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Abstract

Background: As an objective method to detect the neural electrical activity of the brain, electroencephalography (EEG) has been suc-
cessfully applied to detect major depressive disorder (MDD). However, the performance of the detection algorithm is directly affected
by the selection of EEG channels and brain regions. Methods: To solve the aforementioned problems, nonlinear feature Lempel–Ziv
complexity (LZC) and frequency domain feature power spectral density (PSD) were extracted to analyze the EEG signals. Additionally,
effects of different brain regions and region combinations on detecting MDD were studied with eyes closed and opened in a resting state.
Results: The mean LZC of patients with MDD was higher than that of the control group, and the mean PSD of patients with MDD was
generally lower than that of the control group. The temporal region is the best brain region for MDD detection with a detection accuracy
of 87.4%. The best multi brain regions combination had a detection accuracy of 92.4% and was made up of the frontal, temporal, and
central brain regions. Conclusions: This paper validates the effectiveness of multiple brain regions in detecting MDD. It provides new
ideas for exploring the pathology of MDD and innovative methods of diagnosis and treatment.
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1. Introduction
Depression is one of the most common mental ill-

nesses, and the number of patients increases yearly. Ac-
cording to a survey report by the World Health Organiza-
tion, the number of patients with depression has reached
320 million worldwide [1]. With the increasing number of
patients with depression, social problems, such as insuffi-
cient medical resources for diagnosing and treating depres-
sion follow. At present, the diagnosis of depression in clin-
ical settings mostly relies on depression scales and clini-
cal manifestations, which are highly subjective and prone
to problems such as missed diagnosis and misdiagnosis [2].
An effective way to reflect the neural electrical activity of
the brain is through electroencephalography (EEG), a non-
invasive, quick, and simple clinical diagnostic tool. Numer-
ous studies have demonstrated that depression is a psychi-
atric disorder associated with dysfunction of the amygdala,
thalamus, and anterior cingulate gyrus [3–5]. Furthermore,
abnormal brain activity can cause changes in EEG [6,7],
so by observing the changes in EEG in major depressive
disorder (MDD), we can deeply study its pathogenesis and
explore effective diagnosis and treatment methods.

To improve the accuracy of using EEG signals to iden-
tify patients with MDD, researchers have conducted much
research on this. The alpha and theta bands of the EEG
signals of patients with MDD differ from those of normal
people, according to some researchers who have analyzed
the EEG in the time and frequency domains [8,9]. How-

ever, due to the nonlinear dynamic characteristics of EEG,
using simple linear methods to describe the nonlinear, non-
stationary, and chaotic complex dynamic changes of EEG
is difficult [10,11]. Nonlinear methods are now being used
in an increasing number of studies to analyze the EEG sig-
nals of patients with MDD. RoSchke et al. [12] analyzed
the sleep EEG signals of depression and extracted the Lya-
punov index and the correlation dimension D2 to distin-
guish patients with MDD. Hasanzadeh et al. [13] used
multiple nonlinear feature fusion to detect patients with de-
pression treated with repetitive transcranial magnetic stim-
ulation (rTMS) and achieved a classification accuracy of
91.3%. Using the k-Nearest Neighbors (KNN) model, Bai
et al. [14] classified the complexity features of the gamma
frequency band extracted from the nonlinear domain with
an accuracy of 79.63%. The fractal dimension of the beta
frequency band was extracted and obtained an accuracy of
65.94% using the random forest classifier. EEG contains
a large amount of information about neural electrical ac-
tivity. The correlation of brain regions plays a significant
role in detecting depression in addition to the characteris-
tics of each channel. Wang et al. [15] found that the tem-
poral lobe area was significantly different between patients
withMDDand peoplewithoutMDD through brain topogra-
phy, verifying that the temporal lobe area was an important
brain area for distinguishing patients with MDD from peo-
ple without MDD. This finding was consistent with the in-
terpretation of pathology by the data provider [16]. Mohan
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et al. [17] used an artificial neural network to distinguish
patients with depression from people without depression in
each brain region. Finally, they found that the central brain
region (C3 and C4) was the best brain region to identify de-
pression. Mahato et al. [18] studied the linear and nonlinear
characteristics of EEG signals of patients with depression.
They found that depression had different impacts on the left
and right hemispheres and manifested differently in various
brain regions. Heo et al. [19] found that the symptoms of
depression and anxiety in patients with depression may be
related to the asymmetry of theta waves from the frontal to
the central brain area. Jiang et al. [20] divided all brain re-
gions (from the frontal to the occipital areas) into three parts
for experiments. They proved that the information between
brain regions is very useful for improving depression recog-
nition accuracy. Sun et al. [21] proposed a multilayer brain
functional connectivity network. They found that the brain
functional connectivity network’s right frontal and tempo-
ral lobe regions in patients with MDD have connectivity
defects. As a result, brain region-related features in EEG
signals are crucial for understanding the pathology of de-
pression and improving the accuracy of depression detec-
tion.

