailability of 73% [60]. In humans, at steady
state levels, niraparib has a higher volume of distribution (ap-
proximately 1500 L) compared to olaparib (approximately 158L)
[132, 133]. Niraparib crosses the blood-brain barrier (BBB) and
its levels in the brain are greater than olaparib, as it is expelled to
a lower extent than olaparib by the ABC transporters BCRP and
P-gp in the BBB [134].

The results of the PRIMA trial indicate that niraparib can be
a first line treatment for longer periods of PFS (progression - free
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survival) in patients diagnosed with advanced recurrent ovarian
cancer [135]. Niraparib, when used in combination with irinote-
can, potentiated the cytotoxic effects of irinotecan in microsatel-
lite instable (MSI) and stable (MSS) colorectal cancer models in
vitro [136]. Niraparib, when combined with cyclophosphamide,
displayed a significant efficacy in treating triple negative breast
cancer patient-derived xenograft human models [137]. Niraparib
is efficacious in inhibiting the growth of tumors in patient-derived
xenograft models, regardless of the BRCA or homologous recom-
bination deficiency (HRD) status [132, 138]. During the phase
III NOVA trial, adverse effects commonly reported for niraparib
were thrombocytopenia, fatigue and anemia, which can be mini-
mized by adjusting the dose [139]. The ongoing phase I, II and
III clinical trials (NCT02854436, NCT03748641, NCT03431350,
respectively) will determine the efficacy of niraparib alone or in
combination with drugs like abiraterone, prednisolone and JNJ-
637283 (an immune checkpoint inhibitor), for the treatment of
prostate cancer [50].

2.3 Olaparib
Olaparib(4-(3-{[4-(Cyclopropylcarbonyl)-1-

piperazinyl]carbonyl}-4-fluorobenzyl)-1(2H)-phthalazinone)
was the first drug from the family of PARP inhibitors that
was approved by the FDA in 2014 for the treatment of ovarian
cancer [140]. It inhibits PARP1 and PARP 2 which results in
double-stranded DNA breaks that produces apoptosis in cancer
cells [140, 141]. Olaparib contains oxygen atoms which forms
hydrogen bonds with backbone atoms in the catalytic domain of
Arginine and also water mediated hydrogen bonds with aspartic
acid and Van der Waals Force interaction with aliphatic side chain
of glutamic acid in the regulatory domain [142]. Olaparib was
approved both in Europe and USA as maintainence treatment in
platinum-sensitive ovarian cancer patients, independent of their
BRCA1/2 mutation status [143].

Olaparib can be administered orally at daily doses amounting
200-600 mg, depending on the renal function of the patient [141].
Its peak plasma concentration occurs 1-3 hours after administra-
tion [144] and it has a terminal elimination half-life of 11.9 h fol-
lowing a 400 mg dose [141]. Olaparib has an apparent volume
of distribution 167 L and is primarily metabolized in the liver
by dehydrogenation and oxidation, and it undergoes glucuronide
and sulfide conjugation [144]. Olaparib is primarily excreted un-
changed in the urine and consequently, olaparib's renal clearance
is decreased in patients with diminished renal function [141]. Fur-
thermore, in patients with mild (GFR= 51-80 mL/min) to moder-
ate renal impairment (GFR= 31-50 ml/min), there was a decrease
in the volume of distribution and terminal half-life compared to
patients with normal renal function [145, 146]. The most com-
mon adverse events of any grade reported following treatment with
olaparib were nausea, fatigue, vomiting, anemia and diarrhea, al-
though severe grade 3 or 4 anemias have been reported in some
patients and this could be managed by a dose reduction [147, 148].
Olaparib increases the efficacy of the platinum drugs cisplatin and
carboplatin, in both in vitro and in vivomodels of BRCA-deficient
mouse mammary cancers [149]. Olaparib also increased the ef-
ficacy of cisplatin in BRCA-deficient mouse mammary cell lines
[150]. When used as a monotherapy, olaparib has been shown
to produce antitumor efficacy in BRCA-deficient mouse mod-

els [151]. Data from a Phase I study (NCT00494442)has shown
that olaparib alone has antitumor efficacy in pretreated BRCA1
and BRCA2-deficient patients with recurrent ovarian cancer [152].
Phase III trials with olaparib have shown a significant increase in
the quality of life and a longer PFS in: 1) ovarian cancer patients
with a germline BRCA1/2 mutation who were previously treated
with platinum chemotherapy [153] and 2) patients with platinum-
sensitive relapsed ovarian cancer [143, 148].

