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Abstract

Understanding and analyzing the dynamic interactions among millions of spatially distributed and functionally connected regions
in the human brain constituting a massively parallel communication system is one of the major challenges in computational
neuroscience. Many studies in the recent past have employed graph theory to efficiently model, quantitatively analyze, and
understand the brain’s electrical activity. Since, the human brain is believed to broadcast information with reduced material and
metabolic costs, identifying various brain regions in the shortest pathways of information dissemination becomes essential to
understand the intricacies of brain function. This paper proposes a graph theoretic approach using the concept of shortest com-
munication paths between various brain regions (electrode sites) to identify the significant communication pathways of informa-
tion exchange between various nodes in the functional brain networks constructed from multi-channel electroencephalograph
data. A special weighted network called the Shortest Path Network is constructed from a functional brain network where the
edge weight is computed as the sum of frequency of occurrence of that edge in all possible shortest paths between every pair
of electrodes. The weighted Shortest Path Networks thus constructed portray information on the number of times the edges are
used in information propagation during different cognitive states. This network is further analyzed by computing the influential
communication paths to characterize the information dissemination among brain regions during different cognitive load condi-
tions. The experimental results presented demonstrate the efficacy of this novel graph theoretic approach in identifying, quanti-
fying, and comparing the significant shortest pathways of information exchange during mild and heavy cognitive load conditions.
Analysis also suggests that future research should consider the biological inferences of the ability of the human brain to use
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reduced material and metabolic cost during the instantaneous transmission of information.

Electroencephalography; functional brain networks; cognition; graph theory; shortest paths; brain’s electrical activity

1. Introduction

It has been one of the major themes of research in the field of com-
putational neuroscience in the recent past to understand the complex
functioning of the human brain during different cognitive load states.
Cognition is a mental process of transforming sensed information
into action. Besides an active research in unveiling the abnormality
of brain functioning in the literature, understanding of normal brain
functioning has gained significant attention in addressing various
mental health issues [1-6]. Characterization of the neuronal interac-
tion patterns of the brain during different activities is a challenging
problem and many studies have used graph theory as a tool to model
and analyze the organizational principles of the brain to thereby un-
derstand the complexity of cognitive function. Graph, a renowned
data structure, models the relationships/interactions among entities
as networks to facilitate better understanding of the functioning of
complex systems [7—11].
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There has been an increasing interest in human neuroscientific re-
search not only due to advances both in various non-invasive data ac-
quisition techniques such as neuroimaging (e.g., magnetic resonance
imaging (MRI), functional magnetic resonance imaging (fMRI)) and
neurophysiological recording (e.g., electroencephalography (EEG),
magnetoenphalography (MEG)) that help to acquire the electrical
activity of the human brain but also due to technological develop-
ments in methods of data analysis. Despite the advent of advanced
neuroimaging technologies, for several decades the wide use of EEG
in many areas of clinical work and research to investigate the brain’s
behavior has been promising due to its non-invasive nature, superior
temporal resolution, and low hardware cost etc [12]. The electrical
activity of the brain recorded using multi-channel EEG has enabled
acquisition of dynamic and non-trivial information related to the
patterns of interaction of various brain regions. Analysis of such
massive spatiotemporal databases requires the use of extensive and
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efficient computational knowledge acquired from many disciplines,
such as graph theory, inferential statistics, signal processing, and
complex network theory, which help in the understanding of human
brain behavior during various mental tasks.

Recent studies in neuroscience have revealed the notion of short-
est paths for the transfer of information within the brain. The human
brain exchanges information with reduced material and metabolic
costs [13]. The fact that brain networks use the shortest paths to
communicate information during different brain activities has been
analyzed by investigators to understand functional connectivity with
regard to structural connectivity [14]. Some of the network analysis
measures used in Functional Brain Network (FBN) analysis such
as average path length, diameter, and global efficiency are based on
the concept of shortest paths, thus demonstrating the fact that the
most effective information dissemination takes place through shorter
paths. A short average path length and high clustering coefficient are
the characteristics of small-world networks exhibited by the brain
networks that allow segregated and cost-effective information pro-
cessing with regard to wiring and metabolic cost [15]. Hence, analyz-
ing the shortest information communication pathways between brain
regions provides a better understanding of brain function during
various cognitive activities in normal brain and when networks are
alterated by brain diseases. Many investigators have used the concept
of shortest path to study the topological properties of brain networks
in the recent past. The current study emphasizes the analysis of the
shortest path networks constructed for mild and heavy cognitive load
states to characterize the information communication patterns among
brain regions during these states. It uses the thresholded subnetwork
of the FBN derived from a special thresholding algorithm (proposed
by the authors) for studying the shortest paths between brain regions
used for information dissemination.