In this paper, the EEG signals of patients with MDD
and healthy control groups were studied with eyes closed
(EC) state and opened (EO) state in resting. Through the
fusion analysis of the nonlinear characteristic Lempel–Ziv
complexity (LZC) and the frequency domain characteristic
power spectral density (PSD) of the EEG signal, we investi-
gated the effects of different brain regions and brain region
combinations on the detection of patients with MDD to im-
prove the detection accuracy of patients with MDD. The
best brain regions and patterns of brain region pairings for
detecting patients with MDD using EEG were confirmed.

2. Materials and Methods
2.1 Datasets

The data used in this paper were from the public
dataset MPHC (https://figshare.com/articles/EEG_Data_N
ew/%204244171) [16], which recruited 34 patients with
MDD (17 men and 17 women, mean age = 40.3 ± 12.9
years). Patients with MDD meet the Diagnostic and Statis-
tical Manual ofMental Disorders, fourth edition, diagnostic
criteria for depression, which are internationally accepted
[22]. Study participants signed a consent form and were
informed about the experimental design. Additionally, 30
age-matched healthy controls (21 men and 9 women, mean
age = 38.3 ± 15.6 years) were recruited as a control group.
The control group was confirmed to be healthy after the ex-
amination. The EEG data with 5 min each of EC and EO
resting states included 30 control subjects and 34 patients
with depression. Both patients with MDD and controls sat
in a semirecumbent position. Each dataset has 19 electrode
EEG signals with a sampling frequency of 256 Hz.

In this paper, the placement of brain electrodes on the
scalp followed the International 10–20 system [23]. EEG
data were gathered using an EEG cap with 19 electrode
channels.

The preprocessing of the EEG data in this study was
conducted using EEGLAB (EEGLAB2022.1, Swartz Cen-
ter for Computational Neuroscience, SanDiego, CA,USA).
The electrodes are positioned using the electrode system af-
ter each set of EC and EO data has been imported. Then, the
data were filtered and a finite-length unit impulse response
(finite impulse response) filter was used to perform high-
pass filtering at 0.1 Hz. Low-pass filtering at 45 Hz was
introduced to reduce the interference caused by the power
frequency. After carefully examining the waveform, the
bad channel was manually removed, and its average value
was substituted with the channels close to it. Independent
component analysis (ICA) can effectively extract and re-
move artifacts produced by eye and head movements [24].
The collected raw EEG data shown various artifacts and
valid EEG signals. These data are not dependent on one an-
other and typically follow a non-Gaussian distribution [25],
making it possible to divide them into independent com-
ponents using ICA. This study uses EEGLAB’s ICA tool,
which uses a “runica” algorithm with default settings, cal-
culates independent components based on the actual num-
ber of channels, and removes artifact components by ob-
serving brain topography and time domain chromatograms,
and power spectra.

After data preprocessing, some subjects lacked EC or
EO data, and data with a short data lengths were removed.
Data of EO and EC for 4 min each were collected from 25
healthy controls and 24 patients with MDD. We segmented
all the data with a length of 10 s and finally obtained 576 and
576 segments with EC and EO for patients with depression,
respectively, whereas the control group had 600 and 600
segments with EC and EO, respectively.

