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Abstract
The neurocognitive substrates of decision making in the context of chess has appealed to the interest of investigators for
decades. Expert and beginner chess players are hypothesized to employ different functional brain networks when involved in
episodes of critical decision making while playing chess. Cognitive capacities including, but not restricted to, pattern recognition,
visuospatial search, reasoning, planning, and decision making are perhaps the key determinants of the reward and judgment
decisions made during chess games. Meanwhile, the precise neural correlates of decision making in this context has largely
remained elusive. Quantitative electroencephalography is an investigative tool possessing an appropriate temporal resolution
for the study of the neural correlates of cognitive tasks at a cortical level. A 22-channel electroencephalography setup and
digital polygraphy were employed in the investigation of a well-trained eight-year old boy while engaged in playing chess against
a computer. Quantitative analyses mapped and source-localized electroencephalography signals. Analyses indicated a lower
power spectral density for higher frequency bands in the right hemisphere during decision making related epochs. Moreover, in
the given subject, the information flow of decision making blocks tended to move from posterior towards anterior brain regions.
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1. Introduction

Decision making (DM), characterized as the act of selecting the
best among different alternatives, plays a defining role in various
aspects of life. Complex human cognition, such as DM under un-
certainty, is represented by dynamic spatio-temporal activity in the
brain [1]. While so-called wise and informed decisions may con-
tribute to success and satisfaction, ill-advised decisions often lead to
failure. The multifaceted process of decision making is potentially
linked to a wide range of variables including input, process, output,
and feedback [2, 3].

A popular strategy board game like chess provides a compact and
easily controllable task environment for the study of decision making.
As such, many investigators have become attracted to chess as the
task paradigm of choice for the assessment of the neural dynamics
of various mental and cognitive skills including DM [4–7]. Several
decades ago, a landmark study of chess players was undertaken by
de Groot [4]. Key findings postulated that expertise in chess was
determined more by pattern recognition than search. The general
perception of the cognitive mechanisms involved in critical DM in
the context of chess has been largely transformed since that study.

Subsequently, results from other investigations [8, 9] suggested
that intelligence plays a key role both in DM and reasoning. On
this basis, some studies have proposed a solid correlation between

intelligence quotient scores and the reasoning capacity of individu-
als [10]. With regard to processing speed, when players are forced
to play faster, their ability during the game tends to be less predic-
tive. However, expert players are shown to perform noticeably bet-
ter than novice chess players in terms of rapid object recognition
abilities [11, 12].

There is a growing trend, especially among young adolescents,
to join chess clubs. However, the answer as to whether playing chess
may improve global DM skills, remains elusive. It is still a matter
of debate as to whether, and how, playing chess may empower the
adolescent brain to be more productive and error free, fast, wise, and
rewarding DM.

If quantitative electroencephalography (QEEG) provides new in-
sights about the cortical brain regions involved in critical DM among
expert chess players, new avenues may be opened for DM chess
related research. Potentially, through reverse engineering, cortical
areas involved in a grand average QEEG of elite chess players, a
path toward targeting similar networks in the brain of novice players
may be defined, thus helping them to gain DM, at least in chess, in
faster and more efficient ways.

The emergence of neurotechnological tools such as transcra-
nial magnetic stimulation (TMS), transcranial direct current stim-
ulation (tDCS) and neuro-feedback provides novel approaches for
cognitive empowerment through modulation of the brain networks
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involved [13].
The present case study highlights results of pilot assessments

concerning the neural correlates of DM at the cortical level. It
employed a 22 channel-QEEG recording setup to record from a well-
trained eight year-old male chess player when engaged in playing
chess against a computer.

2. Case study
2.1. Subject

The subject of the case study was an eight year-old right-handed
male elite chess player with both regional and national recognition in
chess competitions. The subject was instructed to sleep well the night
before the experiment and was not under the effect of any medicine,
stimulant, food, or drink. Both the subject and legal guardian read
and signed informed consent so as to participate in the study.

2.2. Experimental procedure

Subject played Chess Titans on a Windows 10 computer platform
at a self-selected difficulty level (level 6) using the mouse and right
hand only. Subject played the chess game for 15 minutes and was
eventually defeated by the computer.

