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With the larger variety of methods employed, recanalization ther-
apy is increasingly used to treat acute ischemic stroke resulting in
about one-third of patients undergoing early neurological deteriora-
tion, inwhich ischemia/reperfusion injuries are the main cause, lead-
ing to increases in the infarcted area, the no-reflow phenomenon,
or hemorrhagic transformation. Efficient prevention or treatment
of these injuries depends on extensive knowledge of the involved
mechanisms. These pathways have dual, damaging, and neuropro-
tective effects, depending on the timing or protein subtype involved.
The currentarticle reviews the main mechanisms contributing to the
pathophysiology of these injuries, such as mitochondrial dysfunc-
tion, cellular calcium overload, excitotoxicity, oxidative stress, apop-
tosis, and neuroinflammation.
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1. Introduction

The concept of ischemia/reperfusion injury emerged over
50 years ago when Jennings and coworkers showed that in
hearts subjected to coronary ligation, reperfusion accelerated
the development of necrosis [1]. Paradoxically, restoring
blood supply to an organ subjected to temporary glucose and
oxygen deprivation can injure the tissue [2, 3], as described
in the kidneys, intestines, skeletal muscles, liver, and cerebral
tissue [4]. Cellular and molecular mechanisms contribute
to ischemia/reperfusion injuries, involving reactive oxygen
species (ROS), innate and adaptive immune systems, and dys-
function of cellular metabolism and vascular and parenchy-
mal cellular demise [5, 6]. Although much of the research has
been performed in animal models, with abrupt reperfusion
after transient ischemia [7] increasing the size of the infarc-
tion by as much as 70% [8], in human patients, the increase
in infarct size in the first 24 hours is more limited [9]. How-
ever, hyperperfusion (defined as >100% increase in cerebral
blood flow compared with baseline) [10] or normalization
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of blood flow (reperfusion) can significantly potentiate the
magnitude of the tissular damage inflicted by the initial is-
chemic insult and manifest clinically as headache, worsening
of the neurological deficit, seizures, or histologically as cere-
bral edema, hemorrhagic transformation, extension of the in-
farct size [11], with a delayed cellular loss which can extend
up to 2 weeks after the initial ischemic event [12].

A large amount of research has focused on unraveling the
complex mechanisms of ischemia/reperfusion (I/R) injuries
which are caused by a complex interplay between mitochon-
drial dysfunction, oxidative and nitrosative stress, calcium
overload and excitotoxicity, activation of apoptosis, and in-
flammation [4]. This knowledge can open novel therapeutic
opportunities for preventing them and extend the therapeu-
tic windows for recanalization procedures.

2. Mitochondrial dysfunction

Mitochondria are intracellular organelles with a double
membrane that have a crucial role in energy generation, reg-
ulation of cell cycle, and apoptosis induction [13]. The inner
membrane contains a series of enzyme complexes responsi-
ble for oxidative phosphorylation (complexes [-V) and the
generation of adenosine triphosphate (ATP) [14].

Complex I or proton-pumping nicotinamide adenine din-
ucleotide (NAD) H dehydrogenase oxidizes NADH by pump-
ing 4 protons per 2 electrons passed to ubiquinone, result-
ing in ubiquinol (QH3) [14, 15] and is the main access point
for electrons. Further, complex II, or succinate-quinone oxi-
doreductase, is a second entry point of electrons into the elec-
tron transport chain, which oxidizes succinate to fumarate
and reduces ubiquinone. Complex III, or cytochrome c re-
ductase, oxidizes one molecule of ubiquinol by reducing 2
molecules of cytochrome c, also pumping 2 protons. Cy-
tochrome c oxidase, or complex IV, reduces oxygen to wa-
ter by transferring electrons to oxygen from the reduced cy-
tochrome ¢, pumping an additional 4 protons. Finally, ATP
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synthase, or complex V, synthesizes ATP from ADP and
phosphate by using the energy of the proton electrochemi-
cal gradient, a reaction during which 4 protons re-enter the
matrix [13, 14]. Under normal conditions, more than 90% of
oxygen is reduced to water and approximately 2% of electrons
“leak” mainly from complexes I and III to produce superoxide
anion [13, 16].

The lack of oxygen during ischemia inhibits the electron
flow through the respiratory chain, preventing ATP synthase
from generating ATP [17]. The rate of entry of electrons
into complex I exceed the rate of transit through complex IV,
causing them to build up at complexes I and III and slowing
down the electron transport chain and the pumping of pro-
tons across the inner mitochondrial membrane, leading to a
reduction of the mitochondrial membrane potential [16, 18].

Following the restoration of blood flow, the mitochon-
drial membrane potential is restored within 1 minute [19].
Still, the increased oxidative phosphorylation leads to mito-
chondrial hyperpolarization with dramatic consequences on
the mitochondrial function and the increased generation of
reactive oxygen species (ROS), which will further impair the
normal mitochondrial function [20]. Indeed, after 30 min-
utes following reperfusion, mitochondrial function is signif-
icantly decreased in cells that will die [21].

Mitochondria are organelles whose dynamics, regulated
by fission and fusion, have an important role in neuronal
injury and recovery following ischemia [14]. Fission mani-
fested as constriction and cleavage of mitochondria is regu-
lated by dynamin-related protein 1 (Drp1), a mitochondrial-
binding GTPase. It has been shown that global cerebral is-
chemia transiently increases phosphorylation of Drp1 [22]
while Drp1 inhibitors reduced the infarct volume in a model
of focal cerebral ischemia [23]. Mitochondrial fission also can
initiate extrinsic apoptotic cell death, and fragmentation of
these organelles in endothelial cells leads to endothelial dys-
function in postischemic tissues [4, 24].