2.2 Feature Extraction
The frequency domain feature selected in this paper

is PSD [26], with a sampling frequency of 256 Hz and a
hanging window. First, the full-band PSD value of each
electrode was calculated. Lempel and Ziv [27] proposed
the LZC feature, and Kaspar [28] later designed it as a sim-
ple and user-friendly program. Before calculating the com-
plexity, the EEG signalX (x(1), x(2),…, x(n)) must be trans-
formed into a binary sequence Y (s(1), s(2), …, s(n)), where
n is the total number of sampling points of the signal, 1≤ r
≤ n. The specific operations are as follows:

s(r) =

{
0, x(r) ≤ m

1, x(r) > m
(1)

In this study, the threshold m was set to be the median
value of the EEG because the median value performs better
than the average value when there are abnormal values in
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Fig. 1. Brain topography of the LZC mean. (a) Control group in EC. (b) MDD in EC. (c) Control group in EO. (d) MDD in EO. EC,
eyes closed; MDD, major depressive disorder; EO, eyes opened.

the signal [29]. Then, we traverse all characters of sequence
Y to obtain the complexity c(n) of sequence Y.

Lempel and Ziv [27] have shown that the upper bound
on c(n) is b(n). a is the number of coarse-grained segments.

lim
n→∞

c(n) = b(n) =
n

loga n
(2)

In this paper, the EEG signal sequence is binarized,
so a = 2. To avoid changes caused by the length of the se-
quence segment, it is necessary to perform a normalization
operation on c(n); the operation is as follows:

C(n) =
c(n)

b(n)
(3)

In principle, LZC represents the rate at which new pat-
terns appear in the EEG signals. The normalized LZC is
higher, indicating that the number of new patterns in EEG
is large and that the brain activity is more complex. Because
brain regions discharge irregularly, the EEG sequence tends
to be more random.

2.3 SVM Classification
Support vector machine (SVM) is a classic model for

binary classification. This paper selects SVM as the classi-
fier to classify the extracted features from the preprocessed
data with EC and EO with a “linear” kernel and the Box-
Constraint of 1.

In the cross-subject experiment, healthy individuals
and patients with depression were divided into five groups.
One random group was selected from all groups, and the
feature matrix of the selected groups was used as the test
set, whereas the feature matrix of the remaining groups was
used as the training set. That is, samples from the same per-
son cannot be used simultaneously as training and test data.
The results were averaged after 100 times fivefold cross-
validations.

2.4 Evaluation Indicators
In the binary classification, according to the predicted

situation of the sample and the actual label, it can be di-
vided into true positive (TP), false positive (FP), true nega-
tive (TN), and false negative (FN). Then, the confusion ma-
trix of the binary classification, shown in Table 1. Patients
with MDD were positive, and controls were negative. TP
is the patients with MDD and predicted as MDD. FP is the
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Table 1. Confusion matrices in binary classification
problems.

Predicted: Positive Predicted: Negative

Actual: Positive TP FN
Actual: Negative FP TN
TP, true positive; FP, false positive; TN, true negative; FN, false
negative.

Table 2. Brain region division based on the 10–20
International electroencephalography (EEG) system.

Brain region Channels

1 Frontal Fp1, Fp2, F3, and F4
2 Temporal F7, F8, T3, T4, T5, and T6
3 Central C3, C4, Fz, Cz, and Pz
4 Parietal and Occipital P3, P4, O1, and O2

control group and predicted as patients with MDD. TN is
the control group and predicted as control. FN is the pa-
tients with MDD and predicted as control.

This matrix can obtain its sensitivity, specificity, ac-
curacy, and other indicators. We need to examine a model
from various indicators to assess its quality. Therefore, in
addition to comparing the model’s accuracy, it is often nec-
essary to comprehensively consider the model along with
indicators such as sensitivity and specificity. The specific
calculation formula is as follows:

sensitivity =
TP

TP + FN
(4)

specificity =
TN

FP + TN
(5)

accuracy =
TP + TN

TP + TN + FP + FN
(6)

3. Results
3.1 Electrode Division of Brain Regions

According to the International 10–20 system, the brain
regions are divided, as shown in Table 2.

According to the 10–20 system, electrodes can be di-
vided into frontal, temporal, central, and occipital brain re-
gions, which can be better analyzed by the brain region.
First, we construct feature matrices for specific brain re-
gions. The splicing of a feature matrix of the brain regions
results in a feature matrix of a combination of multiple brain
regions. For example, B1 and B2 are the corresponding fea-
ture matrices of two brain regions (The columns of the ma-
trix represent the proposed features of a piece of data), then
the feature matrix after the combination of brain regions is
(B1; B2).

Table 3. The detection performance of features in the eyes
closed state.

