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We develop a deep-learning approach to differentiate between the eye movement behavior of people with neurodegenerative
diseases during reading compared to healthy control subjects. The subjects with and without Alzheimer’s disease read well-
defined and previously validated sentences including high- and low-predictable sentences, and proverbs. From these eye-
tracking data trial-wise information is derived consisting of descriptors that capture the reading behavior of the subjects. With this
information a set of denoising sparse-autoencoders are trained and a deep neural network is built using the trained autoencoders
and a softmax classifier that identifies subjects with Alzheimer’s disease with 89.78% accuracy. The results are very encouraging
and show that such models promise to be helpful for understanding the dynamics of eye movement behavior and its relation

Eye-tracking; Deep-learning; Alzheimer’s disease; neurodegenerative diseases; eye movement behavior; neuropsychological processes

1. Introduction

Alzheimer’s disease (AD) is a nonreversible neurodegenerative dis-
ease characterized by progressive impairment of cognitive and mem-
ory functions. It develops over a period of years and is the most
prevalent cause of dementia in elderly subjects. Initially, people ex-
perience memory loss and confusion, which may be mistaken for the
kinds of memory changes that are sometimes associated with normal
aging [1]. The subtle changes in behavior and response of the early
manifestation of this disease make it difficult to diagnose with classi-
cal neuropsychological tests such as the Mini-Mental State Examina-
tion. The use of more advanced diagnostic tools such as magnetic
resonance imaging (MRI) and positron emission tomography (PET)
is critical for early diagnosis. Since AD is nonreversible, early treat-
ment can improve a patient’s life by delaying the full manifestation
of the disease. In recent years, the study of eye movement during
reading, known as eye-tracking, has proved helpful for performing
this task [2-5].

Reading is a cognitive activity that has received considerable
attention from researchers for the evaluation of human cognitive
performance. This activity requires the integration of several central
cognitive subsystems, from attention and oculomotor control to word
identification and language comprehension. Eye movements show
reproducible movement patterns during normal reading. Each eye
movement ends up at a fixation point, which allows the brain to
process incoming information and program the following saccade.
Different neuropsychiatric pathologies produce abnormalities in eye
movements and disturbances in reading each have a particular pattern
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that can be recorded and measured [6—11]. Eye movements can be
classified into three groups:

1. Movements for maintaining the image on the fovea (area of
the retina with high acuity vision), compensating for head or object
movement;

2. Movements for shifting the eyes when attention is changed
from one object to another. There are subtypes of shifting move-
ments: saccades (looking for a new center of visual attention), moni-
toring and vergence (slower than saccades and responsible for mov-
ing the image of interest to both foveae, thus enabling stereoscopic
vision);

3. Movements of binocular fixation that also prevent fading of
the image. These movements have three variations: tremor, drift, and
microsaccade.

Saccades are large fast eye movements that are of particular
importance as cognitive processes have a direct influence on such
movements. Each saccade has a particular direction. People, depend-
ing on language, read from left to right and most saccadic eye move-
ments are oriented accordingly. These reading movements are called
forward saccades. Reading movements going from right to left are
called regressions. Saccade movement alternates when a fixation is
made as eyes are directed to a particular target (See for a review [12]).
As shown in, patients with early Alzheimer disease show changes
during the execution of tasks such as reading [5]. These alterations
can be related to an impairment in working memory [3, 13]. It has
been shown that it is possible to infer a diagnosis from this change
in eye-movements [4].
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The use of computer-aided diagnosis is a key challenge as the
growth of computational power permits the creation of more complex
models. These models can be used to create biomarkers that help
in disease identification. Since the popularization of deep-learning
neural networks [14, 15], much effort has been directed to their
use in medicine. This technique is commonly used in conjunction
with imaging diagnoses provided by PET or MRI mainly because
the feature representation that this technology provides may help
even when data is incomplete [16]. Specifically, there have been
advances in the detection and pattern differentiation of physical brain
alterations that neurodegenerative diseases produce, such as AD and
mild cognitive impairment (MCI) [17, 18], as well as advances in
its early diagnosis [19]. The problem is that, when a physical brain
alteration is observable, brain damage is already both irreversible
(even though the disease is in an early stage) and may be sufficient to
cause deterioration in the quality of life for a patient. Eye-tracking
techniques enable the discovery of more subtle changes made by the
brain, thus to alleviate small memory deficits for a patient. These
changes are not noticed by a patient, but small changes in the way
they read our set of test sentences can be identified with the technique
described here.

