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Abstract
Existence of allocentric and egocentric systems for human navigation, mediating spatial, and response learning, respectively,
has so far been discussed. It is controversial whether navigational strategies and their underlying learning systems and, ac-
cordingly, the activation of their associated brain areas are independent/parallel or whether they functionally/causally interact
in a competitive or in a cooperative manner to solve navigational tasks. The insights provided by neural networks involved in
reward-based navigation attributed to individual involvement or interactions of learning systems have been surveyed. This paper
characterizes the interactions of neural networks by constructing generative neural models and investigating their functional
and effective connectivity patterns. A single-subject computer-based virtual reality environment was constructed to simulate a
navigation task within a naturalistic large-scale space wherein participants were rewarded for using either a place, response,
or mixed strategy at different navigational stages. First, functional analyses were undertaken to evaluate neural activities via
mapping brain activation and making statistical inference. Effects of interest, spatial and response learning/retrieval, and their
competition and cooperation were investigated. The optimal generative model was then estimated using dynamic casual mod-
eling to quantify effective connectivities within the network. This analysis revealed how experimental conditions supported com-
petition and cooperation strategies and how they modulated the underlying network. Results suggest that when navigational
strategies cooperated, there were statistically significant, functional, and effective connectivities between hippocampus and
striatum. However, when the strategies competed, effective connections were not established among these regions. Instead,
connections between hippocampus/striatum and prefrontal cortex were strengthened. It can be inferred that a type of dynamical
reconfiguration occurs within a network responsible for navigation when strategies interact either cooperatively or competitively.
This supports adaptive causal organization of the brain when it is engaged with goal directed behavior.
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1. Introduction

Studies have shown that an interaction exists between allocentric and
egocentric navigation systems and human/animals spontaneously and
flexibly use either of them while trying to find their way in an envi-
ronment [1]. The allocentric navigation system has a world-centered
frame of references and supports a “spatial strategy”. This strat-
egy involves use of environmental landmarks to navigate within an
environment by forming relationships between different landmarks
and orientating in relation to those landmarks. Alternatively, the
egocentric system navigation system mediates a “response strategy”
by referencing spatial locations in the external world with respect
to individual body space. This strategy involves executing a series
of movements induced by specific stimuli and supports a navigation
system based on repetitive stimulus-response (S–R) associations as
part of habit [2].

Convergent evidence from electrophysiological, lesion, and
imaging studies show that navigation is mediated by a network of
brain structures. Also, it is known that different navigational strate-
gies are subserved by distinct neural networks, with the hippocampus
and caudate nucleus being their the main nodes [3]. It is believed

that the hippocampus mediates spatial learning and the caudate nu-
cleus serves as a neural substrate that forms response learning [4].
Furthermore, it has been shown that with reward-based learning, acti-
vation of mesolimbic areas is associated with receipt of reward [5, 6].
The prefrontal cortex (PFC), is a region in this area which receives
projections containing emotional and motivational inputs as well as
reward-dependent modulation from the ventral tegmental area. This
latter brain region has a role in reward evaluation of stimuli by shar-
ing strong anatomical connections with reward circuitry including
the amygdala and ventral striatum1 [7].

It is still controversial as to whether these navigational strate-
gies and their underlying learning systems (or their associated brain
regions) are independent/parallel or whether they functionally in-
teract in either a competitive or a cooperative manner to solve nav-
igational tasks. Emerging evidence support that the hippocampus
and caudate may function cooperatively during the processing at-
tributed to each structure; this has been verified by animal studies
that show learning in one system compensates the limitations of the

1A distinct region in the ventromedial prefrontal cortex, which includes the orbitofrontal cortex, a
critical structure for rewarded or goal-directed behaviors.
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other one [8, 9]. On the other hand, the idea of competing strategies
in navigation [1, 10, 11] has also been reported based on experiments
revealing that inactivation of one system enhances learning by the
remaining system. Furthermore, it has been reported that, due to
environmental circumstances, to achieve successful navigation, flexi-
ble switching must occur between different navigation strategies as
required by specific tasks [12]. Examples include: immediate and
spontaneous task switching after the appearance or disappearance of
relevant sensory cues, or when a subject learns progressively across
trials to prefer one type of cue over another.

