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Abstract
Advances in medical research and intelligent modeling techniques have led to developments in anaesthesia management. The
present study aims to estimate the depth of anaesthesia using cognitive signal processing and intelligent modeling techniques.
The neurophysiological signal that reflects the cognitive state of anaesthetic drugs is the electroencephalogram signal. The
information available from electroencephalogram signals during anaesthesia is extracted from the relative wave energy features
of those signals. Discrete wavelet transform is used to decompose electroencephalogram signals into four levels and the
relative wave energy is computed from approximate and detailed coefficients of the signal sub-bands. Relative wave energy is
extracted to determine the degree of importance of different electroencephalogram frequency bands associated with different
anaesthetic phases, for example, the awake, induction, maintenance, and recovery phases. The Kruskal–Wallis statistical test
is applied to relative wave energy features to check the discriminative capability of the relative wave energy features classified
as awake, light anaesthesia, moderate anaesthesia, and deep anaesthesia. A novel depth of anaesthesia index is generated
by implementing an adaptive neuro-fuzzy inference system based on a fuzzy c-means clustering algorithm which uses relative
wave energy features as inputs. Finally, the generated depth of anaesthesia index is compared with a commercially available
depth of anaesthesia monitor, the Bispectral index.
Keywords
Electroencephalogram; relative wave energy; discrete wavelet; depth of anaesthesia; neurophysiological signal; adaptive neuro-fuzzy system

Submitted: May 14, 2017; Accepted: June 22, 2017

1. Introduction

General anaesthesia is a drug-induced reversible state that leads to
loss of both consciousness and pain perception during surgical pro-
cedures. General anaesthetic drugs alter the responses of the central
nervous system (CNS). Estimation of response during general anaes-
thesia depends upon variations in neurophysiological signals. During
anaesthesia, these variations are reflected as amplitude and frequency
variation of the electroencephalogram (EEG) waveform or signal [1].
Traditionally, the frequencies of an EEG signal were divided into
five rhythms, gamma, alpha, beta, theta, and delta [2]. Analysis
of EEG signals to explore cognitive states leads to the evolution of
EEG-based anaesthesia monitors. The complexity of EEG signals
as well as their high sensitivity to various types of artefacts, has
prevented the development of anaesthetic monitoring. Most compli-
cations of anaesthesia involve patient awareness during surgery due
to inadequate doses of anaesthetic drugs, with an excessive depth of
anaesthesia leading to delayed recovery from anaesthesia. Therefore,
continuous monitoring of anaesthesia should avoid inadequate lev-
els of anaesthesia. Bispectral index scale (BIS), Auditory Evoked
Potential (AEP), Narcotrend, Cerebral state Monitor, and Entropy
are some of the commercially available depth of anaesthesia (DoA)

monitors. The advantage of these monitors is that during surgery
anaesthetist can tailor a dose of anaesthetic drugs administered to
a patient. Among these monitors, the BIS monitor developed by
Aspect Medical Systems in 1996 is a reliable comparison standard
for DoA monitoring due to its usefulness and effectiveness.

The BIS monitor provides an index ranging from 0 to 100. Zero
indicates a state of no brain activity and 100 indicates full wakeful-
ness. The range 0–100 can be subdivided into five states. 0–20 is the
burst suppression state, considered to be a very deep anaesthetic state.
20–40 is a deep anaesthetic state, 40–60 a moderate anaesthetic state,
60–80 a light anaesthetic state, and 80–100 is the awake state. The
moderate anaesthetic state is considered to be an appropriate level
for surgery under general anaesthesia [3].

The cognitive signal processing based on EEG signals for the
monitoring of DoA was first observed by Zhang et al. [4]. It quanti-
tatively analyzes the complexity of EEG signals using a Lempelziv
complexity (LZC) algorithm. Gifani et al. [5] used detrended fluctu-
ation analysis (DFA) to differentiate awake and anesthetized states.
This was further demonstrated by Jospin et al. [6] and Kaplan et
al. [7]. Fan et al. [8] and Ferenets et al. [9] adopted nonlinear meth-
ods to quantify EEG variations during anaesthesia. To overcome the
difficulties of DFA in discriminating between wakefulness and deep
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Fig. 1. Plot of one segment of EEG signal each corresponding to Awake, Induction, Maintenance, and Recovery phases of anaesthesia. Each segment
represents eight seconds of EEG data or 1024 data points.

anaesthesia, Nguyen-Ky et al. [10] developed an improved detrended
moving-average method, while Palendeng et al. [11] used the phase
and amplitude of EEG signals as measures of DoA.