2.3. EEG recording and pre-processing

EEG was recorded while playing chess under two different condi-
tions, including, the resting state and critical DM blocks. A 22-
channel bipolar EEG montage using a 32-channel amplifier system
(3840, NR-SIGN, BC, Canada) was used for QEEG data acquisi-
tion. The channel dipoles, based on the international 10-20 system,
included frontopolar (FP), central (C), frontal (F), parietal (P), tem-
poral (T), and occipital (O) electrode placements: FP2-F7, FP2-T5,
F8-F3, F8-P3, F4-C3, F4-P1, T4-O1, C4-O1, T6-P1, FP1-FP2, P1-
P2, FP2-C4, FP2-P2, F8-T6, F4-T4, F4-O2, T4-P4, C4-P4, T6-O2,
O2-P2, O1-O2.

For the resting state condition, the subject sat in a dimly-lit
recording room (320 lux) and fixated on a crosshair for ten minutes.
Resting state EEG was recorded under these conditions for a duration
of 10 minutes.

EEG was recorded throughout the game period. The subject
verbally indicated the start of a critical DM epoch which eventually
ended in moving a piece. The reported critical DM epochs (n = 6)
were extracted for further analysis (mean duration 14 ± 4 seconds).

Simultaneous to the EEG recording, the subject was attached
to a digital sampling unit for autonomic system polygraphy. This
recorded real-time galvanic skin conductance (GSC) and heart rate
variability (HRV) using the Vilistus DSU, UK [14] (Fig. 1).

All EEG signals were imported in EEGLAB version 13.0.0 run-
ning under MATLAB R2013a. Initial signal preprocessing included
rejection of visually detectable artifacts and application of low- (1
Hz) and high-pass (48 Hz) filters. Subsequently, an Infomax-based
independent component analysis (ICA) decomposition algorithm
(runica.m in EEGLAB) was used to find possible artifacts. Four of 22
components were identified as artifactual (three eye movement and
one muscle artifact component). After removal of these artifactual
components, the ICA algorithm was used once again to obtain the
final 22 artifact-free components. The obtained EEG signals were
further examined with two different analysis platforms, EEGLAB
and NeuroGuide (v.2.3.8, Applied Neuroscience, USA).

Fig. 1. Data acquisition setup. Subject engaged in chess against a computer.
The subject reported six episodes of critical decision making during which
a real-time EEG recording was marked and subsequently grand averaged
in brain mapping. The galvanic skin conductance (GSC) and heart rate
variability (HRV) were simultaneously monitored during the procedure with
special markings indicating decision making episodes.

2.4. Topographic mapping of EEG signals

The resting state EEG, corresponding to the six critical DM epochs,
was segmented into six artifact free epochs for further comparison.
NeuroGuide software was used to analyze and plot topographic maps
and power spectra of the EEG activity during both the resting state
and critical DM epochs. The absolute and relative power of the
signals in theta, alpha, and beta bands were calculated and compared
between the resting state and critical DM epochs. Moreover, coher-
ence and power ratio in the same frequency bands were computed
and compared between the two states. The Wilcoxon signed-rank
test was used to compare the difference between relative and absolute
power spectra, power ratio, and coherence between the control and
test states. Statistical significance was assumed for p values less than
0.05.

2.5. EEG source connectivity analysis

The DIPFIT2 plug-in of EEGLAB was used to source localize the
EEG signals. The size of the head model was modified to match
the head of the eight year-old subject based on the insights from
BenAbdelkader et al. [15]. In short, the DIPFIT2 plug-in uses ICA
components to estimate sources of EEG activity in the brain. For the
22 components existing in the signals, 22 sources were calculated.
The Source Information Flow Toolbox (SIFT) [16, 17] was used
to estimate the information flow between sources. In addition, the
Directed Transfer Function (dDTF) [18] was used as a measure of
connectivity between the 22 components. The number obtained was
averaged for all time-points and all frequencies between four and
46 Hz (with two Hz intervals) in both resting state and critical DM
epochs to obtain a 22×22‘overall connectivity matrix’. The overall
connectivity matrix of the decision making epochs was subtracted
from the overall connectivity matrix of the resting state to obtain a
connectivity matrix that revealed any differences in information flow
between the two states. Consequently, major sink and source nodes
were identified.
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Fig. 2. Spiderweb chart plot of absolute power values for the theta frequency band upon decision making (orange) and resting state (blue) QEEG data. The
analysis revealed higher theta power upon decision making task in F8-T3, F4-C3, T4-P3, C4-P3 and T6-O1 dipoles compared to resting state. Values are
presented in µV2. #p < 0.05, ##p < 0.01 and ###p < 0.001. FP: frontopolar, C: central, F: frontal, P: parietal, T: temporal and O: occipital.