Olaparib has been reported to have efficacy in the treatment
of castration-resistant prostate cancer (CRPC) based on the results
of the TOPARP-A trial where 16 patients were previously treated
with abiraterone, enzalutamide or cabazitaxel, followed by ola-
parib at 400 mg twice a day until the primary response rate (de-
crease in PSA) was observed. The results indicated that there is
a significant decrease in PSA levels and decreased circulating tu-
mor cell counts which reflect its antitumor activity [154]. Another
trial namely POLO, indicated that olaparib maintenance treatment
of 300 mg twice a day for 4 to 8 weeks, produced a substantial
(PFS) in metastatic pancreatic cancer patients with BRCA muta-
tions who had not benefited from platinum-based chemotherapy
[155]. A phase I/II trial that was designed to evaluate the effec-
tiveness of olaparib 100-200 mg twice a day for a 21-day cycle
in combination with temozolomide in patients who were formerly
treated for small cell lung cancer. There was a significant increase
in PFS [156, 157]. The data form the phase III trial, OlympiAD, re-
ported that olaparibmonotherapy of 300mg twice daily for 21 days
(dose and length of treatment) in patients with HER-2 negative
metastatic breast cancer and a BRCA mutation had a significant
longer PFS when compared to patients treated with capecitabine,
eribulin, or vinorelbine in 21-day cycles [158].

2.4 Veliparib
Veliparib (ABT-888) has high potency in inhibiting PARP1/2,

with Ki values of 5.2 (PARP1) and 2.9 (PARP 2) nM, as deter-
mined by in vitro fluorescence assays [102]. The amide group of
veliparib binds with PARP active site, and intermolecular hydro-
gen bonds are formed between amide bond and Gly-863/Ser-904.
Moreover, veliparib also forms a π-π stacking with Tyr-907 [159].
Veliparib, similar to other PARP inhibitors,: inhibits PARP1 and
PARP2, which disrupts the BER mechanism and consequently in-
duces DNA damage, resulting in induction of cellular apoptosis
[160].

Veliparib alone has been reported to have limited in vitro effi-
cacy in a panel of lung cancer cells [161]. However, in a xenograft
model of SCLC (H146 and H128 cells in the flank region of 6-
week-old athymic nu/nu mice), the administration of 25 mg/kg
i.p. of veliparib and 2.5 mg/kg i.p. of cisplatin for 4 weeks, sig-
nificantly decreased tumor size compared to animals treated with
cisplatin or etoposide alone [160]. Also, in vitro, veliparib (10
µM for 24 or 72 h) significantly increased DNA-damage signal-
ing (i.e., pKAP1S824, pChk1S345 and pChk2T68) in the glioblas-
toma multiforme cell lines T98G, U251 and U251TMZ [162].

Currently, 10 clinical studies related to veliparib have been ap-
proved by the FDA, including 6 phase III clinical trials. In April
2014, the FDA approved a phase III trial of veliparib for squamous
NSCLC; however, the outcome missed the primary expectation,
which was a significant increase in overall survival, PFS and ob-
jective response rate. Veliparib was also approved for a phase III
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clinical trial in HER2− metastatic or BRCA+ breast cancer in Au-
gust 2014, although there has been no patient recruitment. Besides
the 6 phase III clinical trials mentioned above, multiple ongoing
or completed phase I or II clinical trials have been approved by
the FDA. A phase I trial of veliparib and metronomic cyclophos-
phamide [163], which focused on various types of refractory can-
cers (i.e., ovarian, carcinoid, breast, colon, pancreas, urothelial,
melanoma, sarcoma, endometrial, lymphoma and unknown type),
was approved. Thirty-five patients were given 60 mg of veliparib
(orally, once daily for 21 days) and 50 mg of cyclophosphamide
(orally, once daily for 21 days) [163]. The results indicated that
6 patients had their disease stabilized for at least 6 cycles and 7
patients had partial responses. In addition, in 7 patients, there was
a decrease in peripheral blood mononuclear cells (PBMCs) and
an increase in phosphorylated histone (VH2AX) levels, which is
a biological marker of DNA damage in circulating tumor cells.
In 2015, a phase II study was performed to confirm the efficacy
of combining veliparib and cyclophosphamide in patients with
ovarian cancer. After oral administration (50 mg/day cyclophos-
phamide and 60 mg/day veliparib) in a 21-day cycle, veliparib
failed to improve the response rate [164].