Earlier frequency analysis of EEG signals employed Fourier
transform (FT) techniques. The drawback of FT is that the time
component is lost in the frequency domain [12]. To overcome this
difficulty, wavelet transform (WT) is used in the analysis of biomedi-
cal signals. Nguyen-Ky et al. [13] employed WT and an eigenvector
to predict the unknown characteristics of anaesthetic related EEG
signals. Zoughi et al. [3] found that a wavelet feature, the wavelet
coefficient energy entropy (WCEE) varies with anaesthetic depth.
The spectral edge frequency (SEF) feature extracted from EEG sig-
nals was previously used in sleep stage classification [14]. Otto et
al. [15] extracted SEF from sheep EEG signals to measure DoA.

Most medical research applications employ intelligent tech-
niques for estimation and classification of different physiological
signals [16–18]. The intelligent modeling of DoA monitoring in-
corporates features extracted from the EEG as input to an artificial
neural network (ANN), fuzzy inference systems, and hybrid systems.
Classification of DoA using ANN and EEG extracted permutation
entropy was done by Shalbaf et al. [19]. The computation of permu-
tation entropy (PE) is efficient in EEG analysis, but fails to work for
deep anaesthetic states[20]. Esmaeili et al. [21] developed a fuzzy
rule-based system that integrated EEG features for estimation of
DoA.

2. Methodology
2.1. Data acquisition

The data used for the present analysis were obtained from 25 female
subjects in the age range 30–78 years who had undergone breast
cancer surgery under general anaesthesia at Regional Cancer Centre,
Trivandrum, Kerala, India. A written informed consent was obtained
from all participating subjects and the study protocol was approved
by the institutional medical ethical committee.

Each subject was pre-medicated with Alprazolam (0.25 to 0.5
mg), Pantoprazole (40 mg), and Domperidone (10 mg) at 10 PM

the night before surgery and at 6 AM on the day of surgery. An
intravenous line was started just before surgery and Glycopyrolate
(0.2 mg), Midazolam (1 mg), and Fentanyl 1 µg/kg were given just
prior to the start of surgery. Additionally, analgesic drugs like Parac-
etamol (1 g), Diclofenac sodium (75 mg), an intravenous anaesthetic
drug propofol (2 mg/kg), and a muscle relaxant drug Vecuronium
Bromide (0.1 mg/kg) were given during the surgery. TPatients were
ventilated with oxygen (O 2)-Sevoflurane and nitrous oxide (N 2 O)
to maintain anaesthesia for the duration of the surgery. Additional
doses of Fentanyl, up to 0.5 µg/kg, were given if blood pressure (BP)
or heart rate (HR) increased more than 20 percent above base line.
If the BP or HR was not controlled by Fentanyl then Nitroglycerin
(NTG) was administered to control BP and Metoprolol was used to
control HR.

A BIS electrode was used to collect the EEG signal and BIS
value from each subject. The EEG signal was sampled at 128 sam-
ples per sec. The collected EEG database was classified as awake,
induction, maintenance, and recovery signal depending upon the
time at which data was collected [22].

(i) Awake signal: EEG signals collected 5–10 minutes before
administering intravenous anaesthetic agents. Corresponding
BIS values ranged between 80–100.

(ii) Induction signal: EEG signals collected from administration
time of intravenous anaesthetic agents to absence of response
to verbal stimuli (checked by anesthetist). Corresponding BIS
values ranged between 20–40.

(iii) Maintenance signal: EEG signals collected after insertion of
endotracheal tube and administration of inhalation agent until
the end of surgery. Corresponding BIS value ranged between
40–60.

