
J. Integr. Neurosci. 2024; 23(3): 58
https://doi.org/10.31083/j.jin2303058

Copyright: © 2024 The Author(s). Published by IMR Press.
This is an open access article under the CC BY 4.0 license.

Publisher’s Note: IMR Press stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Opinion

Harnessing Big Data in Amyotrophic Lateral Sclerosis: Machine
Learning Applications for Clinical Practice and Pharmaceutical Trials
Ee Ling Tan1, Jasmin Lope1, Peter Bede1,2,*
1Computational Neuroimaging Group, School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
2Department of Neurology, St James’s Hospital, D08 NHY1 Dublin, Ireland
*Correspondence: bedep@tcd.ie (Peter Bede)
Academic Editor: Gernot Riedel
Submitted: 8 November 2023 Revised: 27 November 2023 Accepted: 6 December 2023 Published: 18 March 2024

Abstract

The arrival of genotype-specific therapies in amyotrophic lateral sclerosis (ALS) signals the dawn of precision medicine in motor neuron
diseases (MNDs). After decades of academic studies in ALS, we are now witnessing tangible clinical advances. An ever increasing num-
ber of well-designed descriptive studies have been published in recent years, characterizing typical disease-burden patterns in vivo and
post mortem. Phenotype- and genotype-associated traits and “typical” propagation patterns have been described based on longitudinal
clinical and biomarker data. The practical caveat of these studies is that they report “group-level”, stereotyped trajectories representative
of ALS as a whole. In the clinical setting, however, “group-level” biomarker signatures have limited practical relevance and what matters
is the meaningful interpretation of data from a single individual. The increasing availability of large normative data sets, national reg-
istries, extant academic data, consortium repositories, and emerging data platforms now permit the meaningful interpretation of individual
biomarker profiles and allow the categorization of single patients into relevant diagnostic, phenotypic, and prognostic categories. A va-
riety of machine learning (ML) strategies have been recently explored in MND to demonstrate the feasibility of interpreting data from a
single patient. Despite the considerable clinical prospects of classification models, a number of pragmatic challenges need to be overcome
to unleash the full potential of ML in ALS. Cohort size limitations, administrative hurdles, data harmonization challenges, regulatory
differences, methodological obstacles, and financial implications and are just some of the barriers to readily implement ML in routine
clinical practice. Despite these challenges, machine-learning strategies are likely to be firmly integrated in clinical decision-making and
pharmacological trials in the near future.
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1. Introduction

Biomarker development is a key goal of amyotrophic
lateral sclerosis (ALS) research and a vast array of promis-
ing biomarkers have been evaluated including molecular,
transcriptomic, and metabolic markers; panels of serum,
urine, and cerebrospinal fluid (CSF) “wet” biomarkers; and
positron emission tomography (PET) and magnetic reso-
nance imaging (MRI) biomarkers [1]. Neuroimaging in
ALS has been remarkably successful in capturing the sub-
strate of phenotype-defining pathological change in vivo
along the entire neuro-axis. ALS-associated imaging al-
terations have been described in the brain, spinal cord,
plexi, and muscles with remarkable anatomical consistency
between various studies. The archetypal imaging signa-
ture of ALS includes bilateral precentral gyrus atrophy, de-
generation of descending corticospinal and corticobulbar
tracts, degeneration of the corpus callosum and brainstem,
changes in the lateral columns and the anterior horns of
the spinal cord, and fatty infiltration of denervated mus-
cles [2]. Based on statistical observations in large cohorts,
fairly consistent disease-associated, genotype-specific, and
phenotype-associated disease-burden patterns have been