Experimental evidence in support of interaction among naviga-
tional strategies came largely from behavioral and lesion navigation
studies. Common neurobehavioural paradigms include: the devel-
opment of selective brain lesions. These cause selective learning
or memory deficits and subsequently motivate animals to perform
prescribed tasks within designed experimental platforms. On the
human side, however, investigating spatial learning and memory can
be achieved via neuroimaging (e.g. functional magnetic resonance
imaging (fMRI)) to discover unseen human-specific neurocognitive
facts [13, 14]. fMRI can be used to non-invasively map brain function
by the blood oxygen level dependent (BOLD) effect and employed
to assess both the differential and simultaneous involvement of brain
regions and their functional interactions more readily. fMRI studies
can also help disentangle the roles of reward in reward-based learn-
ing and are readily used for the study of de novo learning without the
requirement of prior training, as is the case with animal studies [15].

Functional imaging has previously been employed to investigate
the neural basis of spatial and response learning strategies. Such
studies have considered different aspects including sex differences,
age influences, strategy preference, neural substrate engagement,
gray matter content, etc. Some general features of human navigation
include: Iaria [1] reported that for a task where both strategies could
be used, 50% of young adults spontaneously used spatial strategy
and the remainder used response strategy. Furthermore, individuals
who used spatial strategy showed significant fMRI activity and in-
creased gray matter in the hippocampus [8], while those who used a
response strategy showed significant fMRI activity in the caudate nu-
cleus indicating the response strategy was positively correlated with
caudate nucleus gray matter. Another study tracked the correlation
of navigational strategies with gray matter as a result of cognitive
decline due to normal aging [2]. Further, assessment of switching
between navigational strategies by subjects occurred when they nav-
igated within a virtual plus maze task and demonstrated a specific
age-related deficit [16]. Lawton [17] has reported sex differences
when subjects adopting navigational strategies. It was found that,
men used the orientation strategy, whereas women preferred to rely
on the route strategy. The male preference for an orientation strategy
advantaged them in pointing accuracy and they achieved better re-
sults in a task that involved spatial perception [17, 18]. Furthermore,
by dividing navigators into four groups of normal volunteers includ-
ing good navigators (males and females) and poor navigators (males
and females), Ohnishi [19] has concluded that poor navigators were
not good at allocentric orientation particularly the use of cardinal
direction, rather, they relied on the egocentric route strategy. While,
good navigators were good at the orientation strategy and obtained
good scores on a maze task.

There is evidence that hippocampal and striatal systems are dif-
ferentially involved in different tasks [20]. There are also reports
on how they are differentially involved at different stages of the

same task; for example, hippocampal activation initially dominates
but switches to the striatum with practice. There are also some re-
ports on the type of interaction. Brown [21] has discussed the exis-
tence of cooperative interactions in the form of increased functional
connectivity for overlapping mazes compared to non-overlapping
mazes. Further, navigation in a virtual maze has been found to rely
on spatial or response strategies when tested during an fMRI study
which showed decreased hippocampal activity in favor of caudate in
older adults [22]. Existing interactions when solving the navigational
detour problem were reviewed. The authors concluded there was
reciprocal interaction between the hippocampus and the PFC while
the extent of such interaction depended on the complexity of a new
route that had to be considered [23].

However, within- and between-subject characterization of the
coactivation of brain regions, where both navigational strategies have
been recruited cooperatively or competitively, has not been as stud-
ied. In this sense, less is known about the neural networks involved
in a reward based navigation attributable to both learning systems.
Also, functional relations between the neural substrates within such
a network are almost unknown. Beyond this, addressing the issue
of effective connectivities within these networks has not yet been
considered. For this report, a first-person computer-based virtual
reality environment was constructed to simulate a navigation task
within a naturalistic and large-scale space wherein participants were
rewarded for using either a place, or response, or mixed strategy
across different stages of a task. It is employed to characterize how
functional interregional interactions differ when a single strategy was
adopted by a navigator, or when strategies are employed coopera-
tively, or competitively. A hypothesis driven analysis is performed.
Dynamic causal modeling (DCM) is used to estimate the coupling
strength of casual interactions within the aforementioned network. It
is hypothesized that strategy-dependent differences in brain network
activity can be attributed to dynamic patterns of brain connectivity
including causal interactions.