2.5 Rucaparib
Rucaparib (AG014699, RubracaTM) is a small molecule

PARP1, PARP2 and PARP-3 inhibitor [165]. It forms hydrogen
bond interaction with Gly-863 located in the binding site of PARP-
1. TYR889, TYR896 and TYR907 are likely to participate in
forming π-π interaction with the indole core [166]. The mech-
anism of action of rucaparib has been previously characterized
by Robillard et al [167]. Rucaparib selectively inhibited PARP1,
PARP2 and PARP3, with IC50 values of 0.8, 0.5 and 28 nM, re-
spectively. Also, in the UWB1.289 (ovarian cancer) cell line,
rucaparib decreased poly-ADP ribosylation in a concentration-
dependent manner, with an IC50 value of 2.8 nM, and increased
DNA damage and apoptosis [167]. Oral rucaparib was approved
by the FDA for the treatment of advanced ovarian cancer with dele-
terious BRCA mutations [168]. The FDA has approved 51 clinical
trials with rucaparib for multiple cancer types including ovarian,
prostate, urothelial, cervical, lung and breast (clinicaltrials.gov).
Additionally in a phase II trial of rucaparib in relapsed high-
grade ovarian cancer patients with platinum-sensitive tumors, the
risk of progression during treatment with rucaparib (oral, 600
mg, twice daily for a 28-day cycle) was significantly reduced in
BRCA-mutant and BRCA-wild-type groups [169]. Subsequently,
a phase III clinical trial with rucaparib in recurrent ovarian car-
cinoma after treatment with platinum therapy indicated that the
patients treated with rucaparib had a significantly greater median
progression-free survival time in patients with a BRCA-mutant
carcinoma (5.4 months in placebo group versus 16.6 months in the
rucaparib group) [170]. The efficacy of rucaparib has also been
evaluated in patients with metastatic melanoma who were receiv-
ing temozolomide [59]. The results showed that the administra-
tion of temozolomide (150-200mg/m2/day) and a PARP inhibitory
dose (12 mg/m2/day) of rucaparib increased PFS compared to his-
torical controls [171]. At the end of 2019, two new clinical studies
were approved by the FDA: a phase I study involving the treatment
of metastatic castration resistant prostate cancer with rucaparib,
enzalutamide and abiraterone (Dec, 2019) and a phase II study

of rucaparib in patients with solid tumors, prostate, breast, ovar-
ian, fallopian tube and peritoneal with a mutation in one or more
genes, including breast cancer gene (BRCA1/2), partner and lo-
calizer of BRCA2 gene (PALB2), DNA double strand repair gene
(RAD51B/C/D), BRCA1-associated ring domain gene (BARD1),
BRCA1-interacting protein gene (BRIP1), Fanconi anaemia com-
plementation group gene (FANCA), nibrin gene (NBN) with dele-
terious mutations in homologous recombination repair (HRR)
genes (clinicaltrial.gov). These two studies are newly approved
and have not started recruitment yet.

2.6 CEP-9722
CEP-9722 (11-methoxy-2-((4-methylpiperazin-1-yl)methyl)-

4,5,6,7-tetrahydro-1H-cyclopenta[a]pyrrolo[3,4-c]carbazole-
1,3(2H)-dione), a pro-drug which is biotransformed to another
compound, CEP-8983 (11-methoxy-4,5,6,7-tetrahydro-1H-
cyclopenta[a]pyrrolo[3,4-c]carbazole-1,3(2H)-dione) and it is
an inhibitor of PARP1 and PARP2 [172]. CEP-9722 is rapidly
metabolized to CEP-8983 in less than 5 minutes [172]. The
in vitro study shown that CEP-9722 (0.1-10 µM) increased the
number of DNA single-stranded breaks, inducing cell instable and
apoptosis [172]. As this compound is a new drug in early stages
of development, the published studies focus primarily on clinical
efficacy and have not focused on investigation of the interaction
of CEP-9722 with its PARP target [172]. Although there have
been several pre-clinical studies and three clinical trial studies
performed to evaluate the clinical application of CEP-9722, it
remains to be approved by the U.S. FDA. In vitro, CEP-8983 in-
creased the efficacy of certain anticancer drugs in chemoresistant
tumors by prolonging the duration of DNA damage and increasing
apoptosis [173, 174, 175]. However, the in vitro incubation of
CEP-9722 with temozolomide or topotecan, respectively, did not
increase chemotherapy-related myelotoxicity based on results
from a granulocyte-macrophage colony-forming unit assay [172].
In addition, CEP-9722 alone displayed anti-tumor efficacy in
human colon carcinoma HT29 cell xenografts in nude mice and
in a chemoresistant rat glioblastoma RG2 cell xenografts in rats
and CEP-9722 decreased the accumulation of PARP in glioma
xenografts in a dose- and time-dependent manner [172].

