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Abstract
A permutation fuzzy entropy algorithm is proposed that uses sorting and symbolic methods to improve anti-noise performance of
electroencephalogram signals known to be highly sensitive to noise disturbances during collection. It was employed to analyse
abnormal event-related potentials of schizophrenics focused on P50 potentials of sensory gating, which is the most common
paradigm currently used for analysing schizophrenia. The approach for analysing P50 sensory gating in schizophrenics is
presented from twenty-seven schizophrenia patients and twenty healthy controls. The values calculated for the patients under
the conditioning and testing stimuli were used to calculate the entropy complexity. Results demonstrate that the approach can
be effectively used to analyse sensory gating deficits in patients with schizophrenia and that the algorithm can be satisfactorily
be used for analysing electroencephalogram signals.
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1. Introduction
Electroencephalogography (EEG) signals are unstable and non-
linear [1]. Linear methods cannot effectively detect the complex
and dynamic changes of EEG time series [2]. However, nonlin-
ear parameters such as the Hurst index [3], Lempel-Ziv complexity
(LZC) [4, 5], Lyapunov exponents [5], and entropy [5–7] provide
good quantification of the complexity of time series, and these meth-
ods can contribute to a deeper understanding of the dynamic changes
of EEG and underlying chaotic states of the brain [8].

Among them, entropy portrays the disorder and degree of chaos
of a system state as an important and characteristic value of nonlinear
dynamics. Additionally, compared with other nonlinear methods,
entropy has the advantage of being less dependent on data length [9].
Therefore, entropy has been widely used for the quantitative analysis
of the EEG signals of different states, including disease, cognitive
tasks, and sleep.

In 1991, Pincus [10] proposed an approximate entropy (ApEn)
algorithm that measures from a statistical point of view the produc-
tion rate and the complexity of new information in a time series. The
larger the ApEn is, the more complex the time series. When ApEn
counts matching values, it includes a comparison with its own data.
However, the comparison has no value because entropy is used to
measure the production rate of new information in the time series.
Moreover, ApEn depends heavily on the length of the time series. In
an effort solve this problem, Richman & Moorman [11] put forward
an improved ApEn algorithm that not only eliminates the vector
self-matching of ApEn, but also greatly reduces the dependence on
data length. However, when ApEn and sample entropy are adopted

for measuring similarity, the Heaviside binary function is always
used. Therefore, the entropy value has a deficient continuity when
ApEn and sample entropy are used for measurement.

Chen and colleagues [12] proposed the fuzzy entropy (fuzzyEn)
algorithm, which employs a fuzzy membership function, instead of a
binary function of the sample entropy, to measure the similarity and
smooth the entropy changes. Although fuzzyEn improves upon ApEn
and sample entropy, there are multiple problems. The sensitivity
of fuzzyEn to noise depends substantially on its parameter values.
However, the major features of the EEG signals include both a low
signal-to-noise ratio and strong noise. Because of these problems,
the paper improved fuzzyEn and increased its anti-noise stability by
introducing permutation fuzzy entropy (PFEN).

The PFEN algorithm is based on the concept of symbolization
of a time series, which originated from permutation entropy (PE) as
an analytical method for sorting time series complexity [13]. It is
based on the contrast between adjacent data and has good robustness
and is strongly impervious to noise. In this study, PFEN is used to
analyse the event-related potential (ERP), whose signal-noise rate is
low, in schizophrenic patients in response to conditioning and testing
stimuli and to evaluate PFEN.

2. Permutation Fuzzy Entropy (PFEN) Algo-
rithm

A permutation fuzzy entropy algorithm is proposed that uses sorting
and symbolic methods to improve the anti-noise performance of
EEG signals during their collection.
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PFEN sorts and symbolizes the original time series. It computes
the fuzzyEn [12] of the symbolic series, namely, the permutation
fuzzy entropy. The algorithm of PFEN was presented as follows:

Step 1. Given a time series {X(i) : 1≤ i≤ l}, where l is the
length of series X . For example, l = 5, X(1) = 1, X(2) = 1, X(3) = 1,
X(4) = 2, X(5) = 2, X(i) = 1, 1, 1, 2, 2.

