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Abstract

Background: Exploring the neural encodingmechanism and decoding ofmotion state switching during flight can advance our knowledge
of avian behavior control and contribute to the development of avian robots. However, limited acquisition equipment and neural signal
quality have posed challenges, thus we understand little about the neural mechanisms of avian flight. Methods: We used chronically
implanted micro-electrode arrays to record the local field potentials (LFPs) in the formation reticularis medialis mesencephali (FRM)
of pigeons during various motion states in their natural outdoor flight. Subsequently, coherence-based functional connectivity networks
under different bands were constructed and the topological features were extracted. Finally, we used a support vector machine model to
decode different flight states. Results: Our findings indicate that the gamma band (80–150 Hz) in the FRM exhibits significant power
for identifying different states in pigeons. Specifically, the avian brain transmitted flight related information more efficiently during
the accelerated take-off or decelerated landing states, compared with the uniform flight and baseline states. Finally, we achieved a best
average accuracy of 0.86 using the connectivity features in the 80–150 Hz band and 0.89 using the fused features for state decoding.
Conclusions: Our results open up possibilities for further research into the neural mechanism of avian flight and contribute to the
understanding of flight behavior control in birds.
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1. Introduction
The switching of external motion states exhibited by

organisms, such as sudden acceleration and deceleration,
often reflects changes in the internal state of the brain [1,2].
Effectively decoding the typical states has significant the-
oretical and practical implications for the understanding of
internal movement intention encoding mechanisms, pros-
thetic control, and functional rehabilitation. It is also crucial
for the development of future closed-loop brain computer
interface technologies based on internal neural information
decoding and external stimulation encoding. The decoding
of neural information related to motor intentions or motion
states in the brain has been extensively studied in various
species including rats [3], primates [4,5], and birds [6,7].

Previous studies have indeed demonstrated that rhyth-
mic information present in the brain can effectively repre-
sent different motor intentions or states [8,9]. For instance,
Ahmadi et al. [10] successfully detected resting and force-
generating time segments in the rat primary motor cortex
using gamma (50–100 Hz) local field potentials (LFPs) dur-
ing a key pressing task and accurately decoded the discrete
rest/force states as well as continuous values of the force
variable. Zhuang et al. [11] recorded LFPs using micro-
electrode arrays in the primary motor cortex (M1) of mon-

keys performing reaching and grasping tasks. Their mutual
information and decoding analysis revealed that higher fre-
quency bands (e.g., 100–200 and 200–400 Hz) carried the
most information about the examined kinematics, suggest-
ing the utility of LFPs, especially high-frequency bands, for
controlling reach and grasp movements. Bundy et al. [12]
used a hierarchical partial-least squares (PLS) regression
model to predict hand speed, velocity, and position based on
electrocorticography (ECoG) signals recorded from epilep-
tic patients performing a 3D center-out reaching task. Their
findings highlighted the importance of beta band power
changes for classifying movement and rest, as well as lo-
cal motor potential and high gamma band power changes
for predicting kinematic parameters. Although a series of
evidence shows that the movement state of organisms can
be decoded by recording neural activities in the brain and
extracting relevant rhythm features [13], most studies have
been restricted by the signal acquisition equipment and the
ability to examine only specific scenarios within the lab-
oratory, leading to a large disparity between research and
practical application.

Compared with rodents and primates, the pigeon pos-
sesses exceptional flying capabilities and is not constrained
by ground environments [14], making it an ideal animal
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Fig. 1. Electrode implantation and data acquisition. (A) Location of microelectrode implantation. (B) Pigeon implanted with a
microelectrode array. (C) Wearable data recording device. (D) Pigeon wearing the data recording device. (E) Diagram of data recording
during free flight, in which the 8-channel LFP signals and the GPS data were recorded. AP, anteroposterior; FRM, formation reticularis
medialis mesencephali; GPS, global positioning system; LFP, local field potential.

model for studying natural motion states, especially flight
states. Notably, studies have demonstrated that micro-
current stimulation in the formation reticularis medialis
mesencephali area (FRM) of the pigeon brain can in-
duce turning actions [15]. During flight, the direction of
flight can be regulated by applying electrical stimulation
to this specific brain area [16]. However, it is important
to consider the animal’s autonomous movement intentions
to avoid potential negative effects on regulation efficacy
or physical fitness when external stimulation instructions
do not align with the animal’s movement intentions. In
this regard, it is crucial to investigate and understand the
neural decoding of autonomous movement intentions dur-
ing flight. However, it is worth noting that despite these
promising findings, most of the existing research on decod-
ing the different motion states of pigeons is restricted by
the equipment used for signal acquisition and experiments

can only be conducted in specific laboratory settings [17],
allowing only limited exploration of flight processes.