3. Results

The grand average QEEG amplitude data for DM epochs versus
resting state showed significantly higher absolute power in the range
of theta and alpha frequency bands in the right frontocentral and tem-
poroparietal brain regions upon task-positive brain cortical activity
versus resting state. Furthermore, with the exception of the F4-C3
dipole, beta amplitude was less in DM states compared to the resting
state.

Fig.2-Fig.4 demonstrates the comparative absolute power values
for theta, alpha, and beta spectral bands. As illustrated in Fig. 2,
the theta amplitude was found to significantly dominate the DM
epoch grand average versus resting state QEEG for dipoles F8–T3
[t(5) = 2.1, 95%CI = (−1.56)–(−0.03), p = 0.03], F4–C3 [t(5) =
2.85, 95%CI = (−2.42)–(−0.41), p = 0.006], T4–P3 [t(5) = 2.02,
95%CI =(−2.26)–(−0.03), p = 0.04], C4–P3 [t(5) = 4.48, 95%CI

(0.95)–(2.4), p < 0.001], and T6-O1 [t(5) = 2.76, 95%CI (−1.41)–
(−0.005), p = 0.01].

Fig. 3 illustrates the difference in absolute power for the alpha
frequency band in DM grand average epochs versus resting state for
various dipole locations. Alpha amplitude was found to significantly
dominate the DM epoch grand average versus resting state QEEG in
F4–C3 [t(5) = 2.93, 95%CI = (−2.36)–(−0.71), p = 0.009]. How-
ever, F8–T3 showed a dominant alpha for the resting state compared
to task-positive epochs [t(5) = 2.22, 95%CI = (−1.57)–(−0.08), p =
0.03].

As shown in Fig. 4, beta power was diminished in anterior brain
regions for task-positive states compared with resting QEEG. In
other words, unlike a higher amplitude beta for many tests of the
resting state, alpha and theta amplitude assumed control of right
hemisphere dipoles in the task-positive state. Based on comparative
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Fig. 3. Spiderweb chart plot of absolute power values for the alpha frequency band upon decision making (orange) and during resting state (blue) QEEG data.
Analysis revealed higher alpha power during decision making task at F4–C3 dipoles compared with the resting state, ##p < 0.01. The F8–T3 dipole, however,
showed the alpha power to dominate the resting state when compared to task-positive epochs, *p < 0.05. Values are presented as µV2. FP: frontopolar, C:
central, F: frontal, P: parietal, T: temporal and O: occipital.

analyses, beta power was found to be predominantly higher in the
resting state than during DM epochs in F8–T3 [t(5) = 2.72, 95%CI
= (0.034)–(2.37), p = 0.008], F8–F4 [t(5) = 2.93, 95%CI = (−2.66)–
(−0.47), p = 0.006], F4–C4 [t(5) = 3.11, 95%CI = (0.83)–(1.3), p =
0.004], C4–P4 [t(5) = 2.22, 95%CI = (−1.46)–(−0.07), p = 0.03]
and FP2–F3 [t(5) = 2.16, 95%CI = (−1.54)–(0.04), p = 0.04].

A fast Fourier transform (FFT) relative power analysis revealed
increased alpha band power in the right centroparietal region during
DM versus resting states. Additionally, relative beta power was
diminished in the FP2 region during DM epochs. Such a decrease
was evident at FP1 across high beta band frequency.

