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Abstract

Background: Emotions are thought to be related to distinct patterns of neural oscillations, but the interactions among multi-frequency
neural oscillations during different emotional states lack full exploration. Phase-amplitude coupling is a promising tool for understanding
the complexity of the neurophysiological system, thereby playing a crucial role in revealing the physiological mechanisms underlying
emotional electroencephalogram (EEG). However, the non-sinusoidal characteristics of EEG lead to the non-uniform distribution of phase
angles, which could potentially affect the analysis of phase-amplitude coupling. Removing phase clustering bias (PCB) can uniform the
distribution of phase angles, but the effect of this approach is unknown on emotional EEG phase-amplitude coupling. This study aims to
explore the effect of PCB on cross-frequency phase-amplitude coupling for emotional EEG.Methods: The technique of removing PCB
was implemented on a publicly accessible emotional EEG dataset to calculate debiased phase-amplitude coupling. Statistical analysis and
classificationwere conducted to compare the difference in emotional EEG phase-amplitude coupling prior to and post the removal of PCB.
Results: Emotional EEG phase-amplitude coupling values are overestimated due to PCB. Removing PCB enhances the difference in
coupling strength between fear and happy emotions in the frontal lobe. Comparable emotion recognition performance was achieved with
fewer features after removing PCB. Conclusions: These findings suggest that removing PCB enhances the difference in emotional EEG
phase-amplitude coupling patterns and generates features that contain more emotional information. Removing PCBmay be advantageous
for analyzing emotional EEG phase-amplitude coupling and recognizing human emotions.
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1. Introduction
Emotion is an integrated psychophysiological state

that comprises an individual’s psychological and physio-
logical reaction to external stimuli [1]. Previous research
indicates that certain regions of the brain, including dorso-
lateral prefrontal lobe [2], amygdala [3], and hippocampus
[4], are the crucial areas responsible for emotions. Brain
signals can be acquired to capture information regarding
emotional states [5]. Electroencephalogram (EEG) is a non-
invasive method of recording neural signals, which pro-
vides high temporal resolution and is preferred for esti-
mating emotional states [6]. Human emotion is a complex
psychological and physiological phenomenon [7], and the
non-linear, non-stationary properties of EEG signals further
amplify the challenge of extracting meaningful informa-
tion [8]. Therefore, ascertaining the relationship between
EEG pattern variations and emotional fluctuations consti-
tutes a major research challenge within the realm of emo-
tional EEG.

EEG signals have three fundamental attributes: phase,
amplitude, and frequency [9]. In prior research, emotional

EEG signals have been analyzed mainly using mean square
amplitude [10], power spectrum [11], time-frequency spec-
trum [12], phase-locking value [13], and other methods
[14]. However, there are few studies on the interactive rela-
tionship of phase and amplitude between different frequen-
cies within single-channel emotional EEG. The interaction
between neuronal oscillations at different frequencies is
known as cross-frequency coupling (CFC) [15]. Some re-
searchers have found that CFC plays a functional role in
transmitting information between neurons [16], and is as-
sociated with visual [17], auditory [18], and cognitive con-
trol [19]. Recently, CFC has also been applied in studying
neurological and psychiatric diseases [20], such as Parkin-
son’s disease [21], epilepsy [22], schizophrenia [23] and
obsessive-compulsive disorder [24]. Phase-amplitude cou-
pling is the most typical type of CFC, in which the phase
of the low-frequency signal modulates the amplitude of the
high-frequency signal. Canolty et al. [25] discovered that
phase-amplitude coupling exists in various regions of the
brain. Phase-amplitude coupling has been proposed to have
a crucial functional role in neural information processing
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and cognition [26]. In recent studies, researchers have tried
to explore the relationship between emotion and phase-
amplitude coupling. Bramson et al. [27] showed that en-
hanced phase-amplitude coupling can reduce neural noise
in the anterior prefrontal cortex and sensorimotor cortex
communication, allowing for improved control over emo-
tional action tendencies. Chan et al. [28] found that dis-
tributed theta–gamma and alpha–gamma phase-amplitude
coupling reveal implicit prosody processing associated with
negative emotions. Additionally, Zhang et al. [29] sug-
gested that phase-amplitude coupling is a potential feature
for emotion owing to the nested nature of brain activities.
Therefore, phase-amplitude coupling may be essential in
revealing the physiological mechanisms that underlie emo-
tional EEG data, thus contributing to the facilitation of emo-
tion recognition.