described [3]. To account for observations captured in var-
ious disease stages, a series of robust longitudinal stud-
ies have also been published, describing anatomical prop-
agation patterns and generating disease-spread models in
vivo [4]. Imaging metrics are often correlated with clin-
ical data and linked to pathological stages. Presymp-
tomatic changes have been captured decades before pro-
jected symptom onset in asymptomatic carriers of genetic
variants, paving the way for viable presymptomatic inter-
ventions [5,6]. While the description of “typical” disease
burden patterns, “stereotyped” disease propagation trajec-
tories, and “representative” presymptomatic signatures are
important academic milestones and help to generate novel
biological hypotheses, they have remarkably limited clin-
ical relevance to the diagnosis, monitoring, and manage-
ment of individual patients. From a purely clinical per-
spective, “average” survival and “typical” progression rates
have limited importance in the assessment of specific in-
dividuals. In clinics, we face individual patients who en-
quire about their own specific phenotype, their own sur-
vival prospects, their expected progression rate, likely prog-
nosis, and likely response to therapy as opposed to overall
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Fig. 1. The conceptual evolution of amyotrophic lateral sclerosis (ALS) research studies—the transition from group-level de-
scriptive studies to single-patient data interpretation frameworks.

disease-, genotype-, or phenotype-associated averaged val-
ues. Accordingly, what is relevant in the clinic is the ac-
curate and meaningful interpretation of single subject data
profiles (Fig. 1). The quest, therefore, is the interpretation
of the biomarker profile of a single patient when first met
in clinic and the ambition is to accurately categorize that in-
dividual into a specific diagnostic group, phenotypic class,
likely genotype for targeted testing, likely prognostic cate-
gory, and likely response to specific therapies. There is a
notion amongALS researchers that by the time a patient ful-
fils clinical criteria for ALS, a considerable disease burden
has already been accrued, hindering effective pharmacolog-
ical interventions. Longitudinal studies suggest that by the
time a patient is formally diagnosed, themotor cortex, corti-
cospinal, and corticobulbar tracts are already affected [7,8];
therefore, the expectation that a disease-modifying agent
introduced at that point would result in perceptible func-
tional gain may be naïve. The optimal therapeutic window,
therefore, is likely to precede the point of meeting formal
diagnostic criteria and we probably need to shift our atten-
tion to “suspected” patients not meeting diagnostic criteria
and presymptomatic cohorts harboring ALS-associated ge-
netic variants. From a biomarker perspective, the departure
from large academic studies describing “group-level” ob-
servation to “single-patient” data interpretation frameworks
is long-overdue.

2. Promising Machine Learning Initiatives
across Biomarker Domains
2.1 Examples from Clinical Biomarker Data

Bulbar onset, comorbid cognitive, behavioral deficits,
short symptom onset to diagnosis interval, early respira-

tory involvement, and low body mass index (BMI) have
long been established as adverse prognostic indicators, but
well-trained machine learning (ML) models promise accu-
rate individual predictions [9–16]. ML has been success-
fully applied to data collected by wearable sensors gener-
ating functional insights that are superior to standard rating
scales [17]. Gait features have been interpreted in a multi-
class (Parkinson’s disease (PD), Huntington’s disease (HD),
and ALS) environment combining Naïve Bayes and logis-
tic regression approaches in an ensemble framework [18].
Concise panels of basic demographic and clinical variables
have been repeatedly explored in ML models to predict
functional disability [19], clinical subtypes [20], functional
decline [21], rate of progression [13], caregiver quality of
life [22], caregiver burden [23], and survival [16]. Other
clinical features such as voice [24], facial movement [25],
and electromyography (EMG) variables [26] have also been
successfully integrated in ML models to distinguish sub-
jects with ALS from controls. ML models are increasingly
applied to rich epidemiology data sets, and interactions be-
tween clinical and environmental factors have also been in-
vestigated in a logistic regression model [27].