In terms of the FFT power ratio, delta/theta and delta/alpha ratios
were increased in FP1 during DM epochs. Moreover, centroparietal
regions showed a rise in the alpha/beta and alpha/high beta power

ratio.

Fig. 5 demonstrates the spatial distribution and connectivity
brain maps for resting states (section (A)) versus the grand average
for the six DM blocks (section (B)). They suggested lower than ex-
pected beta power in the anterior brain regions when compared with
occipital and centroparietal areas. This indicates that perhaps the DM
process in the subject was more of an automatic and less cognitive
in nature and regulated by subcortical (corticostrial) networks rather
than cortico-cortical pathways. Interestingly, beta coherence in ante-
rior brain regions diminished during DM epochs (grand average for
six blocks, section (B), lower panel) when compared with the resting
state (Section (A), lower panel) (Fig. 5).

With regard to the autonomic response data upon DM blocks,
Fig. 6 showed increased HRV and the inter-beat group changes but
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Fig. 4. Spiderweb chart plot of absolute power values for the beta frequency band upon decision making (orange) and during resting state (blue) QEEG data.
Analysis revealed higher beta power during the resting state when compared with DM epochs at F8–T3, F8–F4, F4–C4, C4–P4, and FP2–F3. *p < 0.05,
**p < 0.01, ##p < 0.01. Values are presented in µV2. FP: frontopolar, C: central, F: frontal, P: parietal, T: temporal and O: occipital.

not GSR in DM blocks as highlighted (yellow). This suggests an
autonomic component is involved when the subject is engaged (even
subcortically) in a DM task (Fig. 6).

Fig. 7 illustrates an EEG source connectivity analysis. As out-
lined in the Methods section, an Infomax-based ICA decomposition
algorithm using EEGLAB in MATLAB yielded 22 artifact-free com-
ponents. Based on this analysis, the sources of information flow
during a DM block were localized at components three, four, 13, 14,
15 and 16 which were anatomically linked to the left ventromedial
prefrontal cortex (vmPFC) and right occipital and right medial tem-
poral cortices. Alternatively, information flow sinks were localized
at components 9, 11, 19 and 22, which were linked to the left or-
bitofrontal cortex (OFC), left PPC and right intraparietal sulcus (IPS).
It was demonstrated to be the case that information flow during DM

blocks was more from posterior towards anterior brain regions.

4. Discussion

The case study reported here was an attempt to investigate the plau-
sible cortical networks potentially involved in DM tasks while a
well-trained eight year old boy was engaged in chess play against
a computer. Results from QEEG analysis indicated a lower power
spectral density for higher frequency band power in the right hemi-
sphere during DM epochs. Further analyses suggested that the in-
formation flow during DM blocks in this particular case were more
from posterior towards anterior brain regions.

The inferior frontal gyrus has also been proposed to be centrally
involved in DM processes [19]. In the present investigation however,
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Fig. 5. QEEG topographical spectral brain maps. Analysis demonstrated absolute power values across spectra during resting state (section (A), upper panel)
and decision making QEEG data (panel (B), upper panel). Resting state QEEG centroparietal activity is compatible with default mode network activity.
Grand average for the six decision making blocks (section (B)) suggest lower than expected beta power in the anterior brain region rather than in the occipital
and centroparietal areas. The lower panels in sections (A) and (B) give resting state and decision making beta coherence maps indicating a frontal beta
hypocoherence during task-positive rather than resting states.

predominant theta frequency during DM epochs was observed in
the right inferior frontal dipole. The hypothetical explanation for
this observation may depend upon the role of dorsolateral prefrontal
cortex and inferior frontal gyrus in the process of DM when cognitive
control plays a central role [20]. This was found to be less the
case when the subject was engaged in critical DM processes. The
neural correlates of decision making are known to involve at least the
anterior cingulate cortex, middle frontal gyrus, and inferior frontal
gyrus/insula, with recent insights suggesting that decisions may
emerge from distributed processes [19, 21].