Neural signals are not idealized sinusoidal waves
[30]. The commonly used analytical technique of phase-
amplitude coupling ignores the phase clustering bias (PCB)
generated by the non-uniform distribution of phase angles
[31]. This may lead to a widespread problem, underesti-
mation or overestimation of genuine phase-amplitude cou-
pling [31], where emotional EEG is no exception. Re-
moving PCB can uniform the distribution of phase angles,
but the effect of this approach is unknown on emotional
EEG phase-amplitude coupling. In this study, the effect
is explored through statistical analysis and classification.
Here, it is hypothesized that removing PCB would produce
a positive effect and that debiased phase-amplitude cou-
pling (DPAC) might be advantageous in the study of multi-
frequency interaction of emotional EEG and the recognition
of human emotions.

2. Materials and Methods
2.1 Datasets and Pre-Processing

In this study, experimental data were derived from the
public emotional EEG dataset SEED-IV [32]. SEED-IV
is an advanced version of the original SEED, and contains
62-channel EEG signals for four emotions recorded in15
subjects. Scalp voltages were recorded using the ESI Neu-
roScan System (SynAmps RT, Compumedics Neuroscan
Inc., Charlotte, NC, USA) at a 200 Hz sampling rate. The
SEED-IV dataset used audio-visual stimuli to elicit four tar-
get emotions: neutral, sad, fear, and happy. Subjects were
instructed to watch the video clips and experience the cor-
responding emotions during each trial. Each subject com-
pleted three separate sessions, and the stimuli for the three
sessions were completely different. A session comprised a
total of 24 trials, encompassing six trials per emotion. The
duration of each video clip was approximately twominutes,
and each trial started with a 5 s hint and ended with a 45 s
self-assessment and relaxation. To facilitate data analysis,
we organized the four trials related to each of the four dif-
ferent emotions into a block. Hence each session consisted
of six blocks.

Generally, unprocessed EEG signals contain electri-
cal noises induced by facial muscle activity and eye move-
ments. EEG signals were preprocessed with the open-
source EEGLAB toolbox [33]. First, unnecessary channels
were eliminated, and channel locations were edited. The
CB1 and CB2 channels were removed due to their noncon-
formity with the international 10–20 system. Subsequently,
the reference electrode standardization technique (REST)
[34], a widely recommended reference method, was ap-
plied to re-reference EEG signals to the point at infinity.
An finite impulse response (FIR) filter was then utilized for
bandpass filtering in the 1–70 Hz range, and a 50-Hz notch
filter was employed to eliminate power-line interference.
Next, independent component analysis (ICA)was executed.
Finally, ICLabel [35] and ADJUST (Automatic EEG arti-
fact Detection based on the Joint Use of Spatial and Tem-
poral features) [36] were utilized to remove independent
components associated with blinks, eye movements, and
electromyography (EMG). Wavelet packet transform was
used to decompose the EEG signal of each channel into
six sub-bands: Delta (1–4 Hz), Theta (4–8 Hz), Alpha (8–
13 Hz), Beta (13–30 Hz), Low Gamma (30–45 Hz), and
High Gamma (45–70 Hz). Following this, the 60-channel
EEG signals of each frequency bandwere segmented into 5-
second time windows to calculate the phase-amplitude cou-
pling values. The window length of 5 s was determined
by considering the maximum inclusion of training samples
while capturing genuine phase-amplitude coupling values
effectively. A study on the segmentation of EEG signal for
classification was also referenced [37]. The Supplemen-
tary Material provided further evidence that a 5-second
time window was reasonable.

2.2 Regular and Modified Methods for Phase-Amplitude
Coupling

The mean vector length (MVL) [38] is a regular
method to quantify the coupling strength between low-
frequency signal phase and high-frequency signal ampli-
tude, as it is more sensitive to the coupling strength than
othermethods [39]. For the original EEG signal filtered into
low- and high- frequency signals denoted as Low(t) and
High(t), Hilbert transform was used to estimate both the
instantaneous phase of the low-frequency signal ϕLow (t)

and the instantaneous amplitude of the high-frequency sig-
nal AHigh (t). The mean vector length is calculated using
Eqn. 1:

MVL (fLow , fHigh ) =

∣∣∣∣∣ 1T
T∑

t=1

AHigh (t)ejϕLow (t)

∣∣∣∣∣ (1)

Where t represents time, and T is the total number of
time points. HigherMVLvalues generally indicate stronger
phase-amplitude coupling.
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PCB is calculated by averaging the complex vectors
of phase angles as shown in Eqn. 2:

PCB =
1

T

T∑
t=1

eiϕfLow (t) (2)

Driel et al. [31] introduced a modified version of the
regular MVL method, which can uniform the distribution
of phase angles so as to debias MVL method. The debiased
mean vector length (DMVL) is calculated using Eqn. 3.