2.2 Examples form Imaging

The archetypal imaging features of ALS include pri-
mary motor cortex, corpus callosum, corticospinal tract,
and brainstem degeneration [28–30], but selective basal
ganglia, thalamic, hippocampal and cerebellar involvement
[31–36] is increasingly accepted as part of the imaging sig-
nature of ALS. Despite initial focus on the primary motor
cortex, the contribution of cerebellar and subcortical grey
matter pathology to key clinical manifestations are increas-
ingly recognized [37–39]. Awide range of imaging-derived
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metrics have been explored in single-patient classification
models [40,41], including diffusion data [42,43], morpho-
metric data, functional MRI data [44], network dynam-
ics parameters [45], functional near-infrared spectroscopy
(fNIRS) variables [46], and combined panels of structural
and diffusivity metrics [47–50]. In line with multi-class
categorization efforts, MRI data have been increasingly
utilized to distinguish specific phenotypes [51,52]. MRI-
derived indices have also been evaluated in survival pre-
diction [53,54]. More recently, vision transformer archi-
tectures were tested to distinguish subjects with ALS from
controls combining spatial and frequency domain infor-
mation to enhance model performance [55]. It is note-
worthy that promising single-patient data interpretation has
also been achieved using z-score-based contrasting ofMRI-
derived metrics to pools of demographically-matched nor-
mative data [8,29,56]. In addition to cerebral MRI-derived
metrics, the utility of muscle ultrasonography data [57],
positron emission tomography (PET) [58], and spinal mark-
ers [59,60] have also been demonstrated in ML applica-
tions. ML has also been harnessed to enhance the develop-
ment of effective brain-computer interface (BCI) protocols
relying on electroencephalography (EEG) signal patterns
[61]. Anatomical patterns of cerebral involvement in pri-
mary lateral sclerosis (PLS) are remarkably similar to ALS
[62–65]; therefore, reliable discrimination based on brain
metrics alone remains relatively challenging [51,52].

2.3 Examples from “Wet Biomarkers”

The challenge of categorizing into relevant patholog-
ical stages and subtyping TDP-43 proteinopathies has been
successful met through a variety of approaches [66,67].
Metabolomic profiles have been evaluated in ML frame-
works to differentiate controls from patient with ALS [68],
predict clinical outcomes in a clinical trial setting [69],
and identify potential future targets for pharmacological
interventions [70]. Lipidomics data were successfully as-
sessed in ML frameworks to distinguish ALS from PLS
[71]. There is a presumed publication bias for models with
moderate-to-high classification accuracy, but approaches
yielding limited biomarker potential have also been re-
ported, which are invaluable for the research community.
One such study highlighted the practical biomarker limita-
tions of multivariate models using patient-derived fibrob-
last morphometry features [72], while another innovative
study evaluated metabolomic profiles years before the diag-
nosis attempting to separate controls from presymptomatic
ALS cases [73].

2.4 Examples from Genetics and Transcriptomics

Innovative ML strategies have been developed inte-
grating functional genomics with genome-wide association
study (GWAS) summary statistics to aid gene discovery
[74]. ML models have been used to predict the pathogenic-
ity of TARDBP and FUS gene variants [75] and also suc-

cessfully applied to transcriptomic [76] andmicroRNApro-
files [77]. The polygenic underpinnings of cognitive dys-
function in ALS have been recently explored by an innova-
tive ML approach [78]. Advanced clustering methods have
been applied to genetic [79], clinical and imaging [80] data
sets capturing unique subpopulations with distinctive ge-
netic, clinical, or radiological features.

3. Discussion
3.1 Shortcomings of Recent Studies

As demonstrated by the examples above, several
methodologically diverse and promising pilot studies have
been published recently. While all of these indicate the po-
tential clinical role of ML in motor neuron disease (MND)
and signal tangible future opportunities, a number of prac-
tical caveats hinder the implementation of these models in
routine clinical practice (Table 1). The vast majority of re-
cent ML initiatives in ALS were either single-center studies
or merely trained and validated on national data sets. From
a diagnostic perspective, strikingly few multi-class classifi-
cation models were tested. The vast majority of biomarker
and imaging studies in MND focus on ALS, and cohorts of
Kennedy’s disease, PLS, post-polio syndrome, are spinal
muscular atrophy patients are seldom included [81–83] de-
spite overlapping clinical and imaging features [84]. Simi-
larly, despite promising results, the accuracy of proposed
models has not been convincingly tested on early-stage,
suspected, or presymptomatic cohorts. Moreover, existing
models rely either exclusively on clinical data, biomarker
data, or imaging data and strikingly few studies have at-
tempted to integrate inputs from a multitude of biomarker
domains.