Sensitivity (%) Specificity (%) Accuracy (%) p-value

LZC 76.9 74.2 75.6 <0.01
PSD 74.2 70.0 72.1 0.036
LZC + PSD 78.9 78.3 78.6 <0.01
LZC, Lempel–Ziv complexity; PSD, power spectral density.

Table 4. The detection performance of features in the eyes
opened state.

Sensitivity (%) Specificity (%) Accuracy (%) p-value

LZC 86.7 89.2 87.9 <0.01
PSD 89.4 68.9 79.2 0.021
LZC + PSD 92.8 89.2 91.0 <0.01

3.2 Comparison of the Mean Values of the Features of
Each Channel

After the LZC and PSD features are extracted, the av-
erage value is obtained for analysis. The topographic maps
of the control group and the patients with MDD in EC state
are shown in (a) and (b) in Fig. 1, respectively, whereas
the topographic maps of the control group and the patients
with MDD in EO state are shown in (c) and (d) in Fig. 1,
respectively.

From Fig. 1, we can see that the mean LZC value of
the patients with MDD is higher than that of the control
group, indicating that the irregular discharge of brain re-
gions and the complexity of brain activity in patients with
MDD are higher than those in the control group. Addition-
ally, it can be seen that the mean LZC value of the control
group and patients withMDD in EO state is higher than that
in EC state, indicating that the brain activity in the EO state
is more complex than that in the EC state.

From Fig. 2, we can see that the mean PSD of patients
withMDD is lower than that of the control group, indicating
that the activation degree of the brain of patients with MDD
is lower than that of the control group, which corresponds
to the findings of the study by Lechinger et al. [30]. And, as
can be seen, the mean PSD of the control group and patients
withMDD in the EO state is higher than that in the EC state,
indicating that the EO state has higher brain activity than the
EC state.

3.3 Single Feature and Fusion Feature Analyses

Tables 3,4 demonstrate the detection performance of
EC and EO states, respectively. According to Tables 3,4,
using the nonlinear feature LZC and the frequency domain
feature PSD together has a better detection effect than us-
ing only the LZC or PSD feature in both the EC and EO
states. Furthermore, the highest detection accuracy rate of
multiple features can reach 91.0%, which is much higher
than that of one feature. This result shows that these two
features have complementary roles in identifyingMDD and
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Fig. 2. Brain topography of the PSD mean. (a) Control group in EC, (b) MDD in EC, (c) Control group in EO, (d) MDD in EO.

that subsequent studies use multi feature fusion for exper-
iments. In this paper, t-test is used to test the differences
between patients with MDD and control group in various
feature matrices. As we can see from Tables 3,4, we cal-
culated the p-value of LZC, PSD and LZC + PSD between
two groups in the EC and EO states respectively, all features
show significant differences with p < 0.05.

3.4 EEG Analysis of Single Brain Region and Multi Brain
Regions Combination

According to the division of brain regions in Table 2,
the fusion features extracted from the channels of each brain
region are used as feature sets, a two-dimensional matrix of
features of each brain region is constructed, and SVM is
used for classification. For example, in EC and EO states,
the classification results of each single brain area are shown
in Tables 5,6. In Tables 5,6 and Figs. 3,4, F, T, C, and O
stand for the frontal, temporal, central, parietal and occipi-
tal lobes, respectively, and ALL stands for the entire brain
region.

Tables 5,6 shows that in the EC state, the best effect
was in the temporal lobe region, with a sensitivity of 80.3%,
specificity of 78.6%, and accuracy of 79.4%. In the EO
state, the best effect was also in the temporal lobe region,
with sensitivity of 84.7%, specificity of 90.0%, and accu-

Table 5. The detection performance of a single brain region
in the eyes closed state.

Brain region Sensitivity (%) Specificity (%) Accuracy (%) p-value

F 72.2 74.2 73.2 <0.01
T 80.3 78.6 79.4 <0.01
C 78.9 70.0 74.4 <0.01
O 72.2 71.9 72.1 0.015
F, frontal lobes; T, temporal lobes; C, central lobes; O, occipital lobes.

Table 6. The detection performance of a single brain region
in the eyes opened state.