2. Materials and methods
2.1. Subjects

Eight healthy volunteers (3 male mean age: 21.6 years, SD : 3.1,
range: 19–25; 5 female mean age: 22.1 years, SD : 2.3, range: 20–
25) with normal or corrected-to-normal vision and with no history of
neurological or psychiatric disorders participated in this study2. They
all studied biomedical engineering at QIAU University. Subjects
were asked to rate their own experience of computers and specifically
of computer games on a 10-point scale from very inexperienced to
very experienced. All subjects gave written informed consent prior to
the study which was approved by the local ethical committee. Since
the imaging time was relatively long, subjects were instructed not to
move during scanning and also to read the instructions very carefully
to improve the quality of scans. They all understood instructions
without difficulty and no subjects were aware of the hypotheses at
the time of testing.

2.2. Experimental procedure

The eight-arm radial arm maze, with arms extending from a central
starting location, was selected due to the variety of memory and

2Prior to this experiment, ten other subjects were recorded behaviorally and electrophysiologically
to stabilize conditions and resolve possible bugs.
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Fig. 1. (a)-(f) are sample images selected from indoor mazes of the virtual environment constructed to test navigational tasks; (a) and (b) are sample views of
extramaze landmarks. (c) shows the intramaze entry. (d) visualizes a successful trial ending in reward. (e) and (f) are views of spatial and response controls
respectively. (g) and (h) are outdoor views of the maze for spatial and response learning respectively.

learning paradigms it provides. A computer-simulated first-person
virtual reality radial maze was designed to simulate navigational
tasks in a large-scale space. 3-D virtual mazes were developed
using the MazeSuite application [24] including one maze for testing
spatial learning, one for response learning, and another for the mixed
strategy task. The experimental procedure is now described.

Prior to the main experiment, subjects spent 60 seconds navi-
gating freely within a simple virtual environment. It was comprised
of a few rooms and halls which were different from those that were
to be used for the main task. Subjects manoeuvred by pressing the
four arrow keys on a keyboard. This keyboard was a MR compatible

touch pad that was interfaced with the software platform. This phase
let subjects practice motor aspects of the task and learn to use the
keyboard. Pretraining was not included in the analysis.

Subjects were first informed that they would find themselves
at the center of a virtual maze with eight identical runways/arms
extending outwards. Hidden rewards were accessible at the end of
some arms. Reward was an amount of money to motivate subjects
to do detailed and subtle search relying on spatial memory and/or
habituation. Subjects were supposed to follow each task according
to given instructions in order to obtain all rewards. Subjects gener-
ally performed two ‘training-probe-control’ runs; one for supporting
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spatial navigation strategy and one for response strategy. There was
also a mixed strategy task with one training and two test-trial (probe)
stages. During training, subjects were instructed to learn rewarded
arms of the maze by finding and remembering the rewards hidden at
the end of each of four arms. In probe trials, subjects had to pick up
rewards by remembering signs and signals from the training stage
and following instructions. By revisiting a rewarded arm or choosing
a non-rewarded arm in probe trials, subjects would lose the acquired
reward. Control conditions were interleaved between experimental
conditions and aimed to provide contrast with experimental condi-
tions for statistical analysis. A detailed description for each run is
given below.