This paper proposes a shortest path based network analysis ap-
proach to characterize mild and heavy cognitive load conditions
of the human brain by computing the number of times data trans-
mission occurs through the shortest paths in the FBNs. The FBN
is constructed using a non-linear statistical metric on preprocessed
EEG data results in a fully connected weighted FBN. To retain and
analyze only those strong connections in FBN, a Branch-and-Bound
based thresholding algorithm called Weighted Subgraph Extraction
algorithm (WeSE) is used as a measure of data reduction [16]. A
special weighted network called the Shortest Path Network (SPN) is
constructed from the thresholded FBN by computing the weight of
each edge as the number of times it occurs for all possible shortest
paths of data transmission between all pairs of electrode sites. Thus,
the weights of the edges in SPN contain the essential information
about the number of times each edge lies in the shortest communica-
tion path between brain regions. The weighted SPNs constructed for
mild and heavy cognitive load states are further analyzed using graph
theoretical methods and statistical tests to characterize cognitive
activity of the brain.

2. Functional connectivity analysis of brain us-
ing network theory

Neuroscience is one of the most predominant areas of research
to study the human brain activity ranging from macro to micro
scales. The massive volumes of data generated by various neuroimag-
ing/neurophysiological techniques have posed many challenges to
the computational neuroscience research community including mod-

elling, storing, and mining of the data. To address these challenges,
many investigators have analyzed the complex and dynamic behavior
obtained from the human brain by use of advanced methods derived
from graph theory, signal processing, statistics, and information the-
ory. In particular, connectivity based methods derived from graph
theory have played a significant role in characterizing the brain’s be-
havior during different activities. Graph based analytical techniques
model brain regions and the complex relationships that exist between
them as nodes and edges, respectively. The intrinsic neuronal connec-
tivity patterns attributed to various normal and disturbed brain func-
tions are explored using neuroimaging/neurophysiological data that
is modelled as a weighted graph/network. These networks are con-
structed by different brain regions (electrode sites) as nodes/vertices,
the physical connections (synapses or axonal projections) or func-
tional association among brain regions as edges (links) between them,
and the connectivity strength (correlations between the nodes) as
weights of the edges [8].

The magnitude of temporal dependency measured among 7 brain
regions during a specific activity using linear/non-linear statistical
measures results in an n X n functional connectivity matrix that por-
trays the multivariate relationships between them. The temporal
dependencies computed between all pairs of brain regions are repre-
sented as a network referred to as a Functional Brain Network where
electrode sites and the statistical dependencies computed between
them are considered as its nodes and edge weights, respectively [17].
A range of linear/non-linear measures such as Pearson’s Correlation
Coefficient (r), Magnitude Squared Coherence (MSC), Approximate
Entropy (AE), Mutual Information (MI), and Synchronization Like-
lihood (SL) have been used by various researchers to construct FBN
from neuroimaging/neurophysiological data [18-22]. While the lin-
ear measures capture only the linear dependency between two vari-
ables, many investigators have employed non-linear measures (such
as MI, SL) to analyze underlying non-linear relationships, as such
measures take into account both linear and non-linear associations
between two variables. Here, MI is employed to construct FBNs as a
quantative measure of the relation between pairs of random variables.
The MI between two discrete random variables X and Y is computed
as