Step 2. Reconstruct this series, and obtain the following matrix:

x(1) x(1+ τ) . . . x(1+(pm−1)τ)
x(2) x(2+ τ) . . . x(2+(pm−1)τ)
. . . . . . . . . . . .

x( j) x( j+ τ) . . . x( j+(pm−1)τ)
. . . . . . . . . . . .

x(K) x(K + τ) . . . x(K +(pm−1)τ)

 j = 1,2, . . . ,K (1)

where τ and pm are the delay time and permutation dimension,
respectively, and K = l− (pm− 1)τ . Each line of the matrix can
be considered a reconstructed component; that is, the above matrix
includes a total of K reconstructed components. For example, pm =
3, τ = 1, l = 5, K = l− (pm−1)τ = 5 - 2 = 3.x(1) x(2) x(3)

x(2) x(3) x(4)
x(3) x(4) x(5)

=

1 1 1
1 1 2
1 2 2


Step 3. Re-sort all the elements of every reconstructed compo-

nent into an ascending numerical order. If two elements are equal
when sorting the data, the respective subsequent element of the re-
constructed components can serve as the current compared result for
sorting, thereby reflecting the immediate trend of the time series. If
respective subsequent element pairs are equal again, the elements are
sorted according to their index in ascending order. Next, extract the
index of every element for the original reconstructed components,
and obtain a different symbolic series. Respectively make each of
the pm! kind of symbolic series corresponding to a value between
1 and pm!. Thus, transform {X(i) : 1≤ i≤ l} into a new series in
which each element has a value between 1 and pm!:

{U(i) : 1≤ i≤ l− (pm−1)τ} (2)

For the above example, the first reconstructed component is {1,
1, 1}, the second reconstructed component is {1, 1, 2}, the third
reconstructed component is {1, 2, 2}. Extract the index of every
element for the first reconstructed component and get {1, 2, 3}. In
a similar way, the indexes of the second reconstructed component
and the third reconstructed component are {1, 2, 3} and {1, 2, 3}
respectively. Here pm = 3, so pm! = 6.

The permutation of the index is {1, 2, 3}, {1, 3, 2}, {2, 1, 3},
{2, 3, 1}, {3, 1, 2}, {3, 2, 1}. The number of the permutation is pm!
= 6. {1, 2, 3} corresponds to 1 and 1 is a digit symbol, {1, 3, 2}
corresponds to 2, {2, 1, 3} corresponds to 3, {2, 3, 1} corresponds
to 4, {3, 1, 2} corresponds to 5, {3, 2, 1} corresponds to 6. The
above 2, 3, 4, 5, 6 is a digit symbol respectively. Thus, transform
{X(i) : 1≤ i≤ l} into a new series in which each element has a value
between 1 and pm!. In our example, {U(i) : 1≤ i≤ l− (pm−1)τ}
= U(1), U(2), U(3) = {1, 1, 1}.

Step 4. Reconstruct U in order, and let the length of symbolic
series U be N. Then, generate a group of vectors with m dimensions:

Y m
i = {u(i),u(i+1), . . . ,u(i+m−1)}−u0(i) (3)

where i = 1,2, . . . ,N−m+ 1, m ≤ N− 2, u0(i) is its average and
u0(i) is defined as:

u0(i) =
1
m

m−1

∑
j=0

u(i+ j) (4)

Step 5. Define the distance dm
i j between vectors Y m

i and Y m
j as

the maximum difference between their corresponding elements:

dm
i j = d

[
Y m

i ,Y m
j

]
= max

k∈(0,m−1)
{|u(i+ k)−u0(i)− (u( j+ k)−u0( j))|} (5)

(i, j = 1∼ N−m, j 6= i)

Step 6. Define the distance Dm
i j between vectors Y m

i and Y m
j

through the fuzzy membership function µ(dm
i j ,n,r):

Dm
i j = µ

(
dm

i j ,n,r
)
= exp

−
(

dm
i j

)n

r

 (6)

where the fuzzy function µ(dm
i j ,n,r) refers to the exponential func-

tion and n and r are the width and gradient of the exponential func-
tion, respectively.