DMVL
(
fLow , fHigh

)
=

∣∣∣∣∣ 1T
T∑

t=1

AHigh (t)
(
e
iϕfLow (t) − PCB

)∣∣∣∣∣ (3)

PCB needs to be linearly subtracted from each phase
angle before evaluating the phase-amplitude coupling.

In this study, the phase-amplitude coupling values
were calculated using the regular MVL method (hereafter
referred to as PAC) and modified version of the regular
MVL method (hereafter referred to as DPAC).

2.3 Statistical Analysis
For each channel, the PAC and DPAC values were cal-

culated using formulas (1) and (3), respectively, for each
5-s time window. These values were then averaged across
the time windows within each emotion for 15 subjects. The
Wilcoxon signed rank test was employed to compare the
differences among the four emotions for PAC and DPAC,
as mentioned in the main text or figure legends. The 95%
confidence level threshold was set, and false discovery rate
(FDR) was used to adjust the p-value for multiple compar-
isons. “*” represents p < 0.05 and “**” represents p <

0.01. The phases of low-frequency signals were randomly
shuffled for 1000 iterations and a permutation test was con-
ducted. Statistical Program for Social Sciences (IBM SPSS
Statistics 27, IBM Corp., Armonk, NY, USA) was used for
statistical analysis.

2.4 Evaluating Emotion Recognition Performance
To further assess the effect of PCB on emotional EEG

phase amplitude coupling, PAC and DPAC were used as
features for emotion recognition, and their performancewas
compared. Support Vector Machine (SVM) is a binary lin-
ear classifier that distinguishes classes by finding hyper-
planes that maximize the margins between two classes [40].
The LIBSVM toolbox (https://www.csie.ntu.edu.tw/~cjlin
/libsvm/) is an integrated software that implements support
vector classification, and supports multi-class classification
[41]. SVMwith a linear kernel function and a penalty factor
C = 10 was applied to emotion recognition.

When evaluating performance, it is important to note
that if the EEG signal of the entire session is randomly split
intoK folds, both the training and test sets may contain seg-

ments from the same trial. Information could be leaked
from the training set to the test set due to the correlated
data distribution of the segments from the same trial. This
may result in an inflated recognition performance on the test
set. To evaluate the classification results more reasonably,
leave-one-block-out cross-validation method was adopted
in this study, where one block refers to four trials of four
different emotions.

The EEG signals possess a high dimensional feature
space owing to the number of channels. Some features
might have a small contribution to the classification task.
To mitigate the risk of overfitting and to develop a simpler
classification model, the Minimal-Redundancy-Maximal-
Relevance (mRMR) [42] algorithmwas utilized to rank fea-
tures according to their importance to the four-class clas-
sification tasks. The most important M features were se-
quentially selected for emotion recognition, recording the
classification accuracy for each frequency band pair.

3. Results
3.1 Comodulogram for Channels in the Frontal Lobe

The comodulogram, which depicts the strength of
phase-amplitude coupling, is typically used to visualize the
interaction between different frequency bands. The hori-
zontal axis represents the phase frequency, while the verti-
cal axis represents the amplitude frequency, and the color
corresponds to the coupling strength.

To examine the coupling strength between low-
frequency phase and high-frequency amplitude across all
frequency bands during different emotional states, phases
were extracted from 14 sub-bands within the frequency
range of 1–29 Hz (with a bandwidth of 2 Hz and a step size
of 2 Hz), and amplitudes from 17 sub-bands within the fre-
quency range of 1–69 Hz (with a bandwidth of 4 Hz and
step size of 4 Hz), as determined by the related work of
comodulogram [21]. PAC and DPAC were calculated sep-
arately for all frequency pairs in each channel. The average
comodulograms of four emotions were obtained by aver-
aging the PAC and DPAC across 15 subjects within each
emotion. From 60 channels, 60 groups of comodulograms
were obtained.