I(X;Y) =Y ) p(xy)log (Ly()y)) (1)

yeY xeX p(x)p

where p(x,y) is the joint probability distribution function of X and Y.
p(x) and p(y) are the marginal probability distribution functions of X
and Y, respectively. The MI of X and Y is zero if they are independent
and it is a symmetric measure. M/ is the same as the entropy of Y (or
X). Since the MI of X and Y lies in the range 0 to min H(X), H(Y) ,
where H(X) and H(Y) are the entropies of X and Y respectively, it
needs to be normalized before comparing the results across different
activities. In analyses reported here, a minimum of the entropies of
X and Y is used for normalization [20]. To facilitate analysis of a
fully connected weighted FBN, a process called thresholding, that
eliminates the noisy/ weak connections, is used thereby retaining
only the relatively strong connections. Various thresholding methods
such as fixed thresholding, fixed average degree, and fixed edge
density are used to alyze FBNs [23-25]. To overcome a number of
limitations in these techniques, a Branch-and-Bound based WeSE
algorithm which does not use any arbitrarily chosen threshold value
is used. The novelty of this algorithm is that, it dynamically selects
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only the strong connections from a fully connected weighted network
while preserving the connectedness of the network [16].

Graph theory based complex network analysis techniques are
extensively used to examine various topological properties of the
functional connectivity of networks. Investigating the shortest paths
between the network elements of the thresholded FBN opens a useful
perspective on the influential communication pathways. Such an
analysis provides a comprehensive understanding of the small-world
properties of brain network organization, nodes that are hubs during
a particular brain activity, community structures, and the local and
global communication abilities [26].

2.1. Role of shortest path analysis in complex networks

Many topological properties of real-world complex networks such as
biological, social, and technological networks are formalized based
upon the assumption that the information flows in a network along
the shortest (or geodesic) paths so as to optimize transportation cost.
Given a weighted undirected graph G = (V, E) with positive weight
function w : E — R, the weight w of a path p = (vo,vy,...,vy) is
computed as

n

w(p) =Y wvic1,vi) )

i=1

where w(p) is the sum of the weights of the edges of the path P. For
any two nodes s(source) and ¢ (destination), the shortest path weight
(represented as O (s,t)) is computed as

§(s.1) = min{w(p)} if there'is a path p from s to ¢ 3)
oo otherwise

The shortest path between the nodes s and 7 is defined as any path p
with weight w(p) = 6(s,¢) [27]. In other words, the shortest path
between two nodes s and ¢ is defined as an ordered set of edges
linking the nodes s and ¢ where the sum of the weights of the edges
of the path is minimal. A network may contain multiple shortest
paths between a pair of nodes. The concept of shortest paths has been
widely used in many application areas including social networks (to
identify influential persons and communities), metabolic networks
(to find the optimal pathways between compounds), transportation
networks (to identify efficient routes between source and destina-
tion) and communication networks (to efficiently manage various
resources) [28-31].

Shortest paths in FBNs have been considered the principal
routes/functional pathways through which information propagates
most of the time to various brain regions [27]. In particular, it has al-
ready been proved that the human brain exhibits small-world proper-
ties characterized by a high clustering coefficient (densely connected
local clusters) and short path length between any pair of nodes. This
property confirms both the segregated and distributed information
processing abilities of the brain [15]. The small-worldliness further
ensures that information is disseminated along the shortest paths
thereby minimizing conduction delays and the energy required to
propagate information between various brain regions. Shortest paths
in FBNs have also demonstrated their role in the prediction of the
cognitive abilities of individuals [32]. Moreover, the concept of
shortest path has been used as an underlying metric in defining a
number of popular network measures such as closeness, betweenness,

characteristic path length, local and global efficiencies, eccentricity,
and diameter [10, 33].

Various investigators have studied and characterized different
types of networks using shortest paths based on the assumption
that information dissemination over shortest paths is faster and less
noisy [8]. Shortest-path based network analysis has been used to
identify the genes that modulate longevity by construction of a
shortest path longevity network from a protein-protein interaction
dataset. Analysis of this network enabled not only the identification
of longevity-associated genes but also the genes that cause multiple
age-associated diseases such as cancer, heart disease, and neurode-
generative disorders [34]. The shortest paths between the nodes in
a network have also served as a sampling method for online social
networks. Each edge occurring in the shortest paths between many
pairs of selective nodes are ranked based on the number of times they
appear in various shortest paths. The subnetwork (sampled network)
that includes a specified percentage of the highly ranked edges is
then extracted and used for further analysis [35].

