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Abstract
Organisms have the advantages of self-adaptive mechanisms and an anti-interference ability. To investigate the anti-interference
ability of a deep spiking neural network that simulates a biological neural system, the correlation between membrane potential
and firing rate is interpreted as an anti-interference index so as to investigate the anti-interference ability of a deep spiking neural
network under the regulation of synaptic plasticity in the presence of different amplitudes of an electric field. When the relative
variation rate of firing rate is less than 10% or the correlation between the membrane potential is greater than half, the influence
of electric field on neural network is relatively small. Otherwise, the influence is relatively large. Simulation results show that:
based on the regulation of synaptic plasticity, within a certain electric field interference range, the relative rate of variation of cell
firing rates is small compared with non-interference, while correlation between the membrane potential in each layer is large
when compared to non-interference.
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1. Introduction

Compared with other natural environments, the electromagnetic envi-
ronment is invisible, untouchable, and variable. An organism under
the regulation of a neural system has advantages of self-adaptive
mechanisms and anti-interference abilities [1]. Organisms can re-
sist electromagnetic interference thousand times greater than the
magnitude of their own bioelectrical signals [2].

Synaptic plasticity is the structural basis of information transfer
between neurons. Chen et al. [3] constructed a four layers feed-
forward deep spiking neural network based on STDP (Spike-timing
Dependent Plasticity) mechanism. Litwin-Kumar and Doiron [4]
found that the STDP mechanism makes neural networks form neu-
ronal clusters during learning and maintain cluster stability. Wei
and Koulakov [5] found that the STDP mechanism is helpful for
stable storage in long-term memory models of neural networks. Most
of these studies are based on excitatory synaptic plasticity. How-
ever, inhibitory synaptic plasticity also plays an important role in the
regulation of neural networks.

The organism adapts to an external environment with many kinds
of interference factors via self-adaptive mechanism [6, 7]. Yu et
al. [8] found that under the interference of either a DC or an AC in-
duced electric field, a neural network can produce gamma oscillations
and synchronous oscillation, respectively. Chang et al. [9] found
that the relationship between the extent of synchronous neuronal
firing and an anti-interference ability is approximately linear. Scott
et al. [10] found that the ability of synchronous neural network firing
strongly depended on the mechanisms of synaptic plasticity. Chen
et al. [11] found that a feed-forward deep spiking neural network
exhibited anti-interference ability when regulated by STDP.

A deep spiking neural network model regulated by both excita-
tory and inhibitory synaptic plasticity was constructed by the authors
in a previous study [12]. That study focused on neural information
coding by rate and temporal coding under an alternating magnetic
field. In this study, the same topology of a deep spiking neural net-
work is employed. It aims to investigate the anti-interference ability
of the network under an alternating electric field by firing rate and
correlation between the membrane potential which are considered as
anti-interference indexes.

2. Analysis of Anti-interference Ability of Deep
Spiking Neural Network

Based on Izhikevich neuron model [13], a synaptic plasticity and
feed-forward deep spiking neural network model with ten layers
regulated by both excitatory and inhibitory synaptic plasticity was
constructed as in a previous study [12].

2.1. Izhikevich neuron model subject to an electric field

An alternating electric field can influence the membrane potential
of neurons [14]. The relationship between the external alternating
electric field E and the cell membrane depolarization voltage ∆V can
be described as [15]:

d∆V
dt

+
∆V
τ

=
λ

τ
E (1)

where λ represents the polarization length and τ represents Maxwell-
Wagner time constant [16].

The alternating electric field E can be described as:
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E(t) =
A
ω

sin(ωt) (2)

where A represents amplitude and ω represents angular fre-
quency [17]. According to equation (1) and equation (2), the cell
membrane depolarization voltage ∆V due to an alternating electric
field E can be described as:

∆V (t) = λ
A
ω

sin(ωt)−2π f τ cos(ωt)
1+(ωτ)2 . (3)

In the model, the order of magnitude τ is generally 10−10 ms; the
frequency f is located in the range of extremely low frequencies [18].
Therefore, the cell membrane depolarization voltage ∆V can be
approximated described as follows:

∆V (t) = λ
A
ω

sin(ωt) (4)

where polarization length λ = 1mm; angular frequency ω = 0.1π

rad/s [19]. Cell membrane depolarization voltage ∆V can be seen
as an external disturbance of the cell membrane voltage v(t). The
cell membrane voltage v(t) under the electric field can be described
as [20]:

v(t)→ v(t)+∆V (t) (5)

The Izhikevich neuron model under the alternating electric field
can be obtained by introducing equation (5) into the mathematical
model of the Izhikevich neuron described in [12].