3. Calcium overload and excitotoxicity

During ischemia-hypoxia, the brain cells switch to anaer-
obic glycolysis to supply the necessary ATP, which leads to
the accumulation of lactate, NAD™ and protons. Trying
to re-establish normal intracellular pH, the plasmalemmal
Na™/H™ exchanger (NHE) extrudes protons in exchange for
Na*t [25], followed by an exchange of Na* for Ca?* medi-
ated by the Na™/Ca®* exchanger [4]. This leads to a calcium
overload of the cell. Normal cytosolic free calcium concen-
trations are in nanomolar ranges instead of minimolar levels
in the extracellular space [26]. In addition, the release of ex-
citatory neuromediators, mainly glutamate, because of cellu-
lar depolarization or destruction, further exacerbates this cal-
cium overload in neighboring and distant sites. By removing
extracellular HT ions, Reperfusion accelerates the activity of
the NHE and increases intracellular calcium levels [4, 27].

High intracellular calcium promotes calcium from the en-
doplasmic reticulum via activated ryanodine receptors [28].
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It proves toxic by activating a series of enzymes, such as
the family of cysteine proteases known as calpains, which
degrade cytoskeletal, mitochondrial proteins and the endo-
plasmic reticulum [29]. Research has shown that pharma-
cological inhibition of calpains can protect the brain against
reperfusion injuries [30]. Another important pathway trig-
gered by increased cytosolic calcium levels is the activation
of Ca?*/calmodulin-dependent protein kinases (CAMKs),
which translocate to the synaptosomes, phosphorylate N-
methyl-D-aspartate receptors (NMDARs) and o-amino-3-
hydroxy-5-methylisoxazole-propionic acid receptors (AM-
PARs), thereby further increasing Ca?* influx, and phospho-
rylate Beclin-1 inducing autophagy [31].

High intracellular calcium levels also lead to the genera-
tion of danger signals, such as calcium pyrophosphate com-
plexes and uric acid, which bind to the inflammasomes (in-
tracellular protein complexes) and lead to the increased pro-
duction of cytokines initiating inflammation [4].

Mitochondria act as a calcium buffer, attempting to nor-
malize the cytosolic calcium levels. The ion moves through
the outer mitochondrial membrane through the voltage-
dependent anion-selective calcium channel and further into
the mitochondrial matrix mediated by the mitochondrial cal-
cium uniporter [32, 33]. However, excessive mitochondrial
Ca®" further impairs mitochondrial function and can trigger
the mitochondrial permeability transition pore [34].

As already mentioned, excess excitatory neuromediator
(glutamate) release significantly increases cellular calcium
overload. Glutamate binds mainly to 2 ionotropic, ligand-
gated ion channels: NMDARs and AMPARs. In the rest-
ing state, magnesium blocks the channel pores of NMDARs.
Glutamate binding to AMPARs causes a partial depolariza-
tion of the postsynaptic membrane, which removes Mg?*
and allows the NMDARs to be activated with a subsequent
entry of Nat and Ca?™ into the cell [35, 36]. There are sev-
eral subtypes of NMDARsS, heterotetramers consisting of 2
GluN1 subunits and 2 GluN2 subunits, which can be fur-
ther classified in GluN2A-GluN2D [37]. NMDARSs are es-
sential for brain development, synaptic plasticity, and learn-
ing, but they can initiate toxic pathways that lead to neuronal
death when excessively activated. It appears that NMDARs
have dual roles in neuronal survival and death depending on
the location and subtype of receptor-activated [38]. Synap-
tic NMDARs are mainly GluN2A receptors, while extrasy-
naptic ones contain mainly the GluN2B subunit [39]. Stimu-
lation of the synaptic NMDARs activates phosphoinositide-
3-kinase (PI3K), phosphorylating membrane phospholipids
and Akt [40]. Akt, in turn, phosphorylates and inactivates
glycogen synthase kinase 33 (GSK303), pro-apoptotic Bcl-2
associated death promotor BAD, JNK (c-Jun N-terminal ki-
nase)/p38 activator ASK1 (apoptosis signal-regulating kinase
1), and apoptotic p53 [41-43]. In addition, synaptic NM-
DAR stimulation activates the Ras/ERK (extracellular signal-
regulated kinase) pathway and nuclear CAMKSs, which acti-
vate CREB (cAMP-response element binding protein) and
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Fig. 1. The dual role of NMDA receptors in determining the fate of neurons: binding of glutamate to extrasynaptic NMDARs dephosphorylates cAMP-

responsive element-binding protein (CREB), inactivates the extracellular signal-regulated kinase (ERK) pathway and promotes cell death, while binding of

glutamate to synaptic NMDARs promotes cell survival through activation of the phosphoinositide-3-kinase (PI3K)/ Akt pathway, which inactivates glycogen

synthase kinase 33 (GSK3/3), the pro-apoptotic Bcl-2 associated death promotor (BAD), pro-apoptotic p53, and c-Jun N-terminal kinase (JNK)/p38 activator

apoptosis signal-regulating kinase 1 (ASK1). Adapted from [35].

induce pro-survival gene expression, such as brain-derived
neurotrophic factor (BDNF) [44, 45]. Thus, the binding of
glutamate to synaptic NMDARs promotes cell survival. The
binding of glutamate to extrasynaptic NMDARs dephospho-
rylates and inactivates CREB, inactivates the ERK pathway
and promotes pro-death gene expression [46, 47].

Under physiological conditions, presynaptic axonal termi-
nals release quanta of glutamate into the synaptic cleft to ac-
tivate receptors on the postsynaptic membrane [48]. Astro-
cytes clear glutamate from the synaptic cleft through specific
transporters (excitatory amino acid transporters—EAATS)
and transform it into glutamine or use it for their metabolism,
thereby maintaining glutamate homeostasis [49, 50]. How-
ever, this is a highly energy-consuming process, which fails in
oxygen and glucose deprivation conditions, as happens in is-
chemic conditions. Glutamate uptake via EAATS occurs with
co-transport of 3Na* and 1H™, followed by the counter-
transport of K*, making glutamate uptake possible against a
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significant concentration gradient [49]. The impaired energy
supply caused by ischemia leads to decreased activity of the
Na™/K* ATPase and disruption of the Na™ and K™ trans-
membrane gradients, impairing the capacity of the EAATs
to clear glutamate and leading to increased extracellular glu-
tamate concentrations, which can diffuse onto the myelin
sheath and be trapped in the periaxonal space between the
internal myelin surface and the axolemma [51], thereby cre-
ating the premise for glutamate to act on extrasynaptic recep-
tors and initiate the deleterious downstream effects discussed
above. Fig. 1 (Ref. [35]) shows the dual roles of the 2 types
of NMDARSs.