The Union of Shortest Path Trees (USPT) rooted at each node in
the network has been used as a sampling method to analyze FBNs.
The USPTs of a FBN represent the most important connections.
These are interpreted as the functional highways of brain networks.
Analyzing these shortest paths facilitates both the identification of
pathological network changes that result in certain brain diseases,
such as multiple sclerosis, and the significant differences in network
topology between patients with mental disorders and healthy con-
trols [27]. Thus, the study of shortest paths in FBNs helps to identify
frequently used communication paths and influential nodes that oc-
cur repeatedly in shortest paths and to characterize brain functions
during different activities.

2.2. Data collection and pre-processing

The EEG data used in this study was collected in the Cognitive
Neuroengineering & Computational Neuroscience Lab (CNEL) at
the University of South Australia, HREC Approval (30855), from
nine participants (P1 through P9). Participants were asked to drive a
US standard Simuride driving simulator. A 30 channel Nuamps EEG
amplifier is used to acquire the EEG data using Curry V7 software.
EEG data is collected for two distinct cognitive load conditions:
a simple driving along a curved track maintaining constant speed
(Drive) and driving with audio distraction (DriveAdo). Detailed
description about cognitive load experiments given to participants
during data collection and the data preprocessing methods used are
given in Thilaga er al. [16].

3. Characterizing cognitive load states using
shortest path based approach

The proposed Shortest Path based Network Analysis Framework
(SPNA Framework) is shown in Fig. 1 with the following four-fold
objectives.

(1) Construct Graph Database (GD) containing FBNs for the two
cognitive load conditions mentioned earlier from EEG data
pre-processed using NM1.

(i) Extract the thresholded (influential) subnetworks from the
fully connected FBNs using a dynamic Branch-and-Bound
based Weighted Subgraph Extraction (WeSE) thresholding
algorithm.
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(iii) Construct Shortest Path Networks from thresholded FBNs
using Dijikstra’s shortest path algorithm, and

(iv) Characterize the brain functioning during mild and heavy
cognitive activities using SPN.

The following subsections describe the steps involved in mod-
elling and analyzing FBNs to characterize brain function during the
various cognitive activities.

3.1. Construction of FBNs

The preprocessed EEG data (time domain-amplitude) of mild (Drive)
and heavy (DriveAdo) cognitive load states are partitioned into a
number of chunks (each of length two seconds). It is well known that
the human brain is a complex non-linear system showing emergent
properties. The EEG signal produced by the brain is non-stationary
as its statistical properties are time variant [36]. However, in time and
frequency domain analysis, an EEG signal is considered stationary
over a short time interval for efficient estimation of different average
statistical functions [37, 38]. Non-stationarity in EEG signals and
methods to overcome this through segmentation, including 2 second
segmentation, has been described well in literature [39-43]. Any
choice of EEG time segment (epoch length) for analysis is always as-
sociated with a compromise between time and frequency resolution.
It is not possible to choose a segment length which will give both
high temporal and frequency resolution [44]. Here, two second EEG
segments are used, following previously reported literature. Each
chunk of data is modelled as a FBN by considering the n electrode
sites (in this study, n = 30) as nodes and the pair-wise associations of
these sites measured using a non-linear statistical measure NMI as
weights on the edges. These NMI graphs computed for forty chunks
of EEG data are averaged into a single graph. The fully connected
weighted undirected NMI graphs (FBNs) of different cognitive load
states are stored into GD. To retain only the influential/strong connec-
tivity patterns that contribute to the study of cognitive activities, the
weak/false positive connections are eliminated from the undirected
complete FBNs. To achieve this, a dynamic Branch-and-Bound based
WeSE algorithm is used to obtain the thresholded subnetworks. The
significance of the WeSE is that it dynamically extracts the influential
connections from the fully connected FBNs without any user speci-
fied threshold value while simultaneously ensuring network connec-
tivity [16]. These weighted undirected thresholded graphs/networks
are used to study the shortest communication paths of information
exchange in the FBNs during mild and heavy cognitive load states.

3.2. Construction of Shortest Path Networks

To identify and analyze the frequently used shortest communication
paths of information transfer in the thresholded FBNs stored in GD,
all the shortest paths between all pairs of nodes are computed using
Dijikstra’s algorithm [45]. A special network called Shortest Path
Network (SPN) is constructed using Algorithm 1.