Thanks to the advancements of integrated circuit tech-
nology and microcontroller technology, signal recorders
suitable for small animals in natural conditions have been
developed for use in related research. In 2019, Massot et
al. [18] introduced a new tool called ONEIROS, which en-
abled sleep research in small, freely moving animals. They
demonstrated the practicality of the device by successfully
recording a pigeon in an 8m3 aviary with a social context in
the logger configuration. In 2020, we designed a wearable
signal recording system to synchronously record the neural
activities, attitude data, and position information of birds
during flight [19]. Our experimental results showed that
the system could meet the needs of robust data recording
without impeding the birds’ normal flight. These techno-
logical advancements not only facilitate the study of neural
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information decoding in birds during flight but also provide
a solid foundation for further research in this area.

We therefore used pigeons, and the FRM associated
with their flight as the target region, to investigate the au-
tonomous flight intentions in the bird brain during natural
flight in this study. We used our wearable signal record-
ing system to simultaneously record the neural signals in
the FRM and the posture information of three pigeons dur-
ing their free flying. Four typical flight states, including
baseline, accelerated take-off, uniform flight, and deceler-
ated landing, were defined via analysis of global position-
ing system (GPS) data. Using coherence analysis, brain
function connectivity networks were constructed based on
the multi-channel LFP signals corresponding to the various
states. Based on the topological characteristic analysis re-
sults of the functional connectivity networks, distinct fea-
tures in the gamma frequency band (80–150 Hz) were ex-
tracted for decoding the four typical flight states and the
results were compared with the other bands. To the best of
our knowledge, this is the first study focused on the neural
information decoding of different outdoor flight states of
pigeons, providing a valuable reference for further research
on the neural mechanism of avian flight, navigation, and
behavior control in birds.

2. Materials and Methods
2.1 Subjects and Electrode Implantation

In this study, a total of six adult homing pigeons
(Columba livia, 450–500 g, unknown sex) obtained from
a local supplier (Gongchuang Pigeon Co., Zhengzhou,
Henan, China) were used. All pigeons were housed in a
loft, providedwith regular feeding by professionals and free
drinking water in their normal living conditions. The pi-
geons’ diet was restricted during flight tasks until comple-
tion of the experiment. All experimental procedures ad-
hered to the guidelines outlined in the Animals Act, 2006
(China), and aimed to ensure the ethical care and use of
laboratory animals. The study protocol was approved by
the Life Science Ethical Review Committee of Zhengzhou
University (No. SYXK 2019-0002).

Once it was established that the pigeons were capa-
ble of reliably completing the flight task, we implanted
microelectrode arrays into the FRM of pigeons, in which
eight individually insulated tungsten microwires (Califor-
nia Fine Wire, Grover Beach, CA, USA) with a 35-µm in-
ner diameter and 150-µm spacing between the wires (Ke-
dou Brain Computer Technology, Suzhou, Jiangsu, China)
were used. The surgical procedure followed a similar pro-
tocol as described in our previous study [20]. Initially, pi-
geons were anesthetized using a 3% sodium pentobarbi-
tone solution (at a dose of 0.12 mL/100 g body weight,
C11H17N2NaO3, Shanghai Toscience Biotechnology Co.,
Ltd, Shanghai, China) and securely placed in a stereo-
taxic apparatus. Next, the location of the FRM was deter-
mined using a stereotactic map of the pigeon brain [21] as

a guide. Finally, the 8-channel microelectrode array (Cus-
tomized version, Kedou Co., Suzhou, Jiangsu, China) was
implanted into the target point with the following coordi-
nates: anteroposterior (AP) 3.60 mm, mediolateral (ML)
1.20 mm, and dorsoventral (DV) 8.10 mm. The specific
position of the electrode implantation and the pigeon after
the implantation are shown in Fig. 1A,B, respectively.