(iv) Recovery signal: EEG signals collected after the cut off of
inhalation agent and administration of reversal agent (Neostig-
mine and Glycopyrolate) until return of consciousness. Cor-
responding BIS values ranged between 60–80.

EEG signals corresponding to BIS values of 0–20 were not
analyzed due to the possibility of hemodynamic instability of the
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Fig. 2. Histogram of EEG signals corresponding to different phases of subject anaesthesia. Amplitude range of awake EEG signal was −15 to +15 µV,
induction signal −50 to +50 µV, maintenance signals −40 to +40 µV, and recovery signal −25 to +25 µV.

Fig. 3. EEG signal frequency spectrum corresponding to different phases of anaesthesia. Frequency range of awake EEG signal 0–60 Hz, induction signal 0–5
Hz, maintenance signals 0–20 Hz, and recovery signal 0–30 Hz.

patient during surgery and hence were beyond the scope of this study.

2.2. Preprocessing and segmentation

A 50 Hz notch filter was used to remove power line interference
from the recorded EEG signals [3]. EEG signals were segmented
using a uniform segmentation method that divides EEG signals into
non-overlapping rectangular windows of eight second duration [23].
Fig. 1 shows one segment of EEG signal corresponding to each dif-
ferent phase of anaesthesia. Amplitude of the EEG signal increases
and frequency decreases with increase in DoA. Induction EEG sig-

nals are deep, maintenance EEG signals are moderate, and recovery
EEG signals are light anaesthetic EEG signals. One segment of EEG
signal was eight seconds of data or 1024 data samples.

The time and frequency distribution of the awake, induction,
maintenance, and recovery EEG signals were analyzed using his-
tograms and frequency distribution plots. Plots in Fig. 2 shows the
histogram and Fig. 3 shows the frequency spectrum corresponding
to an eight second EEG recording of a subject in each phase. The
amplitude of the EEG signal increases and the frequency decreases
when the DoA increases [24]. Amplitude variations were more vis-
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ible in the histogram. For awake EEG signals the amplitude range
was −15 to +15 µV, induction signal (very deep anaesthetic) range
was −50 to +50 µV, maintenance signal (deep anaesthetic) range
was −40 to +40 µV, and for recovery signal (light anaesthetic) the
amplitude ranged from−25 to +25 µV. It is clear from the frequency
spectrum shown in Fig. 3 that frequency reduced when anaesthesia
depth increased. The frequency spectrum EEG signals of the deep
anaesthesia state (induction phase) contained lower frequency com-
ponents, whereas, the awake EEG signal contained higher frequency
components [22].

2.3. Feature extraction

The major challenges for EEG based analysis of DoA are the inherent
non-stationarities and complexity of the data. If surgery has a three
hour duration, then the EEG data for a single subject consists of more
than 13 lakh of data points (10800 second data duration). Analyzing
all these data points is time consuming. Therefore, the EEG signal
dimensionality was reduced by extracting the RWE. The extracted
RWE feature discriminated the different anaesthetic states, awake,
light anaesthesia, moderate anaesthesia, and deep anaesthesia.

2.3.1. Relative Wavelet Energy

The time-frequency representation of a signal can be done effectively
obtained by wavelet transform (WT). At low frequencies, a WT
gives a lower temporal resolution and high frequency resolution,
whereas, at high frequencies it gives a high temporal resolution and
lower frequency resolution [22]. Most biomedical signals are non-
stationary, thus a WT is best suited for locating transient events.
The present study employed wavelet based feature extraction and
multiresolution analysis to analyze the various transient events in the
EEG of awake and anaesthetized subjects. Multiresolution analysis
decomposes EEG signals into a number of frequency bands. Discrete
wavelet transform (DWT) with Mallat’s fast algorithm is commonly
used for EEG signal analysis [25].

The RWE feature extraction algorithm is described by [22, 26]:
(1) Decomposition of EEG signals into detail and approximation

coefficients using DWT is given by

cA j(n) = ∑g(l−2n)cA j−1(l) (1)

cD j(n) = ∑h(l−2n)cD j−1(l) (2)

Here cD j(n) and cA j(n) give the detail and approximation co-
efficients of an EEG signal and g and h provide low and high pass
filters for the EEG signals.