The SPN is defined as a weighted undirected network/graph
G = (V, E, w), where V and E are sets of vertices (electrode sites)
and edges (links between the electrode sites) respectively and w
represents the weights on the edges E computed as the frequencies
of occurrences of the edges in all possible shortest paths between all
pairs of nodes. Algorithm 1 computes all the shortest paths between
all pairs of nodes in the thresholded FBNs. For each edge (u, v) in
the shortest paths, it computes the number of times (frequency) it lies
in all possible shortest paths (steps 5 to 9) between all pairs of nodes.

Algorithm 1 Construction of SPN

Input: Thresholded FBNs in GD
Output: SPNs
1. frequency(u,v) < 0, Paths = {@}, SPN < {¢}, (u,v) is the edge
between the nodes u and v
2. for each FBN, FBN;, 1 <i <N, N = number of FBNs in GD
3 for each node, Node; in FBN;, 1 < j <n
Paths < Set of all possible shortest paths from Node to Nodey,
1<k<n,j#k

bl

5. for each PathP, in Paths

6. for each edge (u;,vy) in P,

7. frequency (uj, vi) < frequency (uj, vi) + 1;
8. end for

9. end for

1

0. Update SPN; with all the edges in P, with weight(uj, vi) =
weight(uj, v) + frequency(uj, vi)

11. Sfrequency(uj, vi) < 0,1 < jk<n
12.  end for

13.  Append SPN; into GD

14. end for

The frequency values computed for all the edges are then updated as
edge weights in the SPN(step 10). For an edge (u, v) in SPN, the high
edge weight indicates that this edge is used many times in the shortest
path of information transfer and hence, it is influential and dominant.
Therefore, by analyzing the SPNs of different cognitive load states, it
is possible to identify the influential functional pathways that are used
for information dissemination most of the times during a specific
brain activity.

3.3. Analysis of SPNs

Analyzing the topological characteristics of SPN using efficient com-
putational methods helps in the study of information communication
patterns in the brain. The edge weights in the SPN of a specific
brain activity contain significant information about how many times
a particular edge has been used in the shortest path of information
exchange to other brain regions. Hence, by comparing the edge
weights of SPNs of mild and heavy cognitive load states, the Domi-
nant neuronal Connections (DCs) due to specific cognitive activity
can be identified. The DCs in the SPN of mild cognitive load state
(SPNpcmita) are defined as those connections with high edge weights
when compared to heavy cognitive load state and are computed as

SPNpcmila = Edges with weight in SPNy;14 > SPN[-[MV); 4)

Similarly, the DCs of heavy cognitive load state (SPNpcHeavy)
are computed by including only those edges with high edge weights
during this state and is given as:

SPNpcHeavy = Edges with weight in SPNgeqvy > SPNyiiq- (5)

This connectivity analysis provides useful information at the
macro level based on the number of dominant connections present
in SPNs of mild and heavy cognitive load states. A two-tailed -test
is carried out by comparing the number of DCs in each brain re-
gion (electrode sites) in the SPNpcinitg and SPNpcHeavy networks
to ensure that the group means of these networks are significantly
different. To further investigate only those high weighted edges that
contribute more to the study of frequently used shortest communica-
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Fig. 1. Shortest Path based Network Analysis Framework.

tion paths among the brain regions, the highly dominant connectivity
patterns in the SPNs are extracted using a graph theoretic approach
called Minimum Connected Component (MCC) [3]. MCC is a
spanning subgraph of the original graph which extracts significant
connected components of a given weighted graph without using any
specified parameter. The MCCs of SPNs constructed for mild and
heavy cognitive load states are further analysed to uncover the brain
regions that are involved in transmitting information through the
shortest paths most of the time.

The construction of a SPN is illustrated using an undirected fully
connected weighted graph G(FBN) with seven nodes (edge weights
represent the statistical dependencies between the nodes) and its
adjacency matrix as shown in Fig. 2a and 2b.

To reduce the computational complexity involved in analyzing
the FBNs, the weak/insignificant connections are removed from G
using a WeSE thresholding algorithm. The thresholded subnetwork
of G (G') constructed using the WeSE algorithm is shown in Fig. 3a.