2.2 Apparatus and Experimental Task

To simultaneously record the flight state related GPS
data of pigeons and their neural signals in the FRM, a wear-
able data recording device was developed, which was de-
scribed extensively in our previous publication [19] and
is shown in Fig. 1C. The self-made device (Henan Key
Laboratory of Brain Science and Brain-Computer Inter-
face Technology, Zhengzhou, Henan, China) weighed 13.6
g and consisted of a GPS module (ATGM336H-5N with
sampling range of 1–10 Hz, positional accuracy <2.5
m circular error probable) and a neural signal acquisi-
tion module (8-channel ADS1299 from Texas Instruments
(ADS1299IPAGR, TI Co., Dallas, TX, USA)with sampling
rate range of 0.25–16 KHz, magnification 1–24, and con-
version accuracy 0.1 µV/bit). It should be noted that the
GPS data were used for the definition of the typical flight
states of pigeons.

Before recording, the pigeons were trained to perform
in the study by wearing backpacks to increase their capac-
ity for bearing weight for 2 weeks. The study mainly con-
sisted of a pre-experiment and a formal experiment. In the
first week, the pigeons were loaded with 20-g weight dur-
ing both walking and flying to adapt to the burden of the
device. In the second week, the pigeons were released daily
on short-distance (2 km) flights away from the loft. After
the pre-experiment, the pigeons wore our data recording de-
vice as shown in Fig. 1D. During the whole flight process,
including baseline, accelerated take-off, uniform flight, and
decelerated landing, 8-channel neural signals and GPS data
were recorded synchronously as depicted in Fig. 1E.

2.3 Data Acquisition and Analysis

We performed GPS and LFP data acquisition during
the flight of pigeons from the release site to the home loft
as shown in Fig. 2. The sampling rate of GPS data is 10 Hz
and that of the LFP signal is 1000 Hz. The GPS data pro-
vides essential information regarding the pigeon’s latitude
and longitude coordinates during free-flying, as well as ve-
locity data. The acceleration of the pigeon during flight can
be further calculated based on the velocity data as follows:

a =
dv

dt
(1)

When pigeons are flying outdoors, the neural signals
can be prone to interference from baseline drift and noise
generated by their flapping wings. To address these chal-
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Fig. 2. Recorded GPS track and definition of typical states. (A) The track is displayed on the map, where the red line indicates the
actual flight route from the release site to the home loft. (B) The velocity and acceleration curve calculated after pre-processing the
GPS data, in which the solid red line represents the change of speed, and the solid black line represents the corresponding change of
acceleration, marking four typical motion states based on the velocity and acceleration curves.

lenges, it is important to eliminate the trend terms from the
neural signals and account for the non-stationary nature of
the signal. Firstly, to accomplish baseline drift, discrete
wavelet transform (DWT) was employed. The DWT is de-
fined as follows:

Wφf(j, k) =

∫
s(t)φ∗

j,k(t)dt (2)

where s (t) is the temporal neural signal, φj,k (t) =

2−
i
2φ(2−jt−k) is the base function, i is the frequency res-

olution, and j is the time shift. In this study, we performed
a 10-layer discrete wavelet decomposition to process the
original signal using the ‘sym8’ wavelet packet. We then
reconstructed the 2–250 Hz sub-band signals to obtain the
targeted LFPs without the baseline drift.

To address the issue of flapping noise in the neural sig-
nals, the primary method used is priori variational modal
decomposition (VMD). This technique aims to extract in-
trinsic mode functions or modes of oscillation from the sig-
nal without relying on fixed functions for analysis. This
makes it particularly effective for processing non-smooth
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and non-linear neural signals. The fundamental concept be-
hind VMD is to construct and solve variational problems
[22]. Previous studies have indicated that pigeons exhibit
vibrations in the frequency range of approximately 3–10
Hz during flight [23,24]. According to this prior knowl-
edge, modal components within this frequency range are
discarded. The remaining modal components are then re-
constructed to obtain the processed LFP signal. In the cur-
rent study, our multi-channel LFPs were filtered using a
zero-phase bandpass filter to obtain signals in the follow-
ing four frequency bands: β (12–30 Hz), γ1 (30–80 Hz),
γ2 (80–150 Hz), γ3 (150–250 Hz).