As the frontal lobe is associated with emotions [43],
comodulograms of channels in the frontal lobe were aver-
aged. This process was then repeated for DPAC. Fig. 1 de-
picts the coupling patterns of neutral, sad, fear, and happy
emotions. Specifically, the coupling patterns of neutral and
happy emotions exhibited similarities, mainly manifesting
in the phase frequency range of 1–5 Hz and the amplitude
frequency range of 10–30 Hz. On the other hand, the two
negative emotions, sad and fear emotions, displayed sim-
ilar patterns, particularly in the phase frequency range of
1–5 Hz and the amplitude frequency range of 30–69 Hz.
As seen from the bottom panel of Fig. 1, the regions of col-
ored in red, which representing the stronger coupling in cor-
responding frequency ranges, exhibited smaller size when
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Fig. 1. Average emotion comodulograms for channels in the frontal lobe (N = 15 subjects). The top panel shows PAC and the
bottom panel shows DPAC. The title of each column gives the emotion. Color bar corresponds to the strength of coupling. Note the
similar patterns between PAC and DPAC, and with removal of the phase clustering bias leading to weaker coupling strength. PAC,
phase-amplitude coupling; DPAC, debiased phase-amplitude coupling.

compared to those in the top panel of Fig. 1. This discrep-
ancy can be attributed to the weaker coupling strength after
removing PCB.

3.2 Differences among Emotions in the Average of All
Channels

As per the emotion comodulogramsmentioned earlier,
emotional EEG phase-amplitude coupling mainly occurs
between six pairs of frequency band: Delta and Beta (D-B),
Delta and Low Gamma (D-LG), Delta and High Gamma
(D-HG), Theta and Low Gamma (T-LG), Theta and High
Gamma (T-HG), and Alpha and High Gamma (A-HG). To
further compare the phase-amplitude coupling of these six
frequency band pairs, the PAC and DPAC were calculated
for all EEG signal channels for the four emotions, and then
averaged across channels. As shown in Fig. 2, DPAC and
PAC had similar patterns for the four emotions in the six
frequency band pairs. However, the Wilcoxon sign ranks
test demonstrated that the DPAC values were significantly
smaller than those of PAC (Z = 3.408, p = 0.001).

Furthermore, Wilcoxon signed rank tests showed that
DPAC and PAC differed significantly between some emo-
tions, as indicated by the significance markers shown in
Fig. 2. In particular, after removing PCB, DPAC between
fear and happy emotions (Z = 2.360, p = 0.018), as well as
neutral and happy emotions (Z = 2.521, p = 0.012), in the D-
B frequency band pair both showed significant differences.

3.3 Spatial Distribution of Phase-Amplitude Coupling
As EEG signals have numerous channels the spatial

distribution of phase-amplitude coupling strength on the

scalp surface can be observed through brain topographic
maps. With 60 EEG channels, average brain topographic
mapswere obtained across the 15 subjects. Figs. 3,4 present
the brain topographic maps of PAC and DPAC for six fre-
quency band pairs and four emotions, respectively. Each
row denotes an emotion and each column represents a fre-
quency band pair. PAC and DPAC are linearly mapped to
the normal scale [0,1].

Figs. 3,4 reveal that PAC and DPAC are strong in both
the prefrontal and temporal lobes, and also exist in the oc-
cipital lobe. The brain topographic maps of PAC and DPAC
also appear to exhibit notable symmetry between the left
and right hemispheres.

A comparison of Figs. 3,4 showed that the topographic
maps of phase-amplitude coupling exhibit greater differ-
ences among the four emotions and the six frequency band
pairs both prior to and post the removal of PCB. A sta-
tistical analysis of the observed phenomena was also con-
ducted. The difference values of 60 channels between any
two frequency band pairs were calculated under each emo-
tion. Similarly, the difference values of 60 channels be-
tween any two emotions were calculated under each fre-
quency band pair. For all these difference values, the dif-
ference between PAC and DPAC were significant by the
Wilcoxon signed rank test (Z = 6.7359, p < 0.001). The
spatial distributions of phase-amplitude coupling values in
D-B and D-LG frequency band pairs were most affected by
PCB. Fig. 4 also illustrates that the asymmetry patterns of
the left and right hemispheres become more obvious in the
D-B frequency band pair.
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Fig. 2. Statistical differences among emotions (neutral, blue; sad, orange; fear, yellow; happy, purple) in the average of all
channels (N = 15 subjects, **p < 0.01, *p < 0.05, Wilcoxon signed rank tests). (A) PAC. (B) DPAC. Error bars represent standard
error of mean (S.E.M.). A-HG, Alpha and High Gamma; D-B, Delta and Beta; D-LG, Delta and Low Gamma; D-HG, Delta and High
Gamma; T-LG, Theta and Low Gamma; T-HG, Theta and High Gamma.