Step 7. Define a function as follows:

φ(n,r) =
1

N−m

N−m

∑
i=1

[
1

N−m−1

N−m

∑
j=1, j 6=i

Dm
i j] (7)

Step 8. Change the reconstructed dimension from m to m+1,
and repeat steps 4 to 7 to generate a group of vectors with m+ 1
dimensions. Subsequently, define a function as follows:

φ
+1(n,r) =

1
N−m

N−m

∑
i=1

[
1

N−m−1

N−m

∑
j=1, j 6=i

Dm+1
i j ] (8)

Step 9. Define the fuzzyEn of the given U series as equation (9).

FuzzyEn(m,n,r) = lim
N→∞

[
lnφ

m(n,r)− lnφ
m+1(n,r)

]
(9)

Step 10. When the length N of series U is a fixed value, the
estimated value of the corresponding fuzzyEn is expressed as

FuzzyEn(m,n,r,N) = lnφ
m(n,r)− lnφ

m+1(n,r) (10)

where m and r are the dimension of the phase space and the similarity
tolerance, respectively.

Step 1–3 above are performed to symbolize the original time
series X(i) as U(i), and step 4–10 are performed to compute the
fuzzyEn of U(i) and thereby to obtain the PFEN of the original time
series X(i).

In the process of sorting and symbolization, when the length
of time series N < 200, pm is set to 3; when N > 200, pm is set
to 4. These values are based on the following factors: when pm <

3, there is less permutation and combination, which will make the
process meaningless; however, a larger pm is not necessarily better.
Although a larger pm can correspond to more permutation cases,
the time complexity of the algorithm increases accordingly. Bandt
and Pompe [13] suggested that pm should be between 3 and 7. Li
et al. [14] suggested that pm should satisfy pm!+(pm−1)τ � N
when pm is selected as the parameter; that is, under the premise that
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the requirement of being sensitive to changes in systemic transient
features is satisfied, pm should be set to a smaller value to reduce
the time complexity of the algorithm. The time delay τ , which is
used during sorting and symbolization, is set to 1 to allow more
information to be obtained from an EEG [15–18].

Further, when computing the fuzzyEn based on the symbolic
time series, the dimension m of phase space is set to 2, and the
similarity tolerance is set to 0.25 times the standard deviation of the
original data.

3. Methods
One of important symptom of schizophrenia is a deficit of sensory
gating [19]. Sensory gating reflects the inhibitory function of the
brain, and P50 sensory gating, which is a reliable electrophysiolog-
ical indicator of inhibitory brain function, is a useful tool for the
analysis of schizophrenia [20]. The detection modes for sensory
gating include the conditioning-testing stimulus paradigm and the
stimulus sequence mode; with the former more widely used. Under
the conditioning-testing stimulus paradigm, subjects are stimulated
by repeated pairs of short sounds with a homogeneous pure tone
(usually clicks, inter-click interval 500 ms) [21].

The tests were performed according to the requirements for ERP
recording proposed by Hashimoto et al. [22]. The auditory condi-
tioning (S1)-test (S2) stimulation paradigm was applied to detect the
P50 auditory evoked potentials of all subjects. The stimulating mate-
rials were coupled short sounds with a pure tone, generally clicks,
evoked by a rectangular wave. The sound intensity was 80 dB, and
the duration 50 ms. Sounds were played through headphones to the
subjects. The interval between the coupled stimuli was 500 ms, and
the interval between each pair of stimuli was 10 s. There were 60
sets of paired stimuli and they appeared in three blocks Each subject
participated in an experiment lasting approximately 12 minutes. A
brain electrical physiological recording device with 64 leads that was
used to record the brains electrical signals. A Brain Amp amplifier
was used, and the data sampling rate was 500 Hz.