2.2. Firing rate

The pulse time sequence S(t) of neurons with regard to each action
potential generated by a neuron has a time function similar to δ . It
can be described as:

S(t) = ∑
m

δ (t− t(m)) (6)

where t(m) is the firing moment of neurons. The value of S(t) in the
firing moment is one, and at other times is set to zero. The pulse
time sequence clearly shows both the firing moments and firing rate.

The inter-spike interval (ISI) is the difference between two adja-
cent firing moments of a neuron. It is described as:

ISIn = tn− tn−1 (7)

The firing rate of a single neuron is evaluated by dividing the
average value of the ISIs (ms) by 1000. The firing rate of the neural
network is evaluated by the average firing rate values of all neurons.
The smaller the relative variation rate of firing rate, the better the
anti-interference ability of the deep spiking neural network. When
the relative variation rate of firing rate is less than 10%, the influence
of electric field on the neural network is relatively small.

To investigate the influence of different electric field amplitudes
on pulse time sequence of a deep spiking neural network, an electric
field interference with amplitudes of 2 mV , 10 mV , or 20 mV are
added to the deep spiking neural network. The pulse time sequence
diagrams of the output layer neuron under different electric field
amplitudes are shown in Fig. 1.

From the Fig. 1, the abscissa gives simulation time; the ordinate
gives the time of the action potential. The firing rate is 11.1 Hz
under non-interference, the firing rates are 11.2 Hz, 11.4 Hz, and
12.0 Hz under the electric field amplitudes of 2 mV, 10 mV, and
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Fig. 1. Pulse time sequence diagrams.

20 mV, respectively. The fluctuations generated by electric field
interference are 0.61%, 2.69% and 8.30%, respectively. Simulation
results show that with the increased of electric field amplitude, the
fluctuations are getting larger. This proved that with the increased
electric field amplitude, the influence on firing moment and firing
rate of the output layer neuron are all increased.

To further investigate the influence of electric field interference
on the firing rate, an electric field interference with different ampli-
tudes was added to the deep spiking neural network. The range of the
electric field amplitude A was set to [1, 20] mV, and the step length
was set to 1 mV. Simulation results showed that the firing rate of
each layer in the deep spiking neural network was within the range
of 6.7 Hz to 12.0 Hz. Normalized firing rate of each layer in the deep
spiking neural network for different electric field amplitudes A is
shown in Fig. 2.

Fig. 2. The firing rate of each layer.
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From Fig. 2, the abscissa gives the electric field amplitude, the
ordinate gives the number of layers, and the color-map gives the
firing rate after normalization. Red indicates a higher neuron firing
rate. Blue indicates a lower neuron firing rate. The figure shows that
the firing rate of each layer increases with increased electric field
amplitude. When the electric field amplitude is constant, the firing
rate shows a trend of fluctuation with an increased number of layers.

Trend of firing rates in output the layer neuron under different
electric field amplitudes A is shown in Fig. 3.

Fig. 3. Firing rate of output layer neuron.

In Fig. 3, the abscissa gives the electric field amplitude; the
ordinate gives the firing rate of the output neuron. When the electric
field amplitude is in the range 0 mV to 6 mV, the firing rate is in the
range of 11.1 Hz to 11.2 Hz. The firing rate is typically stable. When
the electric field amplitude is in the range of 6 mV to 16 mV, the
firing rate is in the range of 11.1 Hz to 11.9 Hz. The firing rate shows
a marginally increasing trend. When the electric field amplitude is in
the range 16 mV to 20 mV, the firing rate is in the range of 11.9 Hz
to 12.0 Hz and the firing rate is effectively stable.

The relative variation rate of firing rate in the output layer neuron
under different electric field amplitudes A is shown in Fig. 4.

Fig. 4. The relative variation rate of firing rate.

In Fig. 4, the abscissa gives the electric field amplitude and the
ordinate gives the firing rate of the output neuron. When the electric

field amplitude is in the range of 1 mV to 20 mV, the relative variation
rate of firing rate is less than 8.53%. An electric field amplitude in
the range of 1 mV to 20 mV has little influence on the firing rate of
the deep spiking neural network.