In this work, a deep-learning neural network is trained on read-
ing habits, obtained from controls and patients with probable AD, to
identify the patterns they make during the reading process and then
separate them into their respective groups. Throughout this work
AD patients and patients with probable AD are used interchangeably
due to the nature of the AD diagnosis. The hypothesis was that
using deep-learning for feature detection of key characteristics of a
patient’s eye behavior while reading sentences may lead to a classifi-
cation suited to infer a diagnosis. Employing this type of technology
may improve the results obtained (see [4]) as it provides a smaller
granularity for detection of the disease and consequently, better per-
formance. Additionally, this technology improves the effectiveness
of classification as more “ground truth” subjects are collected.

2. Methods
2.1. Ethics Statement

All patients, their caregivers, and all control subjects signed informed
consent forms prior to their inclusion in the investigation. The
research adhered to the principles of the Declaration of Helsinki and
was approved by the Institutional Bioethics Committee at Hospital
Municipal de Agudos (Bahia Blanca, Buenos Aires, Argentina).

2.2. Participants and data

The group of readers consisted of sixty-nine subjects: twenty-six
patients with mean age 69 years, standard deviation (SD) = 7.3 years,
with the diagnosis of probable AD (recruited at Hospital Municipal
of Bahia Blanca, Buenos Aires, Argentina) and forty-three healthy
elderly adults, mean age 71 years, SD = 6.1 years, with no known
neurological or psychiatric disease according to their medical records,
and no evidence of cognitive decline or impairment in daily activities.

Physicians based their diagnoses on the criteria for dementia
outlined in the Diagnostic and Statistical Manual of Mental Dis-
orders (DSM-1V), the clinical criteria for diagnosis of early stage
Alzheimer’s disease is not settled [20]. All AD patients presented an
APO E3E4 genotype and underwent a detailed clinical history, phys-
ical/neurological examination, thyroid function test, and brain imag-

ing tests (magnetic resonance/computerized tomography scans). Bio-
chemical studies were made so as to discard other common patholo-
gies (hemoglobin, full blood count, erythrocyte sedimentation rate,
urea and electrolytes, blood glucose). Patients were excluded if diag-
nosed with any condition that might interfere with the current study,
for example, if they suffered from any other medical conditions that
could account for, or might interfere with, their cognitive decline;
had evidence of vascular lesions in computed tomography or func-
tional MRI; had evidence for an Axis I diagnosis (e.g. major depres-
sion or drug abuse) as defined by the DSM-IV. To be eligible for the
study, patients had to have a caregiver providing regular care and
support. Patients taking cholinesterase inhibitors were not included.
None of the subjects were taking sedative drugs, major tranquilizers
or hypnotics.

A one-way ANOVA showed no significant differences between
AD and Control subject ages. Patients diagnosed with ophthalmo-
logic diseases, such as glaucoma, visually significant cataract or
macular degeneration as well as those with visual acuity less than
20/20, were excluded from the study.

The mean scores of Controls and AD subjects in the Mini-Mental
State Examination (MMSE) [21] were 27.8 (SD = 1.0) and 24.2 (SD
= 0.8), respectively, the latter suggesting early mental impairment.
A one-way ANOVA suggested significant differences between AD
subjects and Controls for MMSE (p < 0.001). The mean score of AD
subjects in the Adenbrook’s Cognitive Examination - Revised [22
was 84.4, (SD = 1.1), the cut-off being 86. The mean duration of
school education for AD patients was 15.2 years (SD = 1.3) and for
the Control group 15.1 years (SD = 1.0), a one-way ANOVA showed
no significant differences. For a description of the sentence corpus
(see [23]). For Apparatus technical specifications and procedures
(see [7]).

Eye movement data from 69 participants reading 184 sentences
resulted in a total of 48, 716 fixations — 13, 002 for Control and 35,
714 for AD subjects. This data was deblinked and tracking errors
were removed.