Similarly, procedures to account for missing data are
often overlooked or inadequately addressed. Models de-
veloped for “real-life” clinical applications must accom-
modate for the fact that many patients do not have an en-
tire array of comprehensive data sets encompassing clini-
cal, CSF, serum, urine, and imaging inputs. Classification
models to date have mostly categorized patients into diag-
nostic subgroups, phenotypic classes, survival prospect cat-
egories, and pathological stages, but unlike in other condi-
tions, the potential of ML to predict response to therapy or
likely genotypes have not been comprehensively explored
to date. The acknowledgement and candid discussion of
these limitations will likely help to shape future study de-
signs and determine research priorities.

3.2 Future Directions
Model validation schemes in the future should include

suspected cases, subjects with short disease duration, and
presymptomatic gene carriers to compellingly demonstrate
the discriminatory potential of a proposed model between
patients with ALS and ALS mimics. While the majority
of recent studies have implemented supervised ML mod-
els, the potential of robust unsupervised models needs to be
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Table 1. Prospects and challenges of implementing effective machine-learning strategies in amyotrophic lateral sclerosis and
other motor neuron diseases.

Opportunities Challenges

Early diagnosis of suspected cases Data harmonization: scanners, immune assays etc.
Prognostic categorization Data storage challenges: expense, maintenance, access, screening
Predicting response to specific therapies Data regulations and regional regulatory differences: GDPR, Euro-

pean Union (EU), United States (USA), Australia etc.
Phenotypic classification Cloud storage: expense, regulations
Identification of likely genotype for targeted testing Computational demands: real-time versus post hoc analyses
Rate of functional decline predictions Validation platforms and model adjustments
Classification into clinical and pathological disease stages Financial implications: funding applications, industry collabora-

tions, annual reports
Pre-enrolment patient stratification for clinical trials Maintenance and curation of data repositories
Ascertainment of slow progressors and limited phenotypes Inclusion bias in training data sets: cognitive, bulbar, NIV-

dependent phenotypes may be underrepresented
Disability profile prediction Defining access: only raw data contributors versus open-access

platforms
Extra-motor expansion prediction (cognitive, behavioral, cerebellar
features)

Weighted/balanced integration of multimodal data: wet biomarkers,
clinical data, imaging etc.

Informing resource allocation (finances, PT, OT, modifications,
adaptive strategies)

Legal framework and acknowledging the limitations of ML predic-
tions and classification

Informing timing of interventions (PEG, NIV) Data ownership questions
Phenoconversion prediction in asymptomatic/presymptomatic muta-
tion carriers

Consenting for participation, right of withdrawing from training
data sets

Discrimination of ALS from mimic syndromes and low-incidence
phenotypes e.g., PLS, SBMA

Anonymization procedures and pseudonymization for cross-
platform, multi-domain data

Identification of early ALS in FTD and cohorts with psychiatric con-
ditions

Regulation of industry–academia collaborations

Clustering to identify subsets of patients with unique clinical, radio-
logical, or biomarker profiles potentially harboring rare genetic vari-
ants

Intellectual property (IP) issues, IP ownership, commercialization
issues: open-access versus subscription based access

Establishing the comparative diagnostic/monitoring/discriminatory
sensitivity (hierarchy) of multiple markers across several domains;
some of which may be cheaper yet superior

Imaging logistics: limited availability of PET, high-field MRI plat-
forms and high scanning fees

Precision, objective tracking of disease burden over time in clinical
trials instead relying on functional rating scales and indirect clinical
measures

Wet biomarker logistics: LP, storage, transfer, freezing and cold-
chain etc.