2.3. Correlation between the membrane potential

Correlation between the membrane potential can reflect the simi-
larity degree of neuron membrane potential before and after electric
field interference. The greater the correlation value is, the higher
the similarity degree is before and after interference. Correlation
coefficient can describe the correlation between the membrane po-
tential quantitatively. The correlation coefficient can be described as
follows:

ρi j(τ) =

t2−τ+1
∑

t=t1
xi(t)x j(t + τ)√

t2−τ+1
∑

t=t1
xi2(t)

t2−τ+1
∑

t=t1
x j2(t + τ)

(8)

where ρi j(τ) is correlation coefficient; [t1, t2] is simulation duration;
xi is neuron membrane potential before electric field interference; x j
is neuron membrane potential after electric field interference. The
larger the value of ρi j(τ) is, the better the anti-interference ability of
the deep spiking neural network is. When the correlation between
the membrane potential is greater than half, the influence of electric
field on neural network is relatively small.

In order to investigate the influence of electric field interference
on correlation between the membrane potential, the electric field
interference with different amplitudes is added to deep spiking neural
network. The range of the electric field amplitude A is set to be
[1, 20] mV, the step length is set to be 1 mV. The correlation of the
membrane potential of each layer in deep spiking neural network
under different electric field amplitudes is shown in Fig. 5.
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Fig. 5. Correlation between membrane potential of each layer.

From the Fig. 5, the abscissa gives the electric field amplitude;
the ordinate gives the number of layers; the color-map represents
the correlation between the membrane potential of each layer. Red
indicates a higher correlation between the membrane potential in
each layer. Blue indicates lower correlation between the membrane
potential in each layer. The figure shows that the correlation between
the membrane potential in each layer decreases with increased elec-
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tric field amplitude. When the electric field amplitude is in the range
of 0 mV to 7 mV, the correlation between the membrane potential of
each layer is relatively large. When the electric field amplitude is in
the range of 7 mV to 20 mV, the correlation between the membrane
potential of each layer is relatively small.

The correlation trend between the membrane potential in output
layer and other layers for different electric field amplitudes A is
shown in Fig. 6.

Fig. 6. Correlation between the membrane potential of the output layer
neuron and other layers.

From the Fig. 6, the abscissa gives electric field amplitude; the
ordinate gives the correlation between the membrane potential of the
output layer neuron and other layers. With increased electric field
amplitude, the correlation between the membrane potential shows a
decreasing trend of fluctuations. When the electric field amplitude is
1 mV, the correlation between the membrane potential and membrane
potential in other layers attains a maximum value of 0.71. When
the electric field amplitude was 20 mV, the correlation between the
membrane potential between layers attained the minimum value of
0.14.

According to Fig. 6, the correspondence between membrane
potential correlations and electric field amplitude A are shown in
Table.1. From Table.1, with an increase in the range of electric
field amplitude, the range of correlations between the membrane
potential of the output layer neuron and other layers is decreased.
When the electric field amplitude is in the range of 1 mV to 9 mV,
the correlation between membrane potential of the different layers
is relatively large, whereas, the influence of the electric field on the
correlation between the membrane potential of different layers is
relatively small; when the electric field amplitude is in the range
of 10 mV to 20 mV, the value of correlation is relatively small, the
influence of electric field on the correlation between the membrane
potential is relatively large.

Table 1. Correspondences between membrane potential correlations
and electric field amplitude

range of electric
field amplitude

1 ∼ 4 5 ∼ 9 10 ∼ 13 14 ∼ 20

range of
correlation

0.61 ∼ 0.71 0.45 ∼ 0.67 0.26 ∼ 0.36 0.14 ∼ 0.24

3. Conclusion
We conclude from the simulation results that with increased electric
field amplitude, neuron firing rate is increased and the correlation
between the membrane potential of different layers in the neural
network is decreased. When the relative variation rate of firing rate
is less than 10% or the correlation between the membrane potential
is greater than half, the influence of electric field on neural network
is relatively small. Otherwise, the influence is relatively large. Based
on the regulation of synaptic plasticity, under a certain electric field
interference range, the variation of firing rate is relatively small com-
pared with non-interference; the correlation between the membrane
potential of neurons in different network levels is relatively large
compared with non-interference. A certain range of electric field
interference has little influence on activity in the deep spiking neu-
ral network. The deep spiking neural network has ability to resist
electric field interference.
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