2.4 Typical Flight States Definition
In this study, we focused on four typical flight states of

pigeons: baseline, accelerated take-off, uniform flight, and
decelerated landing. Previous studies have commonly used
GPS speeds greater than 5 or 10 km/h to identify pigeons
in flight [25,26]. However, in this study, we considered
the actual movement of the pigeons during flight and the
accuracy of the sensors to define the above typical states.
For small fluctuations in speed within a certain range (±0.3
m/s), we considered the pigeon to be flying at a constant
speed. For take-off and landing states, we define them using
flight speed and acceleration considering their observed sig-
nificant changes. The state “uniform flight” refers to a state
of constant speed flight. This approach acknowledges the
agility and flexibility of pigeons in controlling their flight
speed. Based on these considerations, the following princi-
ples were used to define the four motion states:

(1) Baseline: This state represents a continuous pro-
cess in which the pigeon’s speed is less than 3 m/s. It typi-
cally corresponds to the pigeon being at rest on the ground.

(2) Accelerated take-off: This state represents a con-
tinuous process in which the pigeon’s speed is greater than
3 m/s, and the acceleration is greater than 0.6m/s2. It sig-
nifies the pigeon’s initial acceleration during take-off.

(3) Uniform flight: This state represents a continuous
process in which the pigeon’s speed is greater than 3 m/s,
and the absolute value of the acceleration is less than 0.6
m/s2. It indicates the pigeon’s consistent flight at a rela-
tively constant speed.

(4) Decelerated landing: This state represents a con-
tinuous process in which the pigeon’s speed is greater than
3 m/s, and the acceleration is less than –0.6m/s2. It corre-
sponds to the pigeon’s gradual deceleration during landing.

2.5 Functional Connectivity Analysis
We then explored the connectivity between multiple

channel LFPs in the FRM to find effective features on the
scale of local network connections for decoding the four
states. This is accomplished by generating a connectionma-
trix that represents the relationship between different chan-
nels or brain regions. Subsequently, the topological proper-
ties of the brain function connectivity network are analyzed

using principles from graph theory. In this study, the con-
nectivity network was established by quantifying the coher-
ence between channels. The coherence coefficient is calcu-
lated as follows:

C2
xy(f) =

|Sxy(f)|2

Sxx(f) ∗ Syy(f)
(3)

where Sxy is the cross-power spectral density of signals
x (t) and y (t), and Sxx and Syy are their self-power spec-
tral densities, respectively.

To measure the topological characteristics of the con-
nectivity network, the clustering coefficient (Cc), global ef-
ficiency (Ge), and average path length (Apl) were calcu-
lated specifically. The clustering coefficient quantifies the
tendency for neighboring channels to form interconnected
clusters [27]. It provides a measure to evaluate the level of
network integration and can be defined as follows:

Cc =
1

N

∑N

i=1
Ci =

1

N

∑N

i=1

2Ei

ki (ki − 1)
(4)

where N represents the total number of nodes in the net-
work, ki is the node degree (number of connections) of node
i, and Ei denotes the total number of triangles formed by
the neighbors of node i. A larger clustering coefficient sug-
gests that nearby neurons have a higher likelihood of being
connected, creating tightly-knit groups within the network.

The global efficiency provides insights into the effi-
ciency of information flow across the network and is de-
fined as the average value of the path length between two
nodes in the network as follows:

Ge =
2

N ∗ (N − 1)

∑
i,j∈V,i ̸=j

1

dij
(5)

where N represents the total number of nodes in the net-
work and dij represents the path length between node i

and node j. The higher the global efficiency, the more
efficiently the information is transferred between different
channels.