4. Oxidative stress

Reperfusion of ischemic tissue with oxygenated blood, al-
though necessary for aerobic ATP production, leads to in-
creased production of ROS, which can oxidize almost every
biomolecule and induce cell dysfunction (oxygen paradox)



[4]. Oxidative stress, defined as an imbalance between ROS
production and the ability of the biological system to clear
these highly reactive molecules, has been shown to signifi-
cantly contribute to the pathophysiology of I/R injuries [52].

Three distinct phases of increased ROS generation have
been identified in cell cultures [18, 53]: (i) during glucose
and oxygen deprivation, due to mitochondrial depolarization
and inhibition of complex IV leading to upstream accumu-
lation of reduced compounds which enable leakage of elec-
trons; (ii) 25-35 minutes after the oxygen and glucose de-
privation, caused by activation of xanthine oxidase; (iii) after
reperfusion.

The brain is particularly vulnerable to oxidative stress due
to a series of characteristics: (i) it has the highest metabolic
activity per unit weight, consuming 20-25% of the total body
oxygen despite weighing only 2% of the total body weight
[6, 13]; (ii) compared to other organs, such as the heart, kid-
ney, or liver, it has significantly lower activities of antioxi-
dants such as superoxide dismutase (SOD), catalase (CAT),
glutathione peroxidase, or heme-oxygenase-1 [54, 55]; (iii)
it has lower activities of Cytochrome c oxidase, resulting in
higher superoxide release from the mitochondrial electron
transport chain during ATP production, which is also re-
duced [54]; (iv) the plasma membranes of brain cells are rich
in polyunsaturated fatty acids, highly vulnerable to oxida-
tive damage [56]; (v) it has a high ratio of membrane surface
area compared to the cytoplasmic volume [57]; (vi) damaged
cerebral parenchyma releases iron ions which can catalyze
free radical reactions [57]; (vii) excessive neurotransmitter
release during ischemia/reperfusion, such as glutamate and
dopamine, resulting in cellular calcium overload, which im-
pairs mitochondrial function and leads to excitotoxicity [4, 6].

The main ROS include superoxide anion (O3 ), hydroxyl
radicals (OH™), and hydrogen peroxide (H2O5) [58]. The
main sources of reactive species are the mitochondria, the ac-
tivity of cyclooxygenases, NADPH oxidase (NOX), lipoxyge-
nases and other enzymes, and the activation of xanthine oxi-
dase [59, 60].

4.1 Sources of ROS
4.1.1 Mitochondria and oxidative stress during reperfusion
Cerebral ischemia inhibits the activity of complex I, lead-
ing to the accumulation of succinate through the reversed
activity of succinate dehydrogenase, which reduces fumarate
to succinate, and to a lesser extent, the activity of complex
IV (cytochrome C oxidase) [61, 62]. The reduced activ-
ity of the final electron acceptor in the mitochondrial elec-
tron transport chain causes increased ROS production of up-
stream complexes, dramatically increased after oxygen deliv-
ery is restored by reperfusion [62, 63]. In addition, upon
reperfusion, succinate dehydrogenase oxidizes the accumu-
lated succinate and drives reverse electron transport through
complex I, which is why complex I is regarded as the main
ROS-generating mitochondrial site [61, 64]. However, at
least 7 sites in the mitochondria can partially reduce oxygen
and produce ROS [65, 66].

One class of enzymes mitigating the effects of ROS are the
superoxide dismutases (SODs), with manganese SOD (Mn-
SOD) being mainly a mitochondrial enzyme and copper-zinc
SOD (Cu-ZnSOD) a cytosolic one. Complex I dysfunction
after reperfusion influences MnSOD expression [62].

Reperfusion is associated with large increases in intracel-
lular and mitochondrial Ca?*, leading to mitochondrial de-
polarization. In this situation, calcium exits the mitochondria
by forming pores in the mitochondrial membrane, reversing
the Ca?t/H* antiport system or through channel-mediated
pathways [62]. Increased cytosolic calcium triggers apopto-
sis through activation of a series of proteases, phospholipases,
and nucleases.

The outer mitochondrial membrane is associated with 2
monoamine-oxidases, monoamine oxidase-A and -B, which
deaminate neurotransmitters at the expense of generating
hydrogen peroxide [67].

Another highly reactive molecule produced by mitochon-
drial is nitric oxide (NO), which, at physiological concentra-
tions, reversibly inhibits Cytochrome ¢ oxidase and modu-
lates oxygen consumption [68]. More recently, research has
shown the involvement of another protein, p66Shc, located
between the 2 mitochondrial membranes and forms molecu-
lar complexes with cytochrome c, thereby transferring elec-
trons between itself and cytochrome c. It appears that this
protein also contributes to increased ROS production, mito-
chondrial depolarization, and cytochrome c release [69, 70].

The mitochondrial permeability transition pore (MPTP)
is a key player in I/R injury. It is inhibited by low pH, so it is
quiescent during ischemia, but the increases in mitochondrial
Ca?™ and cellular ROS levels associated with reperfusion lead
to the opening of the MPTP [62, 71]. This allows protons to
pass into the matrix and dissipate the mitochondrial mem-
brane potential, allows water to enter mitochondria through
the osmotic gradient leading to swelling and even rupture of
the organelles, and is an essential step in initiating apoptosis
[72,73]. Fig. 2 (Ref. [74]) presents the implication of mito-
chondria in cerebral ischemia/reperfusion injuries schemati-
cally.