Fornito et al. [46] have stated that the edges with high weights
in a functional connectivity matrix are the strongest and the most

reliable connections among brain regions. Performing a shortest
path analysis using the weighted FBN is anomalous because the
shortest path between any two nodes s and ¢ is computed as the sum
of weights of the edges between them in the paths that are minimal.
As a consequence, such an analysis includes less influential edges
and avoids the most important communication routes of information
transfer (i.e., high weighted edges). To overcome this problem,
a monotonic remapping of the edge weights is performed before
computing the shortest paths. This remapping converts the largest
weights into smallest weights and vice versa. If the edge weights w;;,
1 <i,j<n,arebetween 0 and 1, either w;; <— —log w;; or w;j < 1 -
w;;j can be considered as remapping functions [14]. Since the weights
of the edges in the FBN are positive values in the range O to 1, the
edge weights are remapped by subtracting them from 1. This enables
the shortest path algorithm to choose high weighted edge at each
step. In the current study, Dijkstra’s shortest path algorithm [45] is
used to compute all possible shortest paths between all pairs of nodes
from the given FBN. Graph G’ after remapping of edge weights is
shown in Fig. 3b. All possible shortest paths computed between all
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Fig. 3. (a) Thresholded subnetwork G'; (b) G’ after remapping the edge weights.

pairs of nodes in G’ (Fig. 3b) are shown in Table 1.

Table 1. All possible shortest paths from each node to every other
node in G’ after remapping the edge weights

Nodes 1 2 3 4 5 6 7
1-2 2-1 3-2-1 4-1 5-2-1  6-7-1 7-1
1-2-3 2-3 3-4-1 432 5-2 6-2 7-2
1-4-3  2-3-4  3-7-1 4-3 5-3 6-7-3 7-3

43-5 534 6734 734
4376 56 6-5 7-5
437 57 6-7 7-6

1-7-3 2-5 3-2
1-4 2-6 3-4

1-2-5 2-7 3-5

1-7-6 3-7-6
1-7 3-7

Al possible shortest paths

From the shortest paths list, the frequency of occurrence of each
edge is calculated by counting its presence in all possible shortest
paths. This gives useful information about which edges are promi-

nent in propagating information through the shortest paths. For in-
stance, in the illustrated example, the edge (3, 4) occurs in six differ-
ent shortest paths (2-3-4, 3-4-1, 3-4, 5-3-4, 6-7-3-4 and 7-3-4) and
hence the edge weight of this edge in SPN is 6. The frequencies of
occurrence of all the edges in G’ are computed to represent the edge
weights of the SPN. The SPN of G’ (assuming that this network rep-
resents the heavy cognitive load state) constructed using Algorithm
1 and its adjacency matrix are shown in Fig. 4a and 4b respectively.

Using the SPNs of mild and heavy cognitive load states, the
DCs in each of these states are extracted using equations (4) and (5).
The extraction of DCs from the SPNs of these cognitive load states
is illustrated using the two networks shown in Fig. 5a and 5b as
SPNyjig and SPNgcq,y cognitive load networks, respectively.

To accomplish the objective of characterizing the information
communication patterns among various brain regions during mild
and heavy cognitive load conditions using a shortest path based
network analysis approach, the following heuristic is employed. If an
edge weight (representing the frequency of occurrence of that edge
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Fig. 4. (a) SPNHeavy constructed from G’; (b) Adjacency Matrix of SPNHeavy.

Fig. 5. (a) SPNMild; (b) SPNHeavy.

in all possible shortest paths between all pairs of nodes) is more, for
instance, during heavy cognitive load state than that of mild cognitive
load state, it is retained only in the SPN of the heavy cognitive load
state. In case of equal frequencies, the contribution of that edge in
disseminating information during different cognitive load states is
equal. Hence, such an edge will neither help expose the differences
nor a change in the communication patterns of information exchange
during mild and heavy cognitive load states.

The heuristic used to compare the SPN networks highlights the
most significant shortest functional pathways of information trans-
mission during a specific cognitive activity. For instance, the edge
weight of the edge (1, 2) in SPNyy;14 and SPNpayy are two and three,
respectively, as shown in Fig. 5a and 5b. So, this DC is retained
in SPNyeavy but removed from SPNyy;;4. Similarly, the edge (2, 3)
has edge weight three in both the SPNyy;;4 and SPNpcqyy networks
and hence it is removed from both these networks. This process is
repeated for all the edges present in the SPNs of mild and heavy
cognitive load states. The resulting SPNpcuyiia and SPNpcyeavy

networks are shown in Fig. 6a and 6b, respectively. The DCs in
the SPNpcumita and SPNpcHeavy networks show the influential and
frequently used connectivity patterns employed for dissemination
of information to various other brain regions during mild and heavy
cognitive load conditions respectively.