Jian et al. (2014) investigated the effect of CEP-9722 and CEP-
8983 on urothelial carcinoma (UC). CEP-9722, compared to CEP-
8983 or cisplatin alone, produced an increase in DNA damage in
the human UC cell lines RT4 and 5637 cells. CEP-9722, at 200
mg/kg administered by oral gavage, once daily for 5 days a week
for 4 weeks via oral gavage, significantly decreased tumor growth
in RT4 xenografts compared to animals treated with vehicle alone.
Immunohistochemistry data indicated that cleaved caspase-3 lev-
els were significantly increased, whereas there was a decrease in
the expression of CD31, the platelet cell adhesion molecule-1 that
is a biomarker of angiogenesis. The evaluation of biomarkers in-
dicative of PARP inhibition in UC is sound because the efficacy of
CEP-9722 is inversely proportional to the HRR reaction involved
in DNA damage repair [176]. A phase I trial with temozolomide
supported the hypothesis that CEP-9722 may cause less myelosup-
pression compared to all other oral PARP inhibitors [174]. In this
study, 26 patients with solid tumors were treated orally with in-
creasing doses of CEP-9722 from 150- 1000 mg/day for 14 days,
and then treated for 28-days with 1000 mg/day of CEP-9722 and
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150 mg/m2/day temozolomide for all the treatment period. Al-
though there were significant interpatient and intrapatient varia-
tion, the plasma levels of CEP-8983, which is the active form of
CEP-9722, was used to assess the relative plasma concentration
of CEP-9722. It is worth noting that the plasma concentrations of
CEP-8983 were lower in patients taking drugs that may increase
gastric pH as well as in cigarette smokers, which may result from
the poor solubility of CEP-8983 in non-acidic environments and
an increased metabolism of CEP-8983 due to an increased expres-
sion of CYP1A2, respectively [174]. Subsequently, the safety, ef-
ficacy and pharmacokinetic profile of CEP-9722 combined with
oral temozolomide was evaluated in patients with advanced solid
tumors such as breast, colorectal, and ovarian cancers. The results
revealed one case of a partial response, four cases with a stable dis-
ease and 17 cases showed disease progression and CEP-9722 and
temozolomide treatment was stopped at cycle 12 due to concerns
about the cumulative toxicity of temozolomide [174]. As previ-
ously reported, CEP-9722 produced a lower magnitude of myelo-
suppression compared to other PARP inhibitors.

Awada et al., (2016) conducted a study to determine the max-
imum tolerable dose of CEP-9722 when combined with either
gemcitabine or cisplatin in patients with advanced solid tumors.
Thirty-two patients were given 75 mg/m2 of cisplatin and 1,250
mg/m2 of gemcitabine on the first day of the study and the eighth
day of the 21-day treatment cycle. However, only 18 patients who
completed the first chemotherapy cycle with cisplatin and gemc-
itabine were treated orally with 150, 200, 300, or 400 mg of CEP-
9722 twice daily from the second day to the seventh day and dose-
limiting toxicities were evaluated. Patients were allowed to pro-
ceed with treatment until the disease progressed or the adverse
toxicity was determined to be unacceptable. The median treat-
ment range for CEP-9722 was five (1-12) cycles and no patients
had dose-limiting toxicity after CEP-9722; however, 33% of the
patients stopped treatment due to adverse effects. At the end of
the study, there was one patient with a complete remission, three
patients with partial remission and eleven patients displayed a sta-
ble disease. Prior to the determination of the maximum tolerable
dose, the study was discontinued due to significant changes in the
exposure to CEP-8983 in all cohorts and toxicity with myelosup-
pression [96].

3. Acquired resistance to PARP inhibitors
There are a number of mechanisms that can produce resistance

to PARP inhibitors. Mutations in BRCA1 and BRCA2 (tumor sup-
pressor genes), predispose to various human cancers including,
breast, ovarian, pancreatic and prostate cancer [177, 178]. The HR
pathway is important for the repair of double-strandedDNAbreaks
[179, 180] and BRCA is a main factor in double-stranded DNA
break repair via the HR mechanism [181, 182]. Inhibition of the
HR pathway can induce apoptosis [183] and the efficacy of PARP
inhibitors is greater in HR-deficient than in non-HR-deficient can-
cer cells [184]. In addition, cancer cells that lack the BRCA genes
are susceptible to PARP inhibitors and the restoration of BRCA
genes causes resistance to PARP inhibitors [84, 85].