4.1.2 NADPH oxidase as a source of ROS

NADPH oxidase (NOX) is a membrane enzymatic com-
plex that generates superoxide while transferring electrons
from NADPH to oxygen molecules across the cell membrane
[59]. However, NOX is the main defense mechanism of
macrophages and neutrophils. Exposure to microorganisms
or inflammatory mediators can increase 50- to 100-fold the
production of oxidative species [4]; NOX2 and NOX4 iso-
forms have been localized in the hippocampal CA1 region
and cortex [68]. Experimentally, NOX2 knockout animals
and NOX2 inhibitor-treated animals showed significantly re-
duced infarct sizes, demonstrating the role of NOX2 in oxida-
tive stress-induced ischemic neuronal death [75]. The vas-
cular NOX isoforms usually have lower activity levels, the
ROS generated by them being more likely involved in signal-
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and nuclear DNA, leading to cell death and contributing to inflammation initiation. Adapted from [74].

ing cascades. However, after ischemia-reperfusion, vascular
NOXs can produce increased levels of ROS and produce ox-
idative stress [76].

4.1.3 Xanthine oxidase as a source of ROS

Xanthine oxidase (XO) is a molybdo-flavin enzyme that
exists in 2 forms: a NAD-dependent dehydrogenase (xan-
thine dehydrogenase) and an oxygen-dependent oxidase
(xanthine oxidase) with a higher affinity for oxygen than
NAD™ and which produces hydrogen peroxide [77]. Dur-
ing reperfusion, xanthine dehydrogenase is converted by ox-
idation or limited proteolysis to xanthine oxidase, activated
by phosphorylation and produces ROS [78]. Thus, under
hypoxic conditions, xanthine oxidase metabolizes hypoxan-
thine and xanthine, generating oxidative species [18]. Exper-
imentally, inhibiting XO results in less calcium overload, di-
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minished levels of markers of oxidative stress, reduced mag-
nitude of tissue injury [52], and reduced leucocyte recruit-
ment and accumulation, leading to diminished levels of in-
flammation [79].

4.14 Nitric oxide synthases

The central nervous system expresses 3 kinds of nitric ox-
ide synthases (NOS): endothelial NOS (eNOS), which reg-
ulates cerebral blood flow, neuronal NOS (nNOS), and in-
ducible NOS (iNOS). Nitric oxide (NO) produced by eNOS
after brain ischemia promotes vasodilation and inhibits mi-
crovascular adhesion and aggregation, thus exerting a protec-
tive effect [68]. However, ischemia activates nNOS through
the high intracellular Ca?* levels and upregulates iNOS in
an NF-xB-dependent manner, both of which significantly
contribute to brain damage [68]. Experiments with nNOS



knockout mice and with NO inhibitors showed reduced in-
farct volumes after ischemia [80, 81]. Nanomolar concen-
trations of NO can reversibly inhibit cytochrome C oxidase,
while higher levels can irreversibly modify proteins, lipids
and impair mitochondrial respiration [62]. By reacting with
057, NO leads to the formation of peroxynitrite (ONOO™)
[82, 83], which diffuses through mitochondrial compart-
ments alter proteins of the matrix, intermembrane space, as
well as of the outer and inner membrane, and impair the mi-
tochondrial calcium and energy homeostasis leading to the
opening of the permeability transition pore [84].

4.1.5 Other sources of ROS

ROS can also result from the activity of other intracellu-
lar enzymes, such as cytochrome P450 enzymes, cyclooxyge-
nases, or lipoxygenases [59].

Cytochrome P450 enzymes (CYPs) are membrane-bound
oxidases that use oxygen or NADPH to catalyze oxidation or
reduction of lipids, steroids, cholesterol or other lipids, such
as arachidonic acid [4]. They have a crucial role in vasoreg-
ulation, forming both vasoconstrictive compounds, such as
20-hydroxyeicosatetraenoic acid (20-HETE) and vasodilator
epoxyeicosatrienoic acids [85]. The role of CYPs in I/R in-
jury is complex, but research has suggested that 20-HETE
may be significantly involved in the pathophysiology of these
injuries, at least in neonatal brains [86]. Moreover, cerebral
ischemia induces CYP expression [87].

Lipoxygenases (LOXs) catalyzes the synthesis of
eicosanoids, such as leucotrienes and hydroxyeicosate-
traenoic acids. Following cerebral ischemia, there is a
massive release of free fatty acids from membrane stores
[88]. 12/15 LOX oxidizes these lipids, leading to the
generation of 12- and 15-HETE ([89],
the mitochondrial membrane, leading to increased ROS
production and initiating apoptosis [90]. Experimentally,
inhibition of 12/15 LOX with baicalein resulted in reduced
infarct volume, similar to infarctions of animals in which
ALOX15, the gene encoding for LOX12/15, was knocked
out [91].

and can damage

Another key enzyme in the generation of prostaglandins
from arachidonic acid is cyclooxygenase (COX) [92, 93].
Both COX-1 and COX-2 isoforms cleave arachidonic
acid, and upregulation of COX-2 is a hallmark of is-
chemia/reperfusion injuries [94], especially in the inflamma-
tory cells, which invade the cerebral tissue after an ischemic
injury [95]. Pharmacological inhibition or genetic inactiva-
tion of COX-2 resulted in the reduced magnitude of cere-
bral injury after focal or global cerebral ischemia [96, 97], al-
though COX’s radical species have never been identified [98].
The reports on increased incidence of cardiovascular events,
including stroke, after long-term treatment with COX-2 in-
hibitors, have challenged these agents’ therapeutic potential
[98, 99].

4.2 Antioxidant defenses

Under normal conditions, the small amounts of ROS can
be removed by the brain’s antioxidant enzymatic and non-
enzymatic defenses. The antioxidant enzymes include super-
oxide dismutase (SOD), glutathione peroxidase (GPX), and
catalase (CAT) [59]. Non-enzymatic antioxidant molecules
are present mainly in extracellular spaces and include glu-
tathione, vitamins C and A, N-acetylcysteine and melatonin
[59, 100]. However, following cerebral ischemia, and es-
pecially after reperfusion, the production of ROS increases
[93, 101], which, together with the downregulation of the
enzymatic antioxidant defenses by ischemia [102], leads to
significantly increased oxidative stress and oxidative species-
induced cellular injury.

4.3 Effects of reactive oxygen species in ischemic stroke

ROS has a series of detrimental effects, initiating several
cell signaling cascades and altering the functions of enzymes
and ion channels.