Session 1: A radial maze with short walls surrounded by natural
scenery (including sky, mountain, tree and . . . ) was constructed
(Fig. 1a and 1b). The landscape provides visual cues by which
participants could infer their orientation and movement path with no
need for any intramaze beacons. Subsequent to the pretraining phase,
the next phase was initiated by showing subjects within-experiment
instructions. Additionally, to an overall explanation for each subject
at the start of his/her scan, a black page with yellow writing appeared
for 9 seconds at the start of each session of scanning with instructions
for the subject. The spatial layout of landmarks including reliable
extra maze cues were learned in the training stage. At the probe
stage, the relationship between the rewarded arms and the landmarks
should have been remembered to solve the maze and find rewards.
Rewards were hidden at the end of arms 1, 4, 6 and 7 and became
visible as subjects touched the terminal wall in each arm. Subsequent
to contact, a written message appeared to inform the subject whether
they had earned a reward or not (Fig. 1d). Once the end of an arm
was reached, subjects were automatically transported to the middle of
the center platform to initiate a new trial. Each new trial started with
a random orientation of the subject’s viewpoint. The randomization
process shuffled the initial viewing perspective and destroyed any
perception related to the starting position. Hence, subjects were
compelled to employ the extra maze cues to select the rewarded arms
in this particular session. The hypothesis for this experimental task
was that subjects would use a single spatial strategy.

Once the number of trials were sufficient that a subject reached
a training criterion, acquiring 7/8 rewards in two consecutive runs
(each including eight trials), training was considered to be completed
and subjects were moved to the probe stage. The maximum number
of trials in the training stage was 32. At the probe stage, the layout
was structured in a slightly different perspective when compared with
the learning stage, e.g., the flying eagle was perched on a transmis-
sion tower or the sun had crossed over one or more arms. However,
since the spatial relationship between the salient landmarks and the
target pathways remained the same, participants were still able to
find the rewarded arm even when the perspective was altered from
that of the learning phase. Subjects were asked to pick up rewards
from those arms that had been unrewarded during the learning period
and they could keep them only if they did not chose a wrong arm or
did not reenter a previously visited arm. A once-entry 120-seconds
probe trial was administrated in which subjects were informed of
their correct selection by an audio message heard after they had tra-
versed a rewarded arm to its end. Provided all rewards were chosen
prior to the predefined time, this phase terminates.

Following the probe, the black screen with yellow text reap-
peared and informed participants about entering a control condition.
By this text, participants were informed that there was no need to

learn either the layout of the environment or the spatial relationship
between the landmarks and the target paths in the given case. Sub-
jects were not supposed to make any effort to anticipate the rewarded
arms as they were visible from the center of the maze and the par-
ticipants could simply follow four arms with mounted boards on the
ending walls. This control condition was named “spatial control”
since it shared the same features as the experiment designed to sup-
port the spatial strategy. A period of 90 seconds (the average time
that our test group needed to obtain all 4 visible rewards) was pre-set
for this control conditions.

Session 2: In this phase, subjects were led to use the response
strategy as no extra-maze cues or landmarks existed to orient naviga-
tion. According to Jacobs [25], for human navigation within virtual
reality, spatial (place) learning, which is based on distal cues, is not
induced by the presence of intramaze cues. For this reason, locating a
sign, such as a stimulus inside the maze, supported navigation based
on a response strategy. In this experiment, the ambient background,
including the sky was smoothed, walls around the radial maze were
raised to conceal the landscape, and landmarks were removed. At
each trial during the training stage, a rotating butterfly appeared in
an arm to signal that the particular arm was rewarded. Subjects
needed to follow the cue to obtain the reward (Fig. 1c). The butterfly
cued rewarded arms equally but randomly. Similar to the previous
experiment, four of the eight arms contained rewards, although the
sequence of rewarded arms was different to that of session 1 (arms 2,
4, 6 and 7). Up to sixteen trials were subsequently administrated to
train subjects in this case. Notably, as subjects had been informed
that the initial viewing was identical for every entrance, it was ex-
pected that they could use a system of counting or patterning to re-
member rewarded arms and their sequence. The hypothesis was that
rewarded S–R behavior occured as each subject gradually learned
particular body orientations in response to stimuli.