Overexpression of the ABC transporter, ABCB1, in a P-gp-
proficientmousemodel has been reported to cause a lower survival
rate compared to P-gp-deficient mice which were given olaparib

for 28 days [185]. This is due to due to the efflux function of the
ABC transporter, ABCB1/P-gp, which extrudes PARP inhibitors
from cancer cells, leading to resistance to PARP inhibitors includ-
ing rucaparib or olaparib [185]. ABCB1-mediated resistance has
been shown to occur in mice with BRCA1-deficient breast tumors
[101]. The marked expression P-gp in A2780 ovarian cancer cells
produced a 36-fold increase in the concentration of olaparib re-
quired to inhibit growth by 50% and this acquired resistance can
be surmounted by ABCB1 inhibitors like verapamil [186]. The
loss of the p53-binding protein 1(53BP1) has been reported to pro-
duce resistance by restoring BRCA function [187, 188, 189]. The
HR pathway is inhibited by 53BP1 and the loss of 53BP1 restores
the activity of BRCA- mediated HR and causes resistance to ola-
parib [185, 190]. Furthermore, loss of 53BP1 produced resistance
to olaparib by increasing the expression of P-gp, thereby increas-
ing olaparib efflux, hence attenuating its cytotoxic activity [101].
It has been shown that 53BP1 is not expressed in BRCA1/2 mu-
tated breast cancer cells [191] and the survival rate of patients with
BRCA1/2 mutated breast cancer is low due to an increase in re-
sistance to drugs that cause DNA damage, such as cisplatin and
mitomycin. It has been postulated that the expression of 53BP1
could be used to ascertain the efficacy of PARP inhibitors upon
treatment of BRCA1-deficient tumors [190].

PARylation is a reversible modification of the PARP enzyme
and other nuclear proteins and these PAR chains formed facilitate
the recruitment of DNA repair enzymes; PAR modifications turn
over rapidly due to the activity of poly-(ADP-ribose) glycohydro-
lase (PARG) [191]. PARG catalyzes the removal of PAR chains
from post-translationally modified proteins, releasing poly ADP-
ribose [191, 192]. PARG can thus eliminate nuclear PARylation
and this could nullify the function of PARP1 [193]. In an HR-
deficient mouse model, loss of PARG activity induced resistance
to PARP inhibitors by restoring the activity of PARP [193].

The depletion or loss of the PARP1, as well as a decrease in the
affinity of PARP1 inhibitors, have been shown to produce resis-
tance to PARP inhibitors such as olaparib [193, 194, 195]. Ovar-
ian cancer cells, as well as tumors from patient-derived xenografts
(Makvandi et al., 2018), that do not express PARP1, are resistant to
olaparib. There is a positive correlation between PARP inhibitors
efficacy and the level of functional PARP 1 levels [196]. More-
over, mouse embryonic stem (ES) cells with PARP 1 mutation are
highly resistant (~100-fold) to olaparib than cells with wild type
PARP 1 [197].

4. Conclusions
PARP inhibitors are a new class of drugs that improved the

outcome in several cancer types. The deficiency in DNA repair
mechanisms causes extensive irreversible DNA damage leading to
apoptosis and PARP inhibitors have proved to target these mech-
anisms. This contributes to the use of clinical PARP inhibitors
along with DNA damaging agents, thereby restoring cancer cell
chemosensitivity to conventional drugs. PARP inhibitors have a
great impact in women with ovarian cancers and in either somatic
or germline BRCA1/2 mutations, they are used as a maintenance
therapy and increase the overall survival rate. The present article
focused on FDA approved PARP inhibitors like talazoparib, nira-
parib, olaparib and rucaparib and other drugs like veliparib and
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CEP-9722 which are currently undergoing clinical trials and are
under extensive investigation. Because of the low toxicity profiles,
they are ideal for the prolonged treatment of cancer. However, tu-
mors can develop mechanisms of resistance to PARP inhibitors,
due to occurrence of secondary mutations, increased drug efflux,
decrease PARP level and loss of 53BP1 function. A better un-
derstanding of these molecular mechanisms of chemoresistance is
important to for the selection of the most efficacious drug treat-
ment. Overall, PARP inhibitors have gained a great attention for
their activity in HR-deficient tumors and further research can be
conducted to expand their clinical utility in various cancers.
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