ROS can activate p53, a transcription factor controlling
the gene expression of Bax, Bid and p53 upregulated mod-
ulator of apoptosis (PUMA). P53 opens the mitochondrial
permeability transition pore and increases the mitochondrial
membrane permeability (also caused by ROS), leading to cy-
tochrome c release [60, 103]. This is pivotal in initiating
apoptosis because released cytochrome c forms a complex
with apoptotic protease activating factor-1 (APAF-1), pro-
caspase-9 and ATP, and activates caspases [104]. In addition,
p53 upregulates apoptosis signal-regulating kinase 1 (ASK1),
which together with PUMA is involved in executing apop-
totic cell death [105, 106].

Mitogen-activated protein kinases (MAPKSs) are a family
of serine/threonine kinases with substantial cell growth, sur-
vival, proliferation, and death. The 3 main MAPKs are ex-
tracellular signal-regulated kinases (ERKs), c-Jun N-terminal
kinases (JNKs), and the p38 MAPKs [4]. ERKs are protective
against ischemia-reperfusion injuries [4], the role of JNKs is
controversial [107, 108]. At the same time, p38 MAPK is ac-
tivated in response to I/R [109] but, depending on the iso-
form activated, can be either protective or harmful: it appears
that activation of p38A is lethal to the cell [110]. In contrast,
activation of the B isoform of p38 is cytoprotective and in-
volved mainly in preconditioning [111].

ROS can interact with a variety of biological molecules.
They can react with proteins, leading to their oxidation,
degradation, or peptide bond cleavage, resulting in protein
aggregation, enzyme inactivation, or modifications in the ac-
tivity of ion channels [112, 113]. For example, oxidation
and inactivation of glutamine synthetase in astrocytes pre-
vent glutamate’s conversion into glutamine and contribute to
ischemia-induced neurotoxicity in the gerbil brain [114].

Lipid peroxidation (ROS attacking the carbon-carbon
bonds of polyunsaturated fatty acids) is even more damag-
ing than protein oxidation, being self-propagated because
lipid radicals are unstable and react with oxygen to form lipid
peroxyl radicals [59, 115]. These can react with other fatty
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acids to generate aldehydes, such as malondialdehyde and 4-
hydroxynonenal, the latter being a second messenger which
regulates several transcription factors including NF-xB, ac-
tivating proteinl, nuclear factor erythroid 2-related factor 2,
or peroxisome-proliferator-activated receptors (PPARs), as
well as the phosphatidylinositol 3kinase (PI3K)/protein ki-
nase B (Akt) signaling pathway involved in cell cycle, cell
growth and proliferation [59, 116].

Finally, ROS can attack the DNA causing double-strand
breaks, protein-DNA crosslinks, structural changes, or DNA
mutations [117, 118], leading to increased poly (ADP-ribose)
polymerase (PARP) activity in an attempt to repair DNA
damage but which depletes the cells of the already reduced
energy supplies [119].

5. Apoptosis

This mechanism of cell death, with distinct features from
necrosis, can be initiated by 2 main pathways: the extrinsic
pathway, related to binding of specific molecules to the death
receptors of the cell membrane, and the intrinsic pathway
[120, 121].

A group of proteins, known as the Bcl-2 family, tightly
regulate cell death and survival [14]. This family of proteins
includes anti-apoptotic proteins, such as Bcl-2, Bcl-XL, Bcl-
W, and pro-apoptotic proteins like Bax, Bad, Bid, Bim, Noxa,
or PUMA [122]. The intrinsic pathways of apoptosis can be
caspase-dependent or caspase-independent.

5.1 Intrinsic pathways of apoptosis
5.1.1 Caspase-dependent apoptosis

The ischemia-induced mitochondrial dysfunction and
opening of the mitochondrial permeability transition pore
(MPTP) lead to the release of cytochrome ¢ and other pro-
apoptotic factors such as apoptosis-inducing factor (AIF),
high-temperature requirement protein A (HtrA2/OMI)
[14], or second mitochondrion-derived activator of cas-
pase/direct inhibitor of apoptosis-binding protein with low
pl (SMAC/DIABLO [14]. Cytochrome c interacts with the
cytosolic apoptotic-protease-activating factor-1 (Apaf-1) to
form the apoptosome and, together with deoxyadenosine
triphosphate, activates pro-caspase-9, which will cleave and
activate caspase-3 [123]. Caspase-3 is akey mediator of apop-
tosis in animal models of stroke, its mRIN A being upregulated
1 hour after the onset of focal ischemia [124]. It cleaves many
proteins, among them PARP.

5.1.2 Caspase-independent apoptosis

Aside from upregulation of the pro-apoptotic Bcl-2 pro-
tein subfamily by ischemia [125], the mitochondrial dysfunc-
tion and opening of the MPTP lead to the release of AIF,
which translocates to the nucleus fragments DNA and in-
hibits PARP, thereby accelerating cellular damage and de-
struction [126]. SMAC/DIABLO binds to X chromosome-
linked inhibitor-of-apoptosis protein (XIAP) and triggers
apoptosis by suppressing the anti-apoptotic activity of XIAP
[127]. In addition, increased cytosolic calcium activates cal-
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pains and caspase-8, leading to cleavage and activation of
Bcl-2 interacting domain (BID) [128], which translocates to
mitochondria when the cell receives a death signal. Ac-
tivated BID induces conformational changes in other pro-
apoptotic proteins, such as Bax, Bad, Bcl-XS, and inactivate
anti-apoptotic proteins like Bcl-2 or Bel-XL [129].

The cells also have anti-apoptotic pathways, but these
are overwhelmed after an ischemic insult. For exam-
ple, inhibitor-of-apoptosis (IAP) proteins, including XIAP,
NIAP, and others, bind and suppress the activity of caspases
-3, -7, and -9 [130]. Various members of the Bcl-2 family
(Bcl-2, Bcl-XL, Bel-w) also try to suppress the apoptotic pro-
cess [131]. CREB and NF-xB regulate a series of survival
genes, such as Bcl-XL, and IAPs, the transcription factors in
the PI3K/Akt signaling cascade, which also upregulates sev-
eral neurotrophic factors, such as brain-derived neurotrophic
factor (BDNF), insulin-like growth factor 1, or nerve growth
factor (NGF) [15, 132]. Akt, whose activity is increased by
superoxide dismutase 1 (SOD1, Cu-Zn SOD), also inhibits
the induction of death genes such as Bim and phosphorylated
Bad, making the PI3K/Akt signaling cascade a potential tar-
get for neuroprotective drugs [133].