Some earlier reports have indicated a role for left parietal theta
power as a correlate of memory retrieval and DM [21, 22]. This study
was in agreement with such results as a major sink, of information

flow identified by QEEG analysis, was found in the left posterior
parietal cortex (PPC). Indeed, unraveling the neural mechanism of
this result may help explain key electrophysiological determinants of
DM. As outlined in the Results section, electrophysiological differ-
ences associated with decision-making epochs mainly corresponded
to the distribution and power of the theta frequency band in fronto-
central and posterior parietal cortices. Based on these QEEG findings
and source connectivity analysis, it is proposed that a neural model
of a more automatic and less cognitive nature regulates the process
of DM in the elite chess player tested.

Studies have considered chess as a suitable task paradigm for
evaluation of the brain activity of a players under a combination of
ambiguous circumstances and time pressure. For instance, a number
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Fig. 5. (Continued.)

of neuroimaging investigations using functional magnetic resonance
imaging (fMRI) aimed to localize the neural activity associated with
perceptual DM. According to such evidence, cortical and subcortical
brain regions and structures including the frontal and parietal cor-
tices, thalamus, and striatum were found to be largely involved in
modulating the accuracy and uncertainty of decisions [23–26]. In
other well-designed studies, the memory recall of expert chess play-
ers was compared with that of beginners or less skilled players with
whole-brain analysis conducted particularly on regions of interest
such as the anterior cingulate cortex (ACC), bilateral intraparietal
sulci (IPS), bilateral ventromedial and dorsolateral prefrontal cortices
(vmPFC and dlPFC) and prefrontal cortices (PFC). Results from
such studies of chess player brains corroborated that components of
the frontoparietal network (FPN) are not only linked to conscious-
ness and attention but also working memory [5, 7, 23]. Despite that,
in this case study, the FPN was shown to be less involved once a

well-trained chess player was making critical decisions. Instead,
centroparietal areas were found to show a higher amplitude of the
beta frequency band in QEEG and the sinks for information flow
(estimated through ICA) turned out to be the left PPC and right IPS.

Recording tools such as EEG are not only less costly and more
convenient to administer, but also capable of providing proper tem-
poral resolution, hence they may be considered appropriate for ad-
dressing the temporal sequencing of DM signals [27]. For instance, a
computational model-based approach to EEG data acquired during a
simple binary choice task have been shown to yield dependable data
on the temporal sequence of information flow in the brain [28, 29].

In studies which examined pattern recognition of four simple
conditions in chess, evoked coherences of EEG signals were found to
be sensitive to sensory as well as mental activity (theta and beta co-
herence, respectively). Meanwhile, beta coherence was to a marked
extent dependent on the type of task [30].
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Fig. 6. Autonomic response during the decision making task. Panels (A)–(C)
give heart rate variability (HRV), pNN50 (number of pairs of successive NN
intervals that differ by more than 50 ms), and GSR (in µSiemens). Yellow
color indicates the decision making (DM) blocks from which EEG data were
extracted and analyzed. Despite no significant difference in GSR between
DM and non-DM blocks, there was an apparent increase in HRV and PNN50
in the DM blocks. This suggests involvement of an autonomic component
when the subject was engaged in the DM task.

In the case of perceptual DM, analysis is more error-prone, espe-
cially near the threshold. Despite the internal noise proposed to exist
in neural systems, which seems to be responsible for such errors, it
appears that a mixture of bottom-up and top-down sources drive this
potential complexity [31]. Such complexity when interpreting data
should be considered if EEG is to be used as the method of choice
for neurocognitive studies.

5. Conclusion
The present QEEG findings suggest a lower cognitive load during a
DM task for the particular subject, based on the dominance of right
and posterior alpha/theta versus beta frequency bands. Consequently,
FPN was shown to be less involved once the subject was involved
in a critical DM. These data may suggest that perhaps an immature
system responds preferentially to outcomes only so as to initiate a
fast automatic alertness response after becoming an expert chess
player.

Though this research opens up new avenues for the investigation
of the neural system underlying normal DM, future studies should
demonstrate the level of involvement of FPN and subcortical nu-
clei when elite versus novice chess players engage in critical DM
tasks. The combined use of advanced neurotechnological tools such
as fMRI, functional near infra-red spectroscopy (fNIRS) and mag-

netoencephalography (MEG) offer novel opportunities for greater
in-depth investigation of such issues.
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