Data were collected in a hospital in Shanxi province, where there
were 80 schizophrenic patients and 312 normal subjects. To avoid
the influence of age on the analysis of results, the age of subjects was
limited to between 40 and 50 years old for both the schizophrenic
(test) and normal (control) groups. After this filtering, there were 27
test subjects, of whom 17 were male and 10 were female. Although
many subjects in the control group participated in the experiment,
the majority of them did not give their age. Therefore, 20 subjects
who satisfied the age requirement and whose channel information
records were complete were selected, of these 8 were male and 12
were female.

4. Results
The data analysis procedure was: (i) Preprocess raw data; (ii) Com-
pute the entropy complexity of every subject for stimuli S1 and S2,
and average the entropy of every subject under every stimulus; (iii)
Perform a statistical analysis of the entropy of test and control groups
under S1 and S2, and examine any differences.

The work flow of ERP data preprocessing is given in Fig. 1.
First, the reference electrodes were reselected, as different reference
electrodes may have different impacts on ERP results. The more
commonly used average reference electrodes were selected for the
data pretreatment of ERP. 0.5 ∼ 50 Hz and 24 dB/oct were adopted

for the digital filtering to constrain the signal between 0.5 Hz and 50
Hz.

Fig. 1. Steps of preprocessing ERP data using Analyzer software. Raw data
can be pretreated in the work flow.

When segmenting, the beginning and end of S1 was set to −500
ms and 900 ms, respectively, to give 60 segments. The width of the
window was 400 ms for the complexity analysis and it was started
from the beginning of either S1 or S2.

To study the changes in different regions of the brain, 11 channels
located in different brain regions were selected; they are circled in
red in Fig. 2. Following preprocessing, 11 boxes of channels, namely,
F3, Fz, F4, T7, C3, Cz, C4, P3, Pz, P4 and T8, were exported and
saved. PFEN was repeatedly used to compute the characteristics of
entropy complexity.

(1) For every subject, the entropy complexity of the EEG was
computed from 400 ms after either S1 or S2 for each stimulus pair.

(2) For all subjects, the average of the entropy obtained during
S1 and S2 were computed.

Fig. 2. Position of the 11 selected electrodes. Channels were located in
different brain regions.

To determine how the conditioning stimulus affects the testing
stimulus under conditioning-testing stimulation, the differences in the
entropy complexity of both groups under S1 and S2 were compared.
The average curves of entropy complexity for the two groups are
shown in Fig. 3, where the black and grey plots give the entropy
curve for S1 S2, respectively.

Wilcoxon’s signed rank test was applied to test whether any sig-
nificant differences existed between the entropy complexes obtained
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Fig. 3. (a) Mean PFEN plot for control subjects under stimuli S1 and S2.
The black and grey plots give the entropy curve under S1 and S2, respectively.
(b) PFEN mean plots of test subjects in response to S1 and S2 stimulation.
The black and grey plots give the entropy under S1 and S2, respectively.

for the two subject groups in response to S1 and S2. A significance
level of 0.01 was assumed for the analysis. Results are shown in
Table 1 and Table 2.

Table 1. Statistical Test Results of Entropy Analysis of Schizophrenia
Data

Channel (electrode position) F3 Fz F4 T7 C3 Cz

N
or

m
al

PFEN 0.0002 0.0001 0.0022 0.0051 0.0012 0.0001
p value PE 0.7938 0.0072 0.2043 0.2959 0.2180 0.3507

FuzzyEn 0.0859 0.1560 0.0304 0.0057 0.0859 0.8519
PFEN *** *** ** ** ** ***

Significance PE **
FuzzyEn **

Sc
hi

zo
ph

re
ni

a PFEN 0.1864 0.0754 0.0163 0.5322 0.0837 0.3130
p value PE 0.4279 0.9234 0.7731 0.8101 0.1075 0.7007

FuzzyEn 0.1075 0.5642 0.0186 0.8288 0.5971 0.8664
PFEN

Significance PE
FuzzyEn

*** indicates that the differences have statistical meaning(p < 0.001),
** indicates that the differences have statistical meaning(p < 0.01).