5.2 The extrinsic pathway of apoptosis

This pathway also contributes to cell death after cerebral
ischemia, being upregulated within 12 hours after the onset
of focal cerebral ischemia and peaking 24 to 48 hours after
the ischemic insult [121]. The binding of certain molecules
initiates it on the surface receptors of the cells. These sur-
face cell death receptors belong to the tumor necrosis fac-
tor receptor (TNFR) superfamily and include TNFR-1 and
Fas. Forkhead 1, a transcription factor, stimulates the ex-
pression of several genes, such as Fas ligand (FasL), which
binds to the Fas receptor and triggers recruitment of the cy-
toplasmic adaptor protein Fas-associated death domain pro-
tein (FADD) [121, 134]. FADD can bind to pro-caspase-8.
The whole complex (FasL-Fas—FADD-procaspase-8) is also
known as the death-inducing signaling complex (DISC). It
is assembled within seconds of FasL binding to Fas, leading
to activation of pro-caspase-8 and generation of caspase-8
[128]. Further, caspase-8 is released from the DISC complex
and activates caspase-3 [121], leading to the execution phase
of apoptosis. Fig. 3 (Ref. [135]) presents these pathways lead-
ing to apoptosis.

6. Neuroinflammation in cerebral
ischemia/reperfusion injuries

The brain is an immune-privileged organ that is not read-
ily accessible to immune cells due to the blood-brain barrier
(BBB) [136]. The BBB has a layer of endothelial cells inter-
connected by tight junctions, placed on a basal membrane.
Many pericytes are embedded [137] and are ensheathed on
the abluminal aspect by astroglial endfeet [138].
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Transient middle cerebral artery occlusion as short as
15 minutes in spontaneously hypertensive stroke-prone rats
leads to microglial activation [144], after which these cells
migrate toward the ischemic lesion and remain close to the
neurons in a process called “capping”, which helps quick re-
moval of damaged neurons [145, 146]. The production of

6.1 Contribution of microglia to neuroinflammation after cerebral
ischemic injury

Microglia is the primary immune cell of the central ner-
vous system (CNS). The resting-state has a small cell soma
and numerous processes that monitor the CNS’s microenvi-

ronment [139]. Upon activation, microglia retract their pro-
cesses and take on an amoeboid shape [140]. The main path-
way for microglia activation is the NF-xB pathway, in which
the inhibitory 1B protein, which is bound to NF-xB in the
cytoplasm, is phosphorylated and degraded by IxB kinases
allowing the nuclear translocation of NF-xB, where it pro-
motes the transcription of many pro-inflammatory cytokine
genes [141, 142]. However, a series of molecules released
by damaged cells, such as ATP, heat shock proteins, S100
proteins, collectively known as damage-associated molecu-
lar patterns (DAMPs), contribute to this activation as well
[4, 143].
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ROS via NADPH oxidase, of matrix metalloproteinases and
cytokines, as well as activation of CD14 receptors by iNOS
followed by the expression of toll-like receptor 4 (TLR4)
in activated microglia increase its neurotoxic effects in the
infarcted core as well as in the penumbra [147-151]. Af-
ter transient middle cerebral artery occlusion in mice, mi-
croglial and macrophage infiltration peaks 48-72 hours after
the ischemic insult [152]. Once arrived at the site of injury,
microglia produce a series of pro-inflammatory cytokines,
such as interleukin (IL)-13 and -6, tumor necrosis factor-c,
as well as chemokines, like monocyte chemotactic protein-1
and macrophage inhibitory factor-1¢, which recruit leuko-
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cytes to the injured parenchyma [89], which, in turn, will re-
lease proteases and oxygen radicals which will potentiate tis-
sue destruction [153]. Inhibiting microglial activation (with
2% isoflurane) in rats subjected to transient focal cerebral is-
chemia resulted in reduced infarct size and attenuated apop-
tosis [154].

However, microglia play a dual role after ischemic stroke,
secreting pro-inflammatory as well as anti-inflammatory fac-
tors [147]. Research has shown that impaired microglial acti-
vation increased infarct size and potentiated neuronal apop-
tosis following ischemia [155]. Depletion of microglia with
PLX3397, a dual colony-stimulating factor-1 inhibitor, in-
creased infarct size and worsened the neurological deficits
[156]. In addition, microglia produce a variety of neu-
rotrophic factors which promote neuroplasticity and neuro-
genesis [157]. Thus, it appears that different subsets of mi-
croglial cells have different roles following cerebral ischemia
[145].

6.2 Leukocytes in cerebral I/ R injury

Leukocytes are among the first blood-derived immune
cells entering the brain after cerebral ischemia, peaking at
48-72 hours and rapidly declining afterward [143]. Af-
ter minutes to hours after the ischemic insult, ROS, cy-
tokines and chemokines released by the damaged tissue in-
duce the expression of adhesion molecules on leukocytes and
cerebral endothelial cells [145, 158]. Cytokines such as tu-
mor necrosis factor (TNF)-« or interleukin (IL)-1/3 lead to

Volume 20, Number 3, 2021

translocation of P-selectin to and the expression of inter-
cellular adhesion molecule (ICAM)-1 and vascular cell ad-
hesion molecule (VCAM)-1 on the endothelial cell surface
[136]. This facilitates the rolling of leukocytes on the vascu-
lar wall, a process following which leukocytes change shape
and become flattened, parallel with a directional polarization
and redistribution of adhesion, signaling and receptor pro-
teins toward an edge from which processes extend [4]. Af-
ter the interaction of endothelial P-selectin with the recep-
tor P-selectin glycoprotein ligand-1 (PSGL-1), the leukocyte
B2 integrins CD11a/CD18 and CD11b/CD18 interact with
ICAM-1, leading to firm adhesion of leukocytes to the en-
dothelial cells [158, 159]. Further, expression of platelet-
endothelial cell adhesion molecule-1 (PECAM-1) along the
endothelial cell junction as well as expression of the junc-
tional proteins JAM-A (junctional adhesion molecule-A) and
JAM-B by pericytes, facilitate neutrophil diapedesis across
the BBB [160, 161]. Once in the tissue, leukocytes produce
a series of factors that exacerbate tissue injury, such as ROS,
IL-1,1L-6, IL-12, TNFq, and proteases [4, 162]. Fig. 4 (Ref.
[163]) presents the stages of leucocyte-endothelium interac-
tion leading to leucocyte infiltration of the tissue damaged by
ischemia.