Fig. 3. Topographic maps of PAC for 60 channels (N = 15 subjects). The color bars represent the phase-amplitude coupling value,
which is linearly mapped to the normal scale [0,1].

3.4 Differences among Emotions in the Frontal Lobe

Since the frontal lobe is frequently reported associated
with emotional EEG in previous literature [44], PAC and
DPAC of each subject’s frontal lobe channels (F8, F6, F4,

F2, FZ, F1, F3, F5, F7) were averaged. Wilcoxon signed
rank tests revealed the differences among the four emotions
for six frequency band pairs. The significant test results are
depicted in Fig. 5.
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Fig. 4. Topographic maps of DPAC for 60 channels (N = 15 subjects). The color bars represent the phase-amplitude coupling value,
which is linearly mapped to the normal scale [0,1].

Results showed that removing PCB enlarged the dif-
ference in coupling strength between fear and happy emo-
tions significantly, but seemingly reduced differences in
coupling strength between neutral and fear emotions. No-
tably, a statistically significant difference existed in EEG
phase-amplitude coupling in the frontal lobe between neu-
tral and happy emotions, while the p-values are almost
equal whether or not PCB was removed. The six p-values
in the third column of PAC and DPAC were compared by
the Wilcoxon signed rank test and the difference was not
significant. This implies that the difference in EEG phase-
amplitude coupling in the frontal lobe between neutral and
happy emotions was not influenced by PCB (Z = 0.105, p
= 0.916). After removing PCB, DPAC between fear and
happy emotions (Z = 2.439, p = 0.015), as well as neu-
tral and happy emotions, in the D-B frequency band pair
showed significant differences (Z = 2.296, p = 0.022). Sim-
ilar results were also obtained in Section 3.2.

3.5 Comparative Analysis of Emotion Recognition
Performance

The emotion recognition outcomes depicted in Fig. 6
present the average classification accuracy of 15 subjects as
a function of feature numbers on the horizontal axis. The
results indicated that with or without removal of the phase
clustering bias, each frequency band pair exhibited a pattern

of increasing initially and then decreasing classification ac-
curacy as the feature numbers increased, which could be
attributed to classifier overfitting due to the high number of
feature dimensions.

The optimal number of features with the best classi-
fication accuracy of PAC vs. DPAC were 26 vs. 24 (A-
HG), 18 vs. 16 (D-B), 14 vs. 12 (D-LG), 14 vs. 14 (D-
HG), 22 vs. 18 (T-LG), and 26 vs. 24 (T-HG). Their corre-
sponding accuracy is shown in Table 1. The performance in
the four-class emotion recognition task is above the chance
level (25%) for each subject. TheWilcoxon signed rank test
revealed that the number of features with the best classifi-
cation accuracy of PAC and DPAC were significantly dif-
ferent (Z = 2.121, p = 0.034), while the difference between
their best classification accuracywas not statistically signif-
icant (Z = 0.210, p = 0.833). Furthermore, the top-ranked
features for both PAC and DPACwere mainly from the pre-
frontal and lateral temporal lobes, especially FP2 and T7
channels, a phenomenon irrelevant to the subject. Table 1
also showed that D-LG and T-HG achieved higher classi-
fication accuracy among the six band pairs of PAC. A-HG
and T-LG achieved higher classification accuracy among
the six frequency band pairs of DPAC.
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Fig. 5. Statistical differences among emotions in the frontal lobe (N = 15 subjects, **p < 0.01, *p < 0.05, Wilcoxon signed rank
tests). (A) PAC. (B) DPAC. The horizontal axis denotes six pairs of the four emotions, namely, neutral-sad (N-S), neutral-fear (N-F),
neutral-happy (N-H), sad-fear (S-F), sad-happy (S-H), and fear-happy (F-H), while the vertical axis represents the six frequency band
pairs. The color bars represent the p-value.