Further analyzing these edges with efficient computational tech-
niques, such as graph theory based methods and statistical tests,
would facilitate detection of the shortest communication patterns of
brain networks during different brain states.

4. Results and discussion

The SPNs constructed from the thresholded states of the FBNs of
Drive and DriveAdo for participants were analyzed using graph
theoretic concepts and the results are statistically validated using
a two-tailed statistical #-test. The results and discussion of various
analyses of SPNs are included in the following subsections.
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Fig. 7. SPNs of all the participants (a) Drive state; (b) DriveAdo State.

4.1. Analysis of connectivity patterns of SPN

The connectivity patterns (edges) between the electrode sites of SPNs
of Drive and DriveAdo states of all participants are shown in Fig. 7a
and 7b, respectively.

It is important to note that the edges in the SPNs of Drive and
DriveAdo states are computed from the thresholded FBNs of the
respective states. The thresholded FBN (obtained using the WeSE
thresholding algorithm) includes only the influential edges (edges
with high edge weights) which are determined by the topology of
the fully connected FBN and associated edge weights. Hence, the

shortest paths computed using the thresholded FBN provides only
high-probability paths, such that information is disseminated over
them to various other brain regions. These shortest paths (computed
using Dijkstra’s algorithm) are used to construct the SPNs of Drive
and DriveAdo states as shown in Fig. 7a and 7b, respectively. Since,
the SPNs of these states are dense, it is very difficult to identify the
connections employed by the shortest paths most of the time for in-
formation exchange during a particular brain activity. To understand
only the relatively strong (dominant) connectivity patterns among
the electrode sites which might characterize the Drive and DriveAdo
states, the edge weights in the SPNs of these states are compared
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Fig. 8. Dominant Connections of all the participants (a) SPNDCDrive; (b) SPNDCDriveAdo.

using the heuristic as discussed in Section 4.3. Fig. 8a and 8b illus-
trate the DCs of Drive (SPNpcpyive) and DriveAdo (SPNpcpriveado)
states, respectively, for all participants. These dominant connections
are used in information transfer many times during the respective
cognitive load state.

The DCs present in the SPNs of Drive and DriveAdo states are
analyzed using an edge density measure. From Fig. 8a and 8b, itis
interesting to note that the number of DCs (edge density) during the
DriveAdo state is relatively high when compared to the Drive state
for all participants. The high edge density during SPNpcpyiveado
indicates that many edges are utilized in information exchange using
shortest paths. Moreover, the high edge density results of the short
average path length of the network enable effective communication
among the various regions active during the DriveAdo state.

The presence of many DCs between brain regions during the
DriveAdo state further indicates that information flow to other brain
regions takes place over many shortest paths enabling higher func-
tional integration during heavy cognitive load states. To statisti-
cally validate that the number of DCs of electrode sites between the
SPNpcprive and SPNpcpriveAdo NEtworks are significantly different,
group means are computed using a post-hoc z-test (two-tailed) at o
0. 05 with Bonferroni adjustment. Results for all participants are
shown in Fig. 9.

The results of the 7-tests reveal that the group means of the num-
ber of DCs of electrode sites computed for Drive and DriveAdo states
are significantly different for all participants and that the number of
DCs of electrode sites in the SPN of DriveAdo state is relatively high.
This indicates that with an increasing cognitive load, the number of
DCs connections employed to transfer information between brain
regions also increases. Experimental results further illustrate that

the number of DCs present in the SPNpcpyriveado NEtwork is greater
when compared to the SPNpcpyive State for all participants.

Table 2. Group means of the number of DCs of electrode sites in
SPNpcprive and SPNpcpyive networks of all the participants

Participant Mean Difference of DCs 95% CI p-value
P2 —4.4667* [—7.8314, —1.1020] 0.0102

P3 —5.5333* [—8.9584, —2.1083] 0.002

P4 —3.6333* [—7.2408, —0.0259] 0.0447

P5 —4.4000%* [—7.3391, —1.4609] 0.038

P6 —7.2667* [—10.9129, —3.6205] 0.00061
P7 —6.3333* [—9.6891, —2.9776] 0.00573
P8 —7.5333%* [—10.8562, —4.2105] 0.0003145
P9 —4.9000%* [—8.2348, —1.5652] 0.01356

*Mean difference is significant at @ < 0.05 level.