Similarly to the first experiment, reaching the training criterion
(probability of getting 7 correct choices out of 8, or an accuracy
of 87.5%) in two consecutive (4-trial) runs led subjects to the next
probe stage. Otherwise, training was terminated after a maximum of
16 trials due to time limitation. By completing the learning stage of
this session, subjects completed a test stage. To solve the maze in
this cueless test, subjects needed to habitually remember the learned
pattern in the absence of the moving butterfly. Subjects were given a
120-second period to obtain rewards from those arms that were not
rewarded during the training phase (1–3–5–8). They were informed
about the presence of rewards via an audio message once to the end
of a goal arm. This was provided that a subject neither reentered
a previously visited arm or made any mistake in remembering the
prescribed pattern, in which case the reward obtained would be lost.
Subsequent to the probe stage, a control condition was started. For
this visuo-motor condition, named “response control”, subjects were
instructed to follow the yellow arrows on the ground at the start of
rewarded arms. The four arrowed arms were to be entered in a maze
tour that lasted 90 seconds. As subjects were explicitly asked to
follow a prescribed route, it was assumed that they did not try to
remember which target arms to select.

Session 3: At this stage of the experiment, both navigational
strategies had been tested separately. Subjects had already become
aware that they might be rewarded either for going to the correct
place (which is cued by landmarks) or for making the correct re-
sponse (left or right turns). In the third session, a “mixed strategy”
task recruiting both navigational systems was implemented. This ex-
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perimental paradigm tried to provide a condition in which both type
of strategies interactively directed a subject to select a rewarded path.
Subjects were informed, by initial instruction, that the third experi-
ment was distinct from and also more difficult than the two previous
experiments and that to achieve successful navigation they had to
refer to their memory and use what they had previously learned. Sub-
jects were unaware of the test procedure from the beginning. They
were trained with the trials of both the previous experiments. Trials
were interwoven and there were no more than three consecutive trials
of either strategy. Each subject was given an equal number (< 12)
of spatial and response trials. As shown in Fig. 1a and 1b, subjects
were cued by salient landmarks outside the maze during spatial trials.
Alternatively, in response-related trials, subjects had to rely on being
guided by a butterfly that appeared inside a maze arm. A new pattern
of rewarded arms was programmed so that participants could not
habitually retrieve previously learned patterns. Since this task is
difficult compared to the previous two, the criterion for learning was
reduced to 62.5 %; i.e. 5 correct selections in two consecutive trials.

Two probe stages were designed for this test; one for supporting
cooperative behavior and the another for competitive behavior. The
probe trials in this phase were aimed to measure how participants
could solve the eight arm maze by adopting both navigational strate-
gies in an interactive manner. Cooperation occurs when both strate-
gies result in entry to the same pattern of arms. During competition,
however, each strategy results in a different sequence of rewarded
arms. Participants were supposed to find rewards in the absence of
any further instruction. To provide a situation where competition
dominates in the first probe, individuals entered into the maze with
the same viewing angle as for the learning stage. However, the layout
of the maze had been rotated by as much as three arms. In such a
situation, execution of a learned pattern of turns would no longer
correspond to those arms that were cued via landmarks during the
learning trials. For example, assume that within learning trials, turn-
ing left from the start position pointed to a rewarded arm which was
also cued by a tree. After the rotation of the environment, a cue was
no longer seen following a left turn. This probe was designed such
that by only relying on the guidance of landmarks, subjects would
be led to choose four different arms from those accessed when their
preferred response strategy was employed. Making more than one
error in obtaining all rewards – by adopting the appropriate strategy –
means that competition occurred between the learning systems. In
the cooperation-related probe trial, the initial view was randomized
and the number of extra maze landmarks was reduced. In this sit-
uation, use of the remaining landmarks as well as numbering the
rewarded arms compensated for the lack of information. Finding
more than 2 rewards in this test revealed that the subjects could
cooperatively employ both navigational systems. It is notable that
for the probes of the last session, participants were not made aware
of their performance. The use of either competitive or cooperative
behavior was confirmed by the information obtained from a subject
gave during an inquiry session after the scan. A summary of the
experimental procedure is given in Table 1.