Fig. 6. Emotion recognition performance of PAC and DPAC with different feature numbers. (A) PAC. (B) DPAC. The horizontal
axis denotes the number of features, the vertical axis represents the average classification accuracy of 15 subjects.

4. Discussion
Phase-amplitude coupling is a promising tool for

studying multiscale interactions in complex systems [45].
Although numerous studies have confirmed the correla-
tion between emotions and EEG, few studies have focused
on phase-amplitude coupling between different frequen-
cies within single-channel emotional EEG as well as PCB
caused by non-sinusoidal characteristics of EEG. This study
explored the effect of PCB on phase-amplitude coupling for
emotional EEG. Consistent with the hypothesis, removing
PCB might produce a relatively positive effect.

The non-uniform distribution of phase angles may
lead to either overestimation or underestimation of gen-
uine phase-amplitude coupling, depending on the strength
of the bias and the coupling angle [31]. Strong PCB that
is in-phase with phase-amplitude coupling can result in
overestimations of coupling strength, whereas anti-phase
clustering-coupling angles may cause underestimations, as
revealed by simulation results from [31]. The experimental
results presented in Figs. 1,2 show a reduction of phase-
amplitude coupling values was observed after removing
PCB. In other words, emotional EEG exhibits a consider-
able PCB with an in-phase clustering-coupling angle.
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Table 1. The best accuracy in emotion classification of PAC and DPAC for six frequency band pairs (%)
Feature A-HG D-B D-LG D-HG T-LG T-HG

PAC 45.23 ± 3.43 41.25 ± 2.23 46.96 ± 6.81 46.56 ± 6.33 45.91 ± 4.69 47.17 ± 6.75
DPAC 46.57 ± 3.44 42.15 ± 1.50 46.06 ± 6.81 46.13 ± 6.45 47.15 ± 5.77 42.75 ± 6.33
PAC, phase-amplitude coupling using the regular MVL method; MVL, mean vector length; DPAC, debiased
PAC. Data are the mean± SD values of the accuracy. A-HG, Alpha and High Gamma; D-B, Delta and Beta;
D-LG, Delta and Low Gamma; D-HG, Delta and High Gamma; T-LG, Theta and Low Gamma; T-HG, Theta
and High Gamma.

Phase-amplitude coupling is a mechanism for neu-
ronal communication, and the strength of phase-amplitude
coupling between high-frequency activity and low-
frequency activity varies across brain areas based on tasks
[46]. The topographic maps depicted in Figs. 3,4 show
that PAC and DPAC are strong in both the prefrontal and
temporal lobes, and exist in the occipital lobe. These brain
regions may be associated with the processing of emotions
and exist cross-frequency information communication.
Our findings reveal the differences of phase-amplitude cou-
pling pertaining to emotional states in the frontal regions.
A possible explanation is that the dorsolateral prefrontal
and orbitofrontal areas are key locations responsible for
emotions [47]. The amygdala, an almond-shaped structure
in the medial temporal lobe, assumes a significant function
in emotional functions [48]. The phase-amplitude coupling
in the temporal regions may indicate the activity of the
amygdala. Additionally, the auditory cortex, situated in
the temporal lobe, is responsible for processing auditory
information [49]. It is plausible that the temporal regions
generate phase-amplitude coupling responses in reaction to
auditory stimulus. The occipital regions, housing the visual
cortices, are known for their role in visual information
processing [50]. The processing of emotional visual
stimulation necessitates the handling of visual perception
information [51]. Seymour et al. [52] and Voytek et al.
[53] demonstrated that the existence of phase-amplitude
coupling in visual cortex of occipital regions during
visual tasks. The presence of phase-amplitude coupling
in the occipital regions likely indicates visual-induced
emotional information processing. Evoked emotions
are the brain’s response to audio-visual stimuli, thereby
involving the sensory modalities integration of auditory
and visual. Phase-amplitude coupling has been implicated
in multisensory integration [54].