(2) Calculation of wavelet coefficient total energy

Em,total =
4

∑
j=1

m

∑
k=1
|cD j(k)|2 = ∑

j
Em, j (3)

where m is the window length of the EEG segment, j is the level of
decomposition and Em, j is the energy of the kth sample is given by

Em, j =
4

∑
j=1
|cD j(k)|2 (4)

(3) Relative wavelet energy is obtained from

ρm, j =
Em, j

Em,total
(5)

The goals of wavelet based RWE feature extraction are (i) de-
compose EEG signals into their constituent frequency bands, (ii)
provide the concept of RWE associated with EEG frequency bands,
and (iii) determine the degree of importance of different frequency
bands during the different anaesthetic phases.

2.4. Statistical analysis

The Kruskal–Wallis statistical test was employed to determine
whether the extracted RWE features discriminate the different anaes-
thetic levels as awake, light anaesthesia, moderate anaesthesia, and
deep anaesthesia.

2.4.1. Kruskal–Wallis test

The Kruskal–Wallis test or one-way ANOVA on ranks is a non-
parametric method for testing whether samples originate from the
same distribution [27, 28]. It is employed to determine the statisti-
cally significant differences between two or more groups of an inde-
pendent variable and a continuous or ordinaly dependent variable.
The test determines whether the groups are statistically different or
not.

2.5. Adaptive neuro-fuzzy inference system (ANFIS)

An adaptive neuro-fuzzy inference system artificial neural network
based on the Takagi–Sugeno fuzzy inference system was employed.
ANFIS integrates neural network and fuzzy logic principles and has
the potential to capture the benefits of both paradigms in a single
system. Its inference system consists of a set of fuzzy IF-THEN
rules and has the ability to approximate nonlinear functions [29].
In ANFIS, membership function parameters are extracted from the
data set that describes system behavior. The ANFIS learns features
from the data set and adjusts system parameters according to an error
criterion [30]. In the present study ANFIS utilizes a fuzzy c-means
(FCM) clustering method to learn and adjust its parameters. In this
clustering algorithm, introduced by Bezdek et al. [31], each data
point belongs to a cluster to a degree specified by the membership
grade.

3. Results and discussions
3.1. Feature extraction

RWE features measure DoA based on relative energy across its
frequency bands and varyies with the transformation in depth of
anaesthesia. EEG signals corresponding to the BIS value range of
0–20 were not obtained during surgery for reasons of patient safety
and hence were not analyzed.

3.1.1. Relative Wave Energy (RWE)

Awake and anaesthetised EEG signals were decomposed into the
frequency ranges delta, theta, alpha, beta, and gamma using multires-
olution analysis by WT. RWE was then extracted from the required
frequency ranges for each subject. DWT with a Doubechies-4 mother
wavelet was used for the decomposition and the decomposition level
was four. The decomposition of the EEG signal into its frequency
bands was obtained by successive convolution with high-pass and
low-pass filtering of the signal. The low frequency components were
obtained from the approximation coefficients and high frequency
components from the detail coefficients. Fig. 4 shows the four-level
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decomposition of EEG signals with a sampling frequency of 128
Hz. CA1, CA2, CA3, and CA4 are the approximation coefficients
and CD1, CD2, CD3, and CD4 are the detail coefficients obtained
after successive decomposition. Frequency bands corresponding to
four-level decomposition of EEG signals are shown in Table 1. The
sub-band frequencies obtained from the DWT coefficients of the
awake EEG signal of a subject and its four detail (CD1–CD4) and
approximate (CA4) frequency band signals are shown in Fig. 5. The
relative wave energies RWE1, RWE2, RWE3, RWE4, and RWE5
are computed using energies of the CD1 to CD4 and CA4 frequency
band signals. Similarly, the RWE1, RWE2, RWE3, RWE4, and
RWE5 features were computed from induction, maintenance, and
recovery EEG signals and their DWT decomposition. RWE feature
extracted from a single segment of EEG signal from four anaesthetic
phases of a subject are shown in Table 2.