Brain region Sensitivity (%) Specificity (%) Accuracy (%) p-value

F 79.5 79.8 79.6 <0.01
T 84.7 90.0 87.4 <0.01
C 83.6 70.6 77.1 <0.01
O 83.6 77.2 80.4 <0.01

racy of 87.4%. This confirms the temporal significance
for MDD recognition and is consistent with how the data
providers of this study interpreted the pathology. We used
t-tests on the featurematrices of single brain region between
patients with MDD and control group and found that the O
brain region shows significance with p < 0.05 in EC state,
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Fig. 3. Detection performance of multi brain regions combination in the eyes closed state. *Statistical difference significance
between two groups with p< 0.05; **Statistical difference significance between two groups with p< 0.01. F, frontal lobes; T, temporal
lobes; C, central lobes; O, occipital lobes.

while the others p < 0.01.
We tried merging two or three brain regions or the fea-

ture matrix of the three brain regions channels and used
SVM for classification. For example, in EC and EO states,
the combined detection effects of each multi brain regions
are shown in Figs. 3,4.

From Figs. 3,4, it was found that the combination of
frontal, temporal, and central lobe regions performed the
best in both EC and EO states, with sensitivity, specificity,
and accuracy rates of 82.2%, 81.1%, and 81.7% in the EC
state and 93.9%, 90.8%, and 92.4% in the EO state, respec-
tively. Additionally, we discovered that the frontal, tempo-
ral, and central lobe regions combination increased accu-
racy by 5% over the best single brain region. The best multi
brain regions combination compared with the full brain, the
accuracy is 1.4% higher, the specificity is 1.6%, and the
sensitivity is 1.1%. We used t-tests on the feature matrices
of various brain region combinations between patients with
MDD and control group and found that the frontal, tempo-
ral, and central region combinations show significant dif-
ferences with p < 0.01 in EC and EO state.

The confusion matrix of optimal combination is
shown in Fig. 5. From the confusionmatrix, we can observe
that the proposed model in this paper owns well sensitivity
for detecting MDD patients.

4. Discussion
According to this study, in the case of a multi brain

combination, the EO state is more likely to be recognized
than the EC state. This may be because the functional con-
nection strength of the brain in the EO state is higher than
that in the EC state. In the case of a combination of multi-
ple brain regions, the difference between the brain regions
of patients with MDD and control group is more realisti-
cally expressed [31].

This paper found that the temporal lobe region had the
best effect among the single brain regions. The combina-
tion of frontal, temporal, and central lobe regions combi-
nation is best in multi brain regions analysis. This may be
related to the hippocampus and amygdala in the brain’s lim-
bic system. The amygdala and the hippocampus, which are
involved in memory and emotional responses, are found in
the dorsomedial region of the anterior temporal lobe region
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Fig. 4. Detection performance of multi brain regions combination in the eyes opened state. *Statistical difference significance
between two groups with p < 0.05; **Statistical difference significance between two groups with p < 0.01.

Fig. 5. Confusion matrix for optimal combination of brain re-
gions.

and are located below the hypothalamus. Correlation stud-
ies have shown that the degree of connectivity of amygdala-

related functional connectivity is associated with depres-
sion duration [32]. Depression is associated with the ante-
rior cingulate gyrus and the orbital prefrontal cortex in the
frontal lobe region and the superior temporal gyrus, hip-
pocampus, and amygdala in the temporal lobe region [33].
This research reveals that the frontal, temporal, and cen-
tral brain regions that worked best together were the hip-
pocampus and amygdala, frequently studied in MDD re-
search. These brain regionswill have reference significance
for subsequent MDD research.

5. Conclusions

This study found that the mean LZC and PSD values
of EEG signals in the resting EO state and resting EC state
of patients with MDD differed from those of the control
group. When the detection of results from the two experi-
mental paradigms are compared, we observed that the de-
tection effect of the resting EO state is generally higher than
that of the resting EC state. From the test results, the accu-
racy rate of the combined brain regions is improved sig-
nificantly. Among them, the channel combination of the
frontal, temporal, and central brain regions is better than
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single brain regions, multi brain regions combinations, and
the full brain. It can achieve 92.4% cross-subject recogni-
tion accuracy on the public dataset. Additionally, we dis-
covered that the ideal combination of brain regions matches
the pertinent brain regions currently being studied in the
pathology of MDD. This study will provide a reference for
future research on the auxiliary detection of brain diseases.
The limitation is that we used public EEG datasets. Some
information about EEG collecting was missing, which will
be an obstacle to analyzing the inner mechanism and further
verification.
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