Table 2. Statistical Test Results of Entropy Analysis for Schizophre-
nia Data (continued Table)

Channel (electrode position) C4 P3 Pz P4 T8

N
or

m
al

PFEN 0.0003 0.0001 0.0001 0.0010 0.0051
p value PE 0.1084 0.0333 0.0017 0.4115 0.7369

FuzzyEn 0.0930 1.0000 0.9405 0.3135 0.4330
PFEN *** *** *** ** **

Significance PE **
FuzzyEn

Sc
hi

zo
ph

re
ni

a PFEN 0.0411 0.4279 0.4711 0.4140 0.0679
p value PE 0.0306 0.5165 0.6480 0.7916 0.7548

FuzzyEn 0.9044 0.2488 0.0643 0.1563 0.9808
PFEN

Significance PE
FuzzyEn

*** indicates that the differences have statistical meaning(p < 0.001),
** indicates that the differences have statistical meaning(p < 0.01).

5. Discussion

According to the statistical analysis of the results given in Table 1
and Table 2 and in comparison with Fig. 3, the PFEN index displayed
two main features:

(i) The entropy plot of patients with schizophrenia under S1 was
not different from that under S2, and the entropy complexity that
patients with schizophrenia presented under conditioning stimulus
S1 was not significantly different from that under test stimulus S2.

(ii) The entropy curve of the normal control group under testing
stimulus S2 is higher than that under conditioning stimulus S1, and
the three types of the entropy indices indicate significant differences
in every observed brain area.

According to Fig. 3, the PFEN curve for the control group under
the testing stimulus S2 is higher than that under the conditioning
stimulus S1. This is because the control group maintains the normal
function of sensory gating and can rapidly activate inhibitory path-
ways in response to the conditioning stimulus S1. The inhibitory
pathways initiate a smaller response to test stimulus S2 than that
evoked by the conditioning stimulus S1, thereby enhancing the un-
ordered activity of the subject’s brain, thus recovering to a more
normal level compared with S1. Therefore, the entropy under test-
ing stimulus S2 is higher than that under conditioning stimulus S1.
However, the two PFEN plots from the group with schizophrenia
approximately overlap, and the above features are not found, This
reflects the fact that the sensory gating of schizophrenic patients has
flaws and cannot effectively inhibit stimulus S2. Thus, the entropy
complexity under stimulus S2 is not significantly higher than that
seen for stimulus S1.

According to the data listed in Table 1 and Table 2, the PFEN
values in every observed brain area of the control group under condi-
tioning stimulus S1 and testing stimulus S2 all indicate significant
differences (p < 0.001). In other words, the PFEN index exhibits
strong performance in the analysis of ERP data.

Moreover, the entropy associated with electrode position Cz
shows a larger difference than the entropies obtained from the other
electrode positions in the plot graphed for the control group (see,
Fig. 3a). This indicates that the signals collected at position Cz more
effectively detect P50 potentials. Similarly, Smith et al. [23] found
that the P50 potentials in Cz were more marked than those at other
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electrode positions. This again demonstrates that PFEN is suited to
the analysis of the abnormal ERP signals of schizophrenia.

6. Conclusion
PFEN was applied to analyse the ERP signals of patients with
schizophrenia. ERP signals had lower signal-to-noise ratios than
EEG signals do in response to conditioning and testing stimuli. Re-
sults suggest that the performance of PFEN in the analysis of P50
sensory gating in schizophrenics is significant.
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