Fig. 4. Wavelet based decomposition of EEG signals into different frequency
bands. CA1, CA2, CA3, and CA4 represent the approximation coefficients
and CD1, CD2, CD3, and CD4 represent the detail coefficients of the wavelet
decomposition.

Table 1. Frequency Bands and Decomposition

Frequency
Range

Frequency
Bands

Decomposition
levels

Frequency
Bandwidth

Gamma 32–64 cD1 32
Beta 16–32 cD2 16

Alpha 8–16 cD3 8
Theta 4–8 cD4 4
Delta 0–4 cA4 4

Table 2. RWE variations during different anaesthetic phases

Frequency
Range (Hz)

RWE Awake Induction Maintenance Recovery

32–64 RWE1 0.4408 0.0127 0.015 0.1775
16–32 RWE2 0.1226 0.0492 0.0706 0.182
8–16 RWE3 0.1985 0.107 0.2028 0.2262
4–8 RWE4 0.0868 0.2826 0.3289 0.144
0–4 RWE5 0.0713 0.7485 0.382 0.0694

From the Table 2 it is clear that the values of RWE1 are high in
the awake phase because when a subject is awake high frequency
components will be more active due to anxiety and stress. However,
when anaesthetized, the RWE values of low frequency components
become active. Therefore, during the deep anaesthetic state (induc-

tion phase) RWE5 is high. In the maintenance phase RWE values of
theta and delta, i.e. RWE4 and RWE5, show almost similar values
and in recovery phase, RWE values of the alpha band (RWE3) are
active compared to the other bands.

The RWE distribution of a subject during six continuous seg-
ments of different anaesthetic phases are shown in Fig. 6. It can
be seen from the figure that during the awake phase RWE values
of gamma, beta, and alpha frequency bands are high, which is usu-
ally seen in the conscious state. During induction the patient loses
consciousness and the RWE values of delta and theta increase with
prominent delta activity values. There are decreased RWE values
for alpha, beta, and gamma activity. Also seen are the waxing and
waning effects of the RWE values of alpha, theta, and delta. In the
maintenance phase the inhalational agent sevoflurane induces the pre-
dominant RWE values of theta and delta activity with reduced RWE
values for alpha, beta, and gamma. During recovery, sevoflurane
is curtailed and the subject starts to regain consciousness after the
effects of the anaesthetic drugs. Thus, there is a sudden increase in
the RWE values of alpha, beta, and gamma activity, with prominent
alpha activity.

3.1.2. Statistical analysis

The discriminative ability of the features RWE1–RWE5 extracted
from all 25 subjects during the entire surgery was tested by appli-
cation of the Kruskal–Wallis statistical test to the features RWE1–
RWE5. The output groups for the discrimination are Awake, Light
Anaesthesia, Moderate Anaesthesia, and Deep Anaesthesia which is
the anaesthetic depth given for each subject by the attending anaes-
thetist. The p-values obtained from the Kruskal–Wallis tests are
given in Table 3. The highest p-values are for the feature RWE4
and RWE3 which indicates that RWE4 and RWE3 had the lowest
discriminative ability when compared to other features. On the other
hand RWE1, RWE2, and RWE5 had the highest discriminative abil-
ity. The features RWE4 and RWE3 were eliminated from further
processing because of their poor discriminative ability. Box plots of
the features RWE1–RWE5 during different anaesthetic depths are
shown in Fig. 7a–7e. From the box plots it is clear that the RWE
values of RWE1 and RWE2 are inversely proportional to the depth
of anaesthesia, as it increases the RWE values decrease. On the other
hand, RWE5 shows a direct relation to anaesthetic depth and their
values increase with increased in depth.

3.2. Adaptive neuro-fuzzy inference system

An adaptive neuro-fuzzy inference system was implemented to gener-
ate an index that continuously measured the anaesthetic depth based
on extracted RWE features. The features RWE1, RWE2, and RWE5
were given as inputs to the neuro-fuzzy system. This study utilized an
ANFIS-Fuzzy c-means clustering method to generate the DoA index.
In conventional fuzzy inference systems the membership functions
and the rules are decided by experts who have a thorough knowledge
about the inputs and outputs. In the present ANFIS-FCM model,
membership functions (MFs) and rules were realized by training a
data set of input-output pairs. However, the number of MFs were
assigned empirically [32, 33].