The average path length represents the average num-
ber of edges required to traverse between any two channels
in the network. It provides a measure of the global effi-
ciency of information transmission or integration across the
entire network and can be defined as:

L =
2

N(N − 1)

∑
i,j∈V,i ̸=j

dij (6)

where dij represents the path length between node i and
node j. A smaller average path length indicates that there
are shorter and more direct pathways between different
channels, facilitating efficient information exchange.
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Fig. 3. Neural signal pre-processing. (A) Raw neural signals. (B) LFP signal processed to remove baseline drift by wavelet technology.
(C) LFP signals before VMD in time and time-frequency domain. (D) The LFP signals after VMD in time and time-frequency domain.
VMD, variational modal decomposition.

2.6 Decoding and Statistical Analysis

We analyzed the differences in connectivity charac-
teristics of the four typical states and extracted effective
features for the decoding analysis. Support vector machine
(SVM)models can better solve the problem of small sample
classification and have been successfully applied in many
fields [28]. Thus, an SVM was used in this study for typi-
cal flight state decoding and the performance was assessed
through ten-fold cross-validation.

Our results are given in the form of mean ± stan-
dard deviation (SD) unless otherwise specified. The sta-
tistical differences between different groups or conditions
were evaluated using the Kruskal-Wallis test, which is a
non-parametric test method. The significance level for de-
termining statistical significance was set at 5% and p-values
were considered statistically significant as follows: * p <

0.05, ** p < 0.01, *** p < 0.001.
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Table 1. Experimental data of pigeons.

Pigeon No. of channels No. of sessions
No. of signal segments

Baseline Accelerated take-off Uniform flight Decelerated landing

P02 8 12 86 66 94 83

P03 8 13 116 92 97 89

P06 8 15 106 108 99 90

3. Results
3.1 Data Pre-Processing Results

We effectively collected the data of three pigeons
(P02, P03, and P06), while three other animals (P01, P04,
and P05) dropped out of the study due to electrode im-
plantation failure or poor signal quality. The pigeons were
released from a location about 2 km away from the loft,
and one whole flight process recorded by GPS data of P02
is shown in Fig. 2A. The speed and acceleration informa-
tion of pigeons was calculated based on the GPS data to
better characterize their specific states. Four typical mo-
tion states including baseline, accelerated take-off, uniform
flight, and decelerated landing were then defined according
to the above calculations, which are shown in Fig. 2B.

For the recorded neural signals, we have shown a pre-
processing example of 5 s of data during the study of P02.
Fig. 3A shows the raw signal obtained from one of the ac-
quired channels, in which there is a baseline drift. We then
applied the DWT to remove the drift, and the result is shown
in Fig. 3B. Fig. 3C shows the time-frequency analysis re-
sults of the LFPs, and there is a noticeable wing coupling
component with a frequency range of approximately 5–10
Hz. Next, we employedVMD tomitigate thewing-flapping
noise; Fig. 3D displays the signal and time-frequency anal-
ysis results after VMD.

Each pigeon underwent a different number of ses-
sions, with 12, 13, and 15 sessions respectively in the cur-
rent study (each session represents one flight experiment).
According to the definition of the typical states, we obtained
the corresponding neural signals and divided them into seg-
ments of 500 ms windows. Table 1 shows the experimental
data for three pigeons.

3.2 Power Spectrum and Functional Connectivity Analysis
Results

We first compared the results of the power spectrum
analysis at different frequency bands in four typical states
and the results are shown in Fig. 4A. We observed distinct
power spectrum differences among these four typical states,
with the most notable discrepancies occurring in the γ2

band, followed by the γ1 band, β band, and γ3 band. Thus,
we constructed a distribution diagram for the functional net-
work topology characteristics in the γ2 band of P02 shown
in Fig. 4B, in which the subgraph along the diagonal rep-
resents the probability density of each feature and the other
subgraphs represent the feature distribution between char-

acteristics. The four typical states show distinguishable
density distributions from each other, especially for the
clustering coefficient and the global efficiency. Specifi-
cally, the mean value of the characteristic probability den-
sity is highest for the accelerated take-off state and low-
est for the baseline state across all three characteristics.
Furthermore, from the visualization results that consider
the distribution of two-dimensional topological characteris-
tics, we identified clear separability among multiple states.
Specifically, the baseline state can be completely distin-
guished from the other three states in all cases. Between the
remaining three states, there are relatively clear classifica-
tion boundaries observed between the accelerated take-off
and uniform flight states, and decelerated landing, while the
distributions of the decelerated landing states appear to be
partially overlapping between them.