6.3 Lymphocytes in cerebral I/ R injury

Lymphocytes have a less important contribution in cere-
bral ischemic injury; the mechanisms are mainly related to the
innate T-cell functions [164]. IL-17 secreting T cells aggra-
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vate ischemic injury [165], as do natural killer T cells, while
IL-10-secreting regulatory lymphocytes (Tregs) have neuro-
protective activity by downregulating postischemic inflam-
mation [166, 167].

6.4 Inflammatory mediators
6.4.1 Cytokines

Cytokines are small polypeptides (8-26 kDa), normally
expressed at very low levels, regulating immune responses
[168].

IL-15 exacerbates cerebral injury after an ischemic in-
sult [116] and significantly contributes to the disruption of
BBB. Systemically administered lipopolysaccharides induce
the production of pro-IL-13, which is cleaved by caspase-
1 to form IL-13, which will subsequently disrupt the BBB
[169, 170]. IL-13 administered to rats increased the mag-
nitude of brain injury [171], while IL-13-deficient mice had
smaller volume infarcts than wild-type mice [172]. Treat-
ment with or overexpression of IL-1 receptor antagonists
also reduced infarct size [173, 174].

Tumor necrosis factor (TNF)-c is upregulated after cere-
bral ischemia, and protein levels are increased by 3 hours af-
ter ischemia peaking up to 5 days after the insult [175]. The
cytokine induces the release of matrix metalloproteinase-9
(MMP-9) from pericytes leading to increased permeability of
the BBB [176]. However, TNF-« has also been shown to
be neuroprotective and involved in ischemic precondition-
ing [177]. Tt appears that this dual role depends on the source
of TNF-q, microglial-derived TNF-« being neuroprotective
in stroke [168].

IL-10 is an anti-inflammatory cytokine upregulated in is-
chemic stroke, peaking 3 days after the onset [178]. Ani-
mal research with intraventricular administration of IL-10 or
adenoviral delivery of the IL-10 gene confirmed the neuro-
protective effect of this cytokine [179, 180].

Another neuroprotective cytokine is interferon-3 (IFN-
B), long used as an immunomodulatory treatment in multiple
sclerosis, which reduces the MMP-9 levels and diminishes the
BBB disruption [181, 182]. Experimentally, [IFN-3 downreg-
ulated ICAM-1 expression on cerebral endothelial cells and
attenuated BBB disruption and neutrophil infiltration in rats
[183].

6.4.2 Chemokines

Chemokines are low molecular weight proteins (8-10
kDa) involved in cellular activation and leukocyte recruit-
ment.

Monocyte chemoattractant protein-1 (MCP-1) directly
increases the permeability of the BBB by causing tight-
junction proteins to redistribute in endothelial cells [184] and
recruits monocytes and activated lymphocytes into the brain
after an ischemic insult [185].

Other chemokines upregulated in the first 3 hours after
stroke are microglial response factor-1 (MRF-1), fractalkine,
and macrophage inflammatory protein 1 (MIP-1), which all
contribute to infiltration of the injured tissue with inflamma-
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tory cells and weaken the BBB [145].

However, stromal cell-derived factor 1 (SDF1), also
known as C-X-C motif chemokine 12 (CXCL12), maybe neu-
roprotective, being found increased in the ischemic penum-
bra and facilitating homing of bone marrow stromal cells to
the tissue injured by ischemia [186], thereby reducing the size
of infarction and enhancing neural plasticity [187].

6.4.3 Matrix metalloproteinases

Although this family of enzymes is not a part of neuroin-
flammation, due to their significant involvement in BBB dis-
ruption, their course in acute ischemic stroke will be briefly
discussed. MMPs are constitutive enzymes, such as MMP-
2 and MMP-14, or inducible ones, like MMP-3 and MMP-
9 [145]. The expression of MMP-9 increases significantly
within 24 hours from the onset of ischemia in rats [188]
and, together with tissue plasminogen activator, disrupts the
BBB leading to hemorrhagic transformation [189]. Experi-
mentally, MMP inhibition alleviates hemorrhage and brain
edema and can also reduce infarct size [190]. On the other
hand, plasma levels of MMP-3 were found to increase in pa-
tients with better functional and motor recovery [191], high-
lighting the dual role of these enzymes in stroke pathogenesis
and recovery.

7. Concluding remarks

Despite the large amount of research focusing on
the molecular pathophysiological mechanisms of is-
chemia/reperfusion injuries, the translation of these findings
into clinically applicable therapies has been disappointing.
As revascularization therapies continue to improve, gain
popularity, and increase their therapeutic time window,
reperfusion injuries are expected to increase in frequency.
Clinical therapeutic advances have been hampered by
coexisting risk factors that can prevent activation of cell
survival programs and the dual nature of many of the
described pathophysiological cascades, making correct
timing an issue in their application. It is more likely that
combined approaches, with concomitant employment of
revascularization treatment, antioxidant, neuroprotective,
and vasoprotective agents, will yield satisfactory results
and extend the time window for efficient ischemic stroke
treatment for the benefit of an expanding proportion of the
aging population at risk for stroke.
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Appendix

Epidemiology of early neurologic deterioration
(END)

Worsening of the neurological status early in ischemic
stroke is a common finding with serious short- and long-term
consequences for the patient. Initially termed “stroke in pro-
gression”, or “stroke in evolution”, the accurate definition of
the term in various trials depends on the neurological scale
used to quantify the neurological deficit:

e The ECASS (European Cooperative Acute Stroke Study)
I trial used the Scandinavian Neurological Stroke scale and
defined early progression as a decrease of >2 points in the
consciousness or motor power scores or a decrease of >3
points in the speech scores in the first 24 hours after admis-
sion [192].

o In the Oxfordshire Community Stroke Project, early de-
terioration was defined as a decrease of >1 point in the Cana-
dian Neurological Scale in patients with partial or total ante-
rior circulatory infarcts and lacunar strokes and as >1 point
decrease on the Rankin score in patients with posterior cir-
culatory infarcts in the first 7 days from stroke onset [193].