To quantitatively compare differences in the number of DCs
between the electrode sites of the SPNpcpyrive and SPNpcpriveAdo
networks, the mean differences between the number of DCs of these
states are computed using post-hoc ¢-tests (two-tailed) at o 0.05
with Bonferroni adjustment and the results are presented in Table 2.
After Bonferroni adjustment, p (new a-values) less than 0.05 are
considered statistically significant. It is can be seen that p values for
all the participants are less than 0.05, hence the group means of all
participants are significantly different. Therefore, the null hypothesis
that the mean difference of the number of DCs of the electrode sites
in the SPNpcprive and SPNpcepriveado NEtworks is not significantly
different is rejected for a signficance level of 5%.

The results shown in Fig. 8a and 8b give only limited infor-
mation about the number of DCs present in the SPNs of Drive and
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Drive Vs DriveAdo

Drive Vs DriveAdo
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Fig. 9. Statistical ¢-test results of all the participants.

DriveAdo states. To further investigate and extract the highly dom-
inant connections which occurred most of the time in the shortest
paths of information exchange, the graph theoretic concept of MCC
was used. It extracted only the highly dominant connections (i.e., the
edges with higher weights) from the SPNpcpyive and SPNpcpriveado
networks. Using the MCC networks of mild and heavy cognitive load
states, the average number of connections of all the electrode sites
normalized in the range of values O to 1 (low to high), represented
using the color bar (blue: low to red: high), is plotted in the 3D head-
plot as shown in Fig. 10 to visualize and identify the electrode sites
which are many times found within the shortest paths of information
exchange between other electrode sites.

The empirical results of headplots show that only a few electrode
sites in the frontal, central, and central-parietal regions during the
Drive state used many shortest paths for exchanging information.
On the other hand, during DriveAdo, transmission of information
occurred through many of the frontal electrode sites using highly
dominant shortest path connections. This can be interpreted to mean
that the frontal region is much involved in faster information propaga-
tion to various other brain regions during the DriveAdo, which assists

in promoting various significant cognitive skills such as problem
solving, reasoning, creativity, and judgment.

5. Conclusion

The shortest path based network analysis approach is employed in
this study to identify information communication patterns in the
brain during mild and heavy cognitive load states. The uniqueness
of this study is that the shortest paths are computed using a thresh-
olded network of fully connected FBN that includes only influen-
tial connections (connections over which the amount of information
exchange is high). Using these influential connections, all possible
shortest paths between all pairs of nodes were computed and the
number of occurrences of each edge was calculated to construct a
SPN network. The SPNs of mild and heavy cognitive load states are
analyzed using a heuristic that highlights the DCs (i.e., edges occur-
ring in the shortest paths many times) of the respective state. The
connection density of the networks of different brain states informs
the spread of information to various brain regions. The empirical
analysis performed using the DCs revealed that the number of DCs
(connection density) during DriveAdo is relatively higher than that of
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Fig. 10. Average number of highly DCs in MCC networks of Drive and DriveAdo states of all the Participants.
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the Drive state. This implies that an increase in the number of DCs  significantly different between the mild and heavy cognitive load
is due to increased cognitive load. The statistical ¢-test performed  states. Moreover, the experimental analysis performed using highly
using the DCs of electrode sites ensures that the number of DCs are  dominant connections extracted using the MCC showed that many
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Fig. 10. (Continued.)

of the electrode sites in the frontal regions have a greater number  nitive load state, which is essential for cognitive activities. Overall,
of DCs. This highlights the fact that the frontal electrode sites con-  the SPN based FBN analytic technique demonstrated its efficacy in
tributed more effective information integration during a heavy cog-  detecting cognitive load changes in brain activity. The techniques
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described here have potential for the clinical diagnosis of cognitive ~ understand of the topology of SPN networks of different cognitive
impairments. Such research could be further extended to identify  load states.
connected components (community structures) for the analysis and
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