We then calculated the clustering coefficient, global
efficiency, and average path length of the functional net-
works for the four states of three experimental pigeons us-
ing graph theory. The statistical analysis results of the clus-
tering coefficient for the bands are shown in Fig. 4C. For
the inter-state comparisons, it is apparent that the cluster-
ing coefficients for all three typical flight states of the three
pigeons are significantly higher (Kruskal-Wallis test, p <

0.001) than that during the baseline state in the vast ma-
jority of cases (except for the baseline versus the uniform
flight and decelerated landing states in the β band; Kruskal-
Wallis test, p> 0.05). This implies that the brain exhibits a
higher level of network integration for effective informa-
tion transmission during flying. Furthermore, the analy-
sis reveals that the functional connectivity is tighter dur-
ing state-shifting of flight including the accelerated take-
off and decelerated landing states compared with uniform
flight, especially for all pigeons in the γ2 band (Kruskal-
Wallis test, p < 0.001). This suggests a frequency-specific
neural mechanism to encode the transitional phases during
flight. For the inter-band comparisons, the characteristics
of the γ2 band demonstrate significant differences across
all four states and for all three pigeons (Kruskal-Wallis test,
p < 0.05). This suggests that the γ2 band may contribute
to the distinct neural patterns for shifting among different
states. Finally, it should be noted that we observed identi-
cal or similar results in the inter-state statistical analysis of
the other two topological characteristics.
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Fig. 4. Power spectrum and functional connectivity analysis results. (A) Power spectrum analysis of the LFPs during four typical
states. (B) Functional network characteristic distributions of the γ2 band LFPs for P02 during four states (Cc, clustering coefficient;
Ge, global efficiency; Apl, average path length). (C) Statistical analysis results of clustering coefficients for three pigeons during four
different states (s1, baseline; s2, accelerated take-off; s3, uniform flight; s4, decelerated landing; * p < 0.05, *** p < 0.001; n.s., no
significance).

3.3 Decoding Results

The functional connectivity characteristics from the
FRM showed variability across four typical states. We
therefore sought to ascertain with what accuracy could the
pigeon’s current states during flight be determined based on

the functional connectivity features. To answer this ques-
tion, a multi-classified SVM was used to decode the pi-
geon’s states and the analysis results are shown in Fig. 5
(detailed results are shown in Supplementary Table 1).
The typical flight state decoding accuracy of three pigeons
is shown in Fig. 5A. The results indicate that the accuracy
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Fig. 5. Decoding analysis results using functional connectivity features. (A) Decoding accuracy of typical flight states of three
pigeons. (B) Decoding results across all pigeons (* p < 0.05, ** p < 0.01, *** p < 0.001).

varies across the four different frequency bands. The best
average decoding results for P02 and P06 are achieved in
the γ2 band (0.86 and 0.78), while the highest accuracy
for P03 is observed in the γ3 band (0.81). When consid-
ering the overall decoding accuracy using the fused feature
set including features in all four bands, P02, P03, and P06
achieve average accuracies of 0.89, 0.84, and 0.86, respec-
tively. This suggests that flight related information of the
pigeon could be encoded via specific bands in the FRM and
could be decoded by the corresponding neural patterns in
these bands.

The statistical decoding results across all three pigeons
are shown in Fig. 5B.We observed the best decoding perfor-
mance using all features in the four bands across the three
pigeons, which was significantly higher than those using
the features in other single frequency bands (0.86 ± 0.12
versus 0.66 ± 0.16, 0.75 ± 0.16, 0.79 ± 0.13, 0.65 ± 0.19;
Kruskal-Wallis test, p < 0.05). For the performance using
the features in the γ2 band, the average decoding accuracy
for the states was significantly higher than those using the
features in the β band (0.79 ± 0.13 versus 0.66 ± 0.16;
Kruskal-Wallis test, p < 0.001) and the γ3 band (0.79 ±
0.13 versus 0.65 ± 0.19; Kruskal-Wallis test, p < 0.01).
Similarly, the average accuracy using the features in the γ1

band was also significantly higher than those in the β band
(0.75 ± 0.16 versus 0.66 ± 0.16; Kruskal-Wallis test, p <