2.3. Information used

The information used for this study was a frial-wise compaction of
the original data that comprised individual subject descriptors of
reading behavior for each sentence read. Data measures included:
the mean and SD of saccade amplitude, fixation duration and fixation
duration of single words by the subject during the reading of each
sentence. Additionally, the total number of fixations were recorded
and classified as first pass fixations, refixations, unique fixations, and
total fixations:

1. First pass fixations: The first fixation on a specific word of a
sentence.

2. Unique fixations: Fixations that occured once in a word that
was skipped during the first pass.

3. Multiple fixations: Multiple fixations on a word during the
first pass.

4. Refixations: Fixations that occurred once a word already had
a first pass fixation or a unique fixation, implying a regression.

Categorical diagnostic data (used as training labels) were re-
placed by numerical values to enable data type pooling to improve
the classification procedure. Two integer values were employed for
construction of diagnostic information: O for “Control” and 1 for
“AD”. Subject identification and diagnostic information were sepa-
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rated from the data. Variables used as input for model construction
are given in Table 1. As the tag (AD or Control) was associated with
a patient and not each sentence, and, since a per-trial classification
approach was employed, the subject’s tag was applied to all the
sentences they read. However, this procedure may introduce noise
at the classifying stage, as in a per-trial classification approach, a
Control subject could, for example, be distracted during the reading
of a specific sentence, leading to data being misclassified as coming
from a non-healthy person. Nevertheless, it was assumed the system
should detect and ignore such artifacts due to the number of samples
used at the training stage.

Table 1. Variables employed for model construction

Name Description

nw Number of words in the sentence.

gaze Global (sentence) mean of the sum of fixation durations on
the same word.

sd_gaze  Standard deviation of gaze.

as Mean saccade amplitude in the sentence.

sd_as Standard deviation of as

ntf Count of the total number of fixations on the sentence.

ntm Count of the number of multifixations on the sentence.

dfp Mean duration of the first pass fixations on the sentence.

sd_dfp Standard deviation of dfp.

fpp Count of the number of first pass fixations on the sentence.

rf Count of refixations on the sentence.

nfu Count of unique fixations on the sentence.

dfu Mean duration of unique fixations on the sentence.

sd_dfu Standard deviation of dfu.

All data were outlier-checked by a dropout policy to reduce
dataset noise. Outlier checking proceeded by finding the group mean
and SD of each condition and checking the two groups separately.
All trials with a SD greater than twice the SD of the group were con-
sidered outliers and were dropped from the analysis. This eliminated
10% of the samples. The sentence identification, order, and type
were kept separate from the training information. This was done
because the SDs in the data from the AD patients for proverbs and
high predictability sentences appeared to be particularly high after
the data were outlier-checked. Thus generating highly unbalanced
datasets.

The resulting dataset consisted of 3, 235 trials with a mean
of 46.88 (SD = 1.76) trials per subject. The dataset was divided
into two groups: one for network training composed of data from
61 subjects and other for data testing with eight randomly selected
subjects. Finally, the training dataset consisted of 2, 922 trials for
61 subjects, i.e. 39 Control and 22 AD subjects each with a mean
number of 47.9 (SD = 10.47) trials; the test dataset consisted of 313
trials of 8 subjects, i.e. 4 Control and 4 AD subjects each with a
mean number of 39.12 (SD = 10.37) trials.

Partitioning data in this way ensures the network can not infer
a condition in another way, avoids over-fitting, and ensures that
the testing data is totally unknown by the network. All data was
normalized between 0 and 1 for processing by the neural network.

2.4. Deep learning with denoising sparse-autoencoders

In this study, sparse-autoencoders were used at the codification
stage. The sparse-autoencoders function as regular autoencoders,
i.e. they are neural networks under supervised learning with their

targets set equal to the input (identity) values. In the case of sparse-
autoencoders, an average number of activations per neuron restric-
tion was applied in the hidden layer by penalizing the average num-
ber of activations different from the desired number (known as spar-
sity proportion) by adding a penalty term to the cost function. This
restriction is introduced so that each neuron specializes on a particu-
lar feature. The lower the sparsity proportion, the more specific the
feature. The resulting trained neural network can be thought of as:
an encoder, involving the input and the hidden layer, and a decoder,
involving the hidden and the output layer. In this study activation
restriction was set to 10%.