According to Russell’s Valence-Arousal emotion
model [55], fear and happy emotions have opposite valence
but similar arousal levels. After the removal of PCB, sig-
nificant differences between neutral and happy, as well as
fear and happy in the frontal lobe suggest that DPAC has
the potential to differentiate emotional valence. This find-
ing supports the study by Clerico et al. [56]. Happy emo-
tion tends to motivate us to approach stimuli, while fear
emotion motivates withdrawal. Davidson et al. [57] found
that frontal EEG asymmetry is associated with approach

and withdrawal emotions, with left frontal activity linked
to approach tendencies and right frontal activity related to
withdrawal tendencies. These findings suggest that accu-
rate estimation of phase-amplitude coupling may amplify
the difference in fear and happy emotion for these physio-
logical characteristics. Frontal D-B phase-amplitude cou-
pling has been found sensitive to mild state anxiety [58].
Topographic maps of DPAC in the D-B frequency band pair
showmore obvious asymmetry patterns of the left and right
hemispheres than PAC, especially for sad and fear emo-
tions. Since mild state anxiety also motivates withdrawal
from stimuli, it is speculated here that spatial asymmetry
distributions exist in the D-B frequency band pair and be-
come more obvious due to PCB removal. From the results
in Section 3.4, PAC showed no difference between any two
emotions. However, DPAC has the potential to differentiate
emotional valence in the D-B frequency band pair, indicat-
ing that emotional information in the D-B frequency band
pair is most disturbed by PCB.

DPAC requires fewer features than PAC but achieves
comparable emotion recognition performance, implying
that the top-ranked DPAC features contain more emotional
information. In other words, by using DPAC features, the
input dimension of emotion recognitionmodel is effectively
reduced, leading to reduced computational complexity and
improved real-time processing capabilities. Additionally,
the linear subtraction of phase clustering bias from each
phase angle produces little negative effect on emotional
EEG phase-amplitude coupling, indicates that phase clus-
tering bias may contain fairly limited emotional informa-
tion. Therefore, we consider the application potential of
EEG-based DPAC for differentiating human emotions.

Gamma oscillations are often considered integrat-
ing distributed neural processes into higher-order cogni-
tive functions, such as emotion processing [59]. In terms
of frequency band pairs, it was found that D-LG and T-
HG achieved higher classification accuracy among the six
band pairs of PAC. Similarly, A-HG and T-LG achieved
higher classification accuracies among the six frequency
band pairs of DPAC. These findings highlight the impor-
tance of Gamma band in emotion recognition task. Previ-
ous studies by Zheng et al. [60] using differential entropy
and Yang et al. [61] based on brain functional networks
have also shown that EEG signals in the Gamma band are
highly sensitive to human emotions.
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Despite the fact that the physiological mechanisms un-
derlying emotional EEG phase-amplitude coupling remain
unclear, a reasonable attempt has been made to comprehend
the multi-frequency interaction of emotional EEG. To our
knowledge, this may be the first study to show the effect of
PCB on emotional EEG phase-amplitude coupling. These
findings may be advantageous for researchers to take the
next step in analyzing emotional EEGphase-amplitude cou-
pling.

One limitation of this study is that emotional EEG data
were collected in a laboratory environment, which may not
represent natural conditions. Additionally, this study did
not apply a mathematical model to assess the effect. Fu-
ture research should include more participants in real-life
scenarios and mathematical modeling should be utilized to
quantify this effect. Examining the phase-amplitude cou-
pling across different channels will enable us to gain a more
comprehensive understanding of information transmission
between different brain regions. We will explore the ef-
fect of PCB on inter-channel phase-amplitude coupling for
emotional EEG in future work.

5. Conclusions
In this study, statistical analysis and classification

were conducted to explore the effect of phase clustering bias
on emotional EEG phase-amplitude coupling.

The results of this study show: (i) Emotional EEG
phase-amplitude coupling values are overestimated due to
PCB. (ii) Removing PCB enhances the difference in cou-
pling strength between fear and happy emotions in the
frontal lobe. (iii) Comparable emotion recognition perfor-
mance was achieved with fewer features after removing
PCB.

These findings suggest that removing PCBmay be ad-
vantageous for analyzing emotional EEG phase-amplitude
coupling and recognizing human emotions. This work pro-
vides a reference for studying the multi-frequency interac-
tion of emotional EEG to reveal the physiological mecha-
nisms underlying human emotion, and also illustrates the
application potential of EEG-based DPAC for differentiat-
ing human emotions.
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