0.05) and the γ3 band (0.75 ± 0.16 versus 0.65 ± 0.19;
Kruskal-Wallis test, p < 0.05). There was no significant
difference between the performance of the γ2 band and γ1

band (0.79 ± 0.13 versus 0.75 ± 0.16; Kruskal-Wallis test,
p> 0.05). These findings demonstrate that the γ2 band and
γ1 band consistently showed relatively high state decoding
accuracy across the three pigeons. This may suggest that
these frequency bands contain the most relevant encoding
information related to the pigeon’s flight. In addition, we
also compared the typical flight states decoding results of
the three pigeons using LFP power features (detailed results

are shown in Supplementary Table 2). The best decoding
performance using all features and the superior results in
the γ2 band were also observed.

4. Discussion
This study explored the neural activity analysis and

state decoding of pigeons during flying under natural out-
door conditions. The results revealed that the FRM of pi-
geons encoded the flight related information, particularly
the state switching related information. We found that high-
frequency functional connectivity in the FRM, especially
in the gamma band (80–150 Hz), better characterized the
flight state of the pigeon compared with the other bands.
The decoding analysis results also provide insights into
the neural processes underlying different states during pi-
geons’ flight. It should be noted that previous research has
linked high-frequency rhythm activity to multiple functions
including motor, attention, and decision-making [29–31].
Our findings align with previous studies in other animal
species, suggesting the relevance of the gamma band in lo-
comotion [10,11].

Despite the findings, there are limitations in the study,
including but not limited to verifying the validity of the
data, behavioural control based on flight decoding, and
further optimization of site localization by staining slices.
First, our study contains data for analysis from only three
pigeons, constrained by the difficulty in constructing avian
flight experimental paradigms in large-scale natural envi-
ronments and the difficulty in collecting and denoising neu-
ral signals under free-flying conditions. In addition, incom-
plete experimental data problems as mentioned caused by
difficult electrode surgical implantation and postoperative
recovery, as well as accidental loss or death of pigeons, also
pose challenges for us to expand the sample and data size.
Hence, more pigeons and data are needed to further improve
the accuracy and robustness of our results. Furthermore, it
is known that the direction of flight can be regulated by ap-
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plying electrical stimulation to this specific brain area dur-
ing flight [15,16,32]. Applying different stimulation pa-
rameters to pigeons can also induce varying turning an-
gles [33]. By stimulating individuals, researchers can study
flapping flight and collective behaviour in pigeon flocks
[34]. Further study focused on the behavioural control of
birds based on flight state recording and decoding should
therefore be carried out. Additionally, further detailed ex-
ploration of the structural characteristics of the FRM with
the help of stained slices, together with examination of the
specific functions of the left and right hemispheres [35,36]
of the FRM and their relationship with autonomous steering
intention, could enhance the understanding of motion state
decoding during bird flight.

Regarding the remaining issues and areas for further
study, it is indeed important to consider factors beyond
speed changes and incorporate different steering informa-
tion during flight [37]. In terms of brain regions and phys-
iological measurements, it is worth noting that other brain
regions may provide targets for future movement intention
decoding. For example, the activity in the opticus princi-
palis thalami (OPT) has been previously linked to comput-
ing the distance-to-collision of approaching surfaces in pi-
geons [35]. Furthermore, considering correlations between
other kinds of recordings apart fromGPS tracking measure-
ments alongside oscillatory recordings could provide valu-
able complementary information. In addition, there are also
potential limitations in the experimental period regarding
the individual characteristics of the pigeon and environmen-
tal factors, the data pre-processing process of artifact re-
moval, and the decoding process using the SVM. We aim
to eliminate these negative influencing factors to better op-
timize our future studies.

5. Conclusions
Overall, our results contribute to filling a knowledge

gap and provide valuable support for further studies on
avian motion state decoding and flight behaviour control,
supporting closed-loop brain-computer interfaces for birds
that consider both internal neural encoding and external be-
havioural decoding. In addition, our results show that our
recording device can provide valuable insights for long-
distance flight and navigation related research.
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