In a denoising-autoencoder, the idea is to force the hidden layer
to discover more robust features and to prevent it from simply learn-
ing the identity, by training the autoencoder to reconstruct the input
from a corrupt version. The altered version of the input is generated
by introducing noise, which is obtained by clamping some fields
to zero. The corrupt data is used as the sparse-autoencoder input,
and the clean (unaltered) data as the target. Using this type of data
corruption mechanism forces the network to learn a way of recon-
structing a given field based on other fields. When combined with
the sparsity restriction, this generates more robust features.

The deep-learning neural network was built using two stages of
these denoising sparse-autoencoders. At each stage, the autoencoder
was trained by corrupting clean encoded data obtained from the
previous stage, and then employing it as input to the next stage.
Following these two stages, a softmax layer was set as a classifier
and trained with uncorrupted data and the corresponding tag. As a
per-trial classification approach was used, the subject diagnosis was
extended to all sentences they read, the classifier was trained with
this data as the target. The softmax layer is a non-linear, multiclass
generalization of binary Logistic Regression, and its output is the
“probability” of each class (the word “probability” is quoted as its
shape depends on the regularization used at the training stage, it can
either be more diffuse or peaky).

3. Resulis

Several configurations were generated by varying the sparsity pro-
portion, the number of units and layers, and the shape of the network
(same vs. decreasing number of units between layers). The one that
produced the best results was adopted. It consisted of two layers of
denoising sparse-autoencoders with 16 and 4 hidden units using a
sparsity proportion of 10% in each hidden layer. After the training of
the network, a series of tests were performed with data not included
in the training dataset. This test dataset consisted of 313 sentences
from 8 subjects - 4 Control and 4 AD - with a mean number of 39.12
(SD = 10.37) trials for each subject. We used a softmax layer for
classification training by using the condition translation of 0 for Con-
trol subjects and 1 for AD subjects. This meant there was a single
AD class and, since the output of the classifier was a real number
between 0 and 1, the read sentences classified by the network with
values close to 0 had a low “probability” of being read by an AD
patient (i.e. a high probability of being read by a Control patient)
and vice-versa. The “ground truth” values were known, so the output
could be split into groups and the number of misclassified sentences
observed by the network. Consequently, the output of the network
with values lower than 0.5 could be classified as Control, and higher
values classified as AD. As can be seen, Fig. | shows the output of
the network was consistent with the expected values.
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Fig. 1. Classification result histogram giving the number of sentences split
by “ground truth” values. Values below 0.5 are classified as Control, and
higher values are classified as AD.

Rounded values can be used to plot a confusion matrix and
approximate the number of misclassified sentences so as to measure

network performance. Fig. 2 shows a confusion matrix of the output.

The abscissa represents the expected output values and the ordinate
the rounded output of the network. Overall performance of the
network was good with 89.8% of sentences well-classified. The
performance of the network using sentences read by Control subjects
(88.7% correct) was slightly less than the performance of AD subjects
(91.0% correct).

Testing Data

Output Class

0 1
Target Class

Fig. 2. Classification results. Values below 0.5 are considered classified as
Control (class 0), and higher values are considered classified as AD (class 1).

Alternatively, Fig. 3 shows that no particular type of sentence

was preferentially misclassified. It gives the original concentration
of sentences types in the testing dataset and the correctness of the
classification following the given method.
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Fig. 3. Number of misclassified sentences by type, split by “ground truth”
label.

This result, when combined with the fact that neither was a
consequence of misclassification in a particular sentence, suggests
that most of the misclassification was likely stochastic. Trained
networks were additionally evaluated with a spread result test to
determine the softness of the model. These tests checked if similar
information is encoded in a similar way in subsequent stages of the
network. A significant differentiation in later stages of encoding may
show over-fitting either by the network and/or by different stages.

Two subsets of trials (one composed of AD subjects and the
other of Control subjects) that have similar values for the input in
each field are shown in Fig. 4. As seen, similar input values map to
similar encoded values at each stage of the autoencoders. This is
attributed to the smoothness of the modeled function. Furthermore,
as data is processed through subsequent stages of codification, it
tends to group. These results show that output information such
as the encoding in the different stages of the network are reliable.
Alternatively, they show that at later stages certain neurons tend to
specialize in the detection of specific AD or Control input features.