® More recently, an increase of >2 points on the National
Institute of Health Stroke Scale (NIHSS) score or stroke-
related death in the first 5 days after admission were consid-
ered to indicate early neurological deterioration (END) [194].

The incidence of END varies in different trials, ranging
between 13% and one-third of patients [195-198] but has
been reported by some researchers to be as high as 43% [199].

Predisposing factors for END are:

e Hyperglycemia [198-200], which leads to increased con-
centrations of lactate and acidosis in the penumbral area
[201], worsens mitochondrial function in the penumbra
[202] and predicts poor outcome [203].

e Low systolic and diastolic blood pressure levels
(<100/70 mm Hg) [204], which in the setting of acute is-
chemic stroke, low blood pressure can be caused by heart
disease with impaired left ventricular function and low car-
diac output, dehydration, infections with septic states, or ag-
gressive antihypertensive medication [205, 206]. Due to aci-
dosis and hypoxia of tissues in the penumbral area, cerebral
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Table 1. Conditions and mechanisms by which these conditions lead to END.

Conditions leading to END Frequency Mechanisms leading to END

Hemorrhagic transformation 10% Oxidative stress, neuroinflammation, matrix metalloproteinases — leading to weakening of the blood
brain barrier and destruction of the vascular tissue, allowing blood to spill into the infarcted tissue

Cerebral edema 19% Anaerobic metabolism leading to tissue acidosis, failure of ionic pumps, leading to cytotoxic edema;

compression of the vasculature with further impairment of glucose and oxygen supply, propagating in a

cascade, leading to increase in intracranial pressure, shifting of brain tissue, herniation syndromes

Failure of collaterals Most frequent cause

Arterial reocclusion 34%
Recurrent stroke 11%
Prolonged seizures 5%

General conditions, infections

Extended area of tissue with oxygen and glucose deprivation, increased oxidative stress, ischemic and
neuroinflammatory cascades leading to tissue infarction
Reignition of the ischemic cascade, increased oxidative stress, neuroinflammation

New areas of infarction, cerebral edema, oxidative stress

Excitotoxicity, oxidative stress

Variable, depending on the cause

autoregulation is compromised, and perfusion relies on sys-
temic blood pressure. Thus, hypotension decreases collateral
blood flow and contributes to the extension of the infarcted
area [207]. In fact, in the International Stroke Trial, the death
rate increased by 17.9% for every 10 mm Hg of systolic blood
pressure below 150 mm Hg [208].

e Elevated levels of high-sensitivity C reactive protein
[209], or serum cystatin C [210].

e The presence of large vessel occlusion [211].

e A large perfusion-weighted imaging (PWT1)/diffusion-
weighted imaging (DW1I) mismatch (commonly used in trials
to identify tissue at risk after acute cerebral ischemia) [212,
213].

Mechanisms contributing to END may include the follow-
ing, summarized in Table 1.

o Clot propagation with obstruction of more collaterals,
although never demonstrated, was considered in the past to
be the main cause of the stepwise worsening of the neuro-
logical deficit in acute ischemic stroke patients, leading to a
long debate as to the use of anticoagulants for the treatment of
stroke in progression [214-216]. More recently, MRI studies
have shown that patients are more likely to have large vessel
occlusions with failure of collateral circulation [217, 218].

e Hemorrhagic transformation is involved in about 10%
of END [195]. It has a wide range of severity, from small suf-
fusions and petechiae to large hematomas occurring in the
infarcted area with a mass effect on the surrounding tissue
[219]. Factors leading to hemorrhagic transformation in-
clude oxidative stress and reperfusion injuries, which, in turn,
lead to neuroinflammation, leukocyte infiltration, and extra-
cellular proteolysis, culminating with the destruction of the
basal lamina and the tight endothelial junctions [219, 220].
It can have various radiological patterns, and several grad-
ing systems have been proposed. The ECASS grading sys-
tem differentiates among hemorrhagic infarction (HI), fur-
ther subdivided into small petechiae along the margins of
the infarcted area (HI1) or confluent petechiae in the in-
farcted area, without any mass effect (HI2), and parenchy-
mal hematomas (PH), with blood clots in <30% of the in-
farcted area with some mass effect (PH1), or PH2, describ-
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ing blood clots in >30% of the infarcted area with signifi-
cant space-occupying effect [221]. Although it is a rather fre-
quent complication after recanalization therapies, with inci-
dences reaching as high as 6% after intravenous thrombolysis
or 8% after mechanical thrombectomy [222, 223], only large
parenchymal hematomas with mass effect are associated with
neurological worsening or even death [224].

® Re-occlusion of a recanalized artery occurs in about 34%
of thrombolysed patients and accounts for two-thirds of de-
teriorations following initial improvement [225].

o Cerebral edema is involved in about 19% of END, espe-
cially following occlusion of large arteries [195].

e Recurrent stroke, occurring either in the original arterial
territory or in a remote location, causes about 11% of ENDs
[195].

e Seizures are common following large cortical infarc-
tions. Although they usually cause only a temporary wors-
ening, if prolonged, they can lead to END in about 5% of pa-
tients [226].

However, as already mentioned, most clinicians ascribe
END to ischemia/reperfusion injuries, which can lead to
additional cerebral injury, weaken the blood-brain bar-
rier (BBB) and cause hemorrhagic transformation, potenti-
ate cerebral edema, and contribute to the “no-reflow phe-
nomenon” in which despite clot removal, efficient microvas-
cular perfusion is not achieved. Angiographic studies in is-
chemic stroke patients confirmed the lack of reperfusion, al-
though the patency of large vessels was restored [227].
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