The architecture of the ANFIS-FCM model for the estimation
of DoA is shown in Fig. 8. The data sets for training and validation
incorporated the extracted features RWE1, RWE2, and RWE5 from
the EEG signals of 25 patients consisting of 17,935 3-D vectors.
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Fig. 5. Wavelet decomposition of EEG signals corresponding to the awake phase is shown where CA4, CD4, CD3, CD2, and CD1 represent the frequency
bands of Delta, Theta, Alpha, Beta, and Gamma respectively.

Fig. 6. Comparison of relative wavelet energy during the four phases of anaesthesia studied. Each figure shows the strength of the EEG frequency bands
corresponding to awake, induction, maintenance, and recovery signals.

13,166 3-D vectors were utilized for construction of the model by
training, and the remaining 4,373 3-D vectors were used for eval-
uating the performance of the ANFIS-FCM model that was devel-

oped. Fig. 9 shows the membership functions of the input parameters
RWE1, RWE2, and RWE5 and Table 4 shows the specification of
the ANFIS-FCM model. This model was implemented to generate
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Fig. 7. Box plot of RWE1-RWE5 computed from the decomposition coefficients of EEG signals. 1, 2, 3, and 4 in the X-axis represent the output groups awake,
light anaesthesia, moderate anaesthesia, and deep anaesthesia.

Table 3. p-value of the features RWE1–RWE5 obtained from a Kruskal–Wallis statistical test

RWE1 RWE2 RWE3 RWE4 RWE5

p-value 3.27×10−8 4.84×10−6 1.93×10−3 7.40×10−2 1.46×10−4

a dimensionless index ranging from 0 to 100 similar to a BIS index
where 0 indicates no brain activity and 100 indicates the fully awake
state. The RWE and ANFIS-FCM based DoA index of patient-12 is
shown in Fig. 10.

The Pearson correlation between the proposed DoA index and
the BIS index for the particular patient is 81.6%. The average Pearson
correlation obtained for all 25 patients is 79.7%.

4. Conclusion

The present study extracts RWE features of EEG signals recorded
during different phases of anaesthesia. The RWE feature were ex-
tracted by decomposing the EEG signals into their constituent fre-
quency components and then the relative energy of each frequency
component was computed. It was found that the RWE features of
the awake phase were high for high frequency bands and RWE val-
ues of the low frequency bands became high when subjects were
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Fig. 8. Architecture of ANFIS-FCM model. RWE1, RWE2, and RWE5
are the inputs to the ANFIS-FCM model and the DoA index is the model
outcome.

Fig. 9. Membership functions corresponding to different anaesthetic out-
comes Awake, Light anaesthesia, Moderate anaesthesia, and Deep anaesthe-
sia of the inputs RWE1, RWE2, and RWE5 extracted from the ANFIS-FCM
Model.

Table 4. Specification of ANFIS-FCM Model

Specification Description

Input Membership Function Gaussian
Output Membership Function Linear
Number of nodes 56
Number of linear parameters 24
Number of nonlinear parameters 40
Total number of parameters 64
Number of training data pairs 13166
Number of checking data pairs 4373
Number of fuzzy rules 4

anaesthetized. The discrimination ability of the extracted RWE fea-
tures as Awake, Light Anaesthesia, Moderate Anaesthesia, and Deep
Anaesthesia, were tested by applying a Kruskal–Wallis statistical test.
RWE1, RWE2, and RWE5 showed high discriminativeability and
RWE3 and RWE4 were eliminated from further processing. Finally,
an ANFIS-FCM model was implemented using RWE1, RWE2, and
RWE5 features to generate a novel and intelligent DoA index that
varied according to the depth of anaesthesia. The study shows that it
is easy to compute the DoA index and assist the anaesthetist in accu-
rate and intelligent decision making. It also helps in the management
of drug dose when used in real time and prevents patient awareness
during surgery.

Fig. 10. Comparison of proposed DoA index with BIS. The Pearson corre-
lation between the proposed DoA index and the BIS index of this particular
patient throughout the surgery was 81.6%.
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