Abbreviations: ALS, amyotrophic lateral sclerosis; FTD, frontotemporal dementia; GDPR, General Data Protection Regulation; LP, lumbar
puncture; MRI, Magnetic resonance imaging; NIV, non-invasive ventilation; OT, Occupational therapy; PEG, percutaneous endoscopic gas-
trostomy; PET, Positron emission tomography; PLS, primary lateral sclerosis; PT, physiotherapy; SBMA, spinal bulbar muscular atrophy;
ML, machine learning.

explored in forthcoming studies. To avoid model overfit-
ting to local data, it seems imperative to build, test, and val-
idate models on multi-site international data sets. Instead
of relying on single-domain data, such as clinical metrics,
serum markers, or imaging indices in isolation, future mod-
els should attempt to integrate features from a multitude
of modalities and biomarker platforms. Instead of defin-
ing features a priori and restricting analyses to predefined
regions of interest in advance, formal variable importance
analyses and ranking is important for streamlining models
for the evaluation of the most relevant variables only. Bi-
nary classification initiatives have to be superseded by ro-

bust multi-class classification models to account for disease
heterogeneity and common disease mimics to mirror real-
life clinical dilemmas. Data harmonization efforts need
to be doubled internationally and data transfer legislation
needs to be simplified.

3.3 Cause for Optimism

Funding agencies, charities, and academic centers
have long recognized the imperative of multi-site, cross-
border collaborations, which are indispensable for effective
model development and validation. Clinical trials some-
times make some of their raw data available after the con-
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Fig. 2. The practical relevance of machine learning initiatives—potential clinical deliverables.

clusion of a pharmaceutical trial. Data form initiatives such
as the “Pooled Resource Open-Access ALS Clinical Tri-
als” (PRO-ACT) and “Project MinE ALS Sequencing Con-
sortium” have been instrumental for the development, op-
timization, and validation of ML models. Large biomarker
repositories have been successfully set up for a variety of
neurodegenerative conditions such as Alzheimer’s Disease
(AD), frontotemporal dementia (FTD), and HD and a num-
ber of promising multi-site initiatives also exist in ALS
[85,86], paving the way for model optimization and transla-
tion into viable clinical applications [87]. The Neuroimag-
ing Society of ALS (NiSALS) has undertaken a number of
successful collaborative projects and demonstrated the fea-
sibility of cross-platform data interpretation [88]. In addi-
tion to analogous efforts in other neurodegenerative con-
ditions such as AD, HD, and FTD [89], promising artifi-
cial intelligence (AI) frameworks have been trialed in clin-
ical oncology, radiology, ophthalmology, and histopathol-
ogy, demonstrating the prospect of viable computer-aided
screening and diagnostic tools. In recognition of the ur-
gency of prospective, harmonized, multisite data acquisi-
tion, a number of robust data collection and analysis plat-
forms have been recently developed in ALS [90–95], sev-
eral of them proposing innovative novel clinical trial de-
signs [96,97]. Project MinE, Precision ALS (PALS), PRO-
ACT, NiSALS, Northeast ALS (NEALS) and the West-
ern ALS (WALS) consortia, and the Canadian ALS Neu-
roimaging Consortium (CALSNIC) are just some examples

of successful multi-site data platforms. In parallel with in-
creased international collaborations, a number of techno-
logical advances are also aiding data collection and real-
time data interpretation such as the drop in the price of
cloud solutions, the availability of high-performance com-
putational facilities at academic centers, and wearable de-
vices with wireless connection, etc. Despite current sample
size limitations, data harmonization difficulties, and leg-
islative challenges, MLmethods will no doubt be firmly in-
tegrated in individualized diagnostic pipelines, clinical pre-
dictions, and assessment of treatment response in the near
future (Fig. 2). Academic ML initiatives are likely to fil-
ter down to routine clinical practice and develop into viable
clinical applications.
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