4. Discussion

Results showed that using a deep-learning architecture for identify-
ing the characteristic eye movement patterns associated with neu-
rodegenerative diseases such as Alzheimer’s disease provides a good
approach as this technology is focused on pattern finding and is
suited to this work. Moreover, the high performance of a per-trial
classification approach, leads to the conclusion that, since a single pa-
tient reads many sentences, the success rate per patient is higher than
the 89.8% accuracy reported here. Assuming that network outputs
higher than 0.5 can be classified as AD and lower outputs as Control,
if each subject is tagged using “majority voting” over all sentences
read, the network reaches a 100% classification accuracy for the
testing set - 8 well classified subjects from 8 total. This was expected
as, for this test set, the total number of misclassified sentences is 32
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closer than AD subjects; this could be attributed to the high “within group” variability of the AD group.

and every subject, after the data optimization, reads on average 39.12
(SD =10.37) sentences.

Additionally, the psychiatrists managing other AD patients (that
were not included in training process) were asked to score the overall
severity of the disease of each patient with traditional tests using
a scale from O to 1, not knowing the results given by our network.
The process of creating this score required physicians to have a
deep knowledge of both the psychiatric history and results of all
neuropsychological tests for each patient. Table 2 shows the scores
given by the psychiatrists compared with the mean value and their
SDs obtained for the network model of all the sentences read by
the subjects. As seen, for most of the patients, the values obtained
were very similar to the scores given by the psychiatrists (mean value
0.19, SD = 0.15). These results show that the created marker was
reasonably close to the psychiatric score but required a much simpler
process.

Finding a better way to interpret the output of the classifier is left
for future investigation. An improvement is required as values near
0.5 are identified as neither AD nor Control (equal “probabilities”).
However, the strategy reported here is an initial approximation that
doesn’t reflect the actual power of the network. Using a fuzzy-logic
encoder to obtain the overall diagnosis of a patient might lead to
more accurate results. Determination of whether the number given
by the classifier is related to the severity of the disease is left for
future improvement.

This task is particularly difficult as there are no “ground truth”
measurements suited to corroborate the information obtained from
current psychological testing methods. Although a per-trial classi-
fication approach was adopted, it is possible that overall diagnosis
may be related to a measurement extracted from an entire test and
not from a single trial. As reported here, even with the strategy used

Table 2. Comparison of mean diagnostic value given by the network
and a “severity of disease” score given by psychiatrists.

ID Pat Mean SD Score Difference
58 0,97 0,17 0,9 0,07
57 0,95 0,17 0,5 0,45
66 0, 49 0,32 0,5 0,01
60 0,95 0,16 0,6 0,35
56 0,96 0,16 0,8 0,16
55 0, 94 0,17 0,7 0,24
63 0, 87 0,25 0,8 0,07
64 0,51 0,34 0,5 0,01
70 0,90 0,24 0,5 0, 40
69 0, 84 0,25 0,5 0,34
65 0,91 0,22 0,6 0,31
59 0, 58 0, 36 0,6 0,02
71 0,75 0,33 0,6 0,15
62 0,76 0,32 0,6 0,16
67 0, 47 0,35 0,5 0,03
68 0, 40 0,31 0,8 0, 40
53 0,84 0,31 0,8 0,04

Mean 0,19
SD 0,15

s

in this study, simply using the mean of the scores or the “controlling’
label was sufficient for this network to behave as expected.

5. Conclusions and future work

In this paper we showed that the Deep Learning approach is a good
alternative for the identification of eye movement patterns because
this technology is specifically aimed at finding rich features in com-
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plex data and using them later. We have also seen that this technology
needs large amounts of tagged data, and in some cases, this could
be a limitation. However, we hope that this work will serve as a
stimulus for neuroscientists to start thinking about the use of Deep
Learning for this type of tasks.

An important and very interesting challenge that remains as
future work is to obtain a better way of interpreting the result of
the classifier. This would probably make it possible to determine
whether the number given by the classifier is related to the severity
of the disease.
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