2.3. Image acquisition

Subjects were scanned at the Tehran Emam-Khomeini hospital with
a functional magnetic resonance imaging scanner while they were
navigating in the virtual maze. Each scanning session lasted approx-
imately 25 minutes in which participants were given experimental
and control trials sequentially. Images were acquired using a 3T

Siemens Magnetom TrioTim scanner (Siemens AG, Medical Solu-
tions, Erlangen, Germany), 32-channel head coil. Subjects’ heads
were immobilized with an air cushion in the coil. Unfortunately,
using large high resolution coils prevented subjects from wearing
goggles for observing the monitor directly. To overcome this prob-
lem two connected mirrors with an angle of 60◦ mounted above the
head coil were employed to allow subjects to see a screen in front
of them on which the virtual environment was projected using a
video projector. First, T1-weighted sagittal localizing scans were ac-
quired for 10 minutes which were used for structural analysis. High-
resolution anatomic images were acquired using a three-dimensional
(3D) magnetization-prepared rapid acquisition with gradient echo
(MPRAGE) sequence with repetition time (TR) = 1800 ms, echo
time (TE) = 3.44 ms, inversion time (TI) = 1100 ms, flip angle (FA)
= 7, in-plane resolution (IPR) = 1×1 mm, in-plane matrix (IPM) =
256×256, field of view (FOV) = 256 mm with 176 sagittal slices of
1 mm thickness. Then functional T 2∗-weighted BOLD images were
acquired with a multi-band slice accelerated gradient-recalled echo
planar imaging (EPI) sequence and the following parameters: TR =
3000 ms, TE = 30 ms, FA = 90, FOV = 220 mm, 64 axial slices of 3
mm thickness, IPR = 3.4×3.4 mm, IPM = 64×64.

Since the number of trials differed for each subject to reach the
learning criterion, the scan number varied from subject to subject.
Hence, custom software was employed to record scanner frame times
as well as keystrokes made by the experimenter. Images belonging
to each stage of each session were reclassified and a few scans were
discarded.

2.4. Image preprocessing

The signal changes due to the BOLD effect are small and noisy
and susceptible to artefacts, therefore, a number of signal/image
processing steps are required. Data was preprocessed using Sta-
tistical Parametric Mapping-SPM12 – software developed by The
Wellcome Trust Centre for Neuroimaging at UCL (http://www.fil.
ion.ucl.ac.uk/spm/). On average, 1800 fMRI volumes were acquired
for each subject, of which the first five volumes were discarded for
T1 equilibration. A few scans related to acute movements were
also discarded. The T1 datasets were transformed to the standard
Talairach stereotactic space of using an EPI template. BOLD images
were reoriented to set the origin at the anterior commissure. The
preprocessing procedure was done in the following order: (1) Images
underwent slice time correction relative to the first slice acquired.
(2) Realignment and unwarping was performed using the first slice
of each run as a reference to correct head movement effects. (3)
Data for each subject was next matched with their own individual
high resolution structural image. In this step, a T 2∗-weighted mean
image of unsmoothed images was co-registered with the correspond-
ing anatomical T1-weighted image of the same individual. (4) The
individual T1-image was used for segmentation to derive the trans-
formation parameters for stereotaxic space using the SPM template3,
which was then applied to the individual co-registered EPI images.
(5) Images were then normalized to the standard templates (NMI).
(6) Spatial smoothing was undertaken using a full width Gaussian
kernel at half maximum 8 mm.

3Montreal Neurological Institute (MNI) Template. Segmentation using SPM requires spatially-
aligned prior tissue probability maps.

http: //www.fil.ion.ucl.ac.uk/spm/
http: //www.fil.ion.ucl.ac.uk/spm/
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Table 1. A summary of the experimental tasks described in the text

Single spatial strategy Single response strategy

Session 1 (Spatial Learning)
Training: 8-trial runs, up to 4 runs, training in a cue rich environment. Learning
criterion is 7/8 rewards in two consecutive run.
Probe: 120-second run for retrieval of 4 unrewarded arms.
Control: 90-second visuo-motor control run to find visible rewards.

Session 2 (Response Learning)
Training: 8-trial runs, up to 4 runs, training in a homogenous environment
including an intra-maze signal in each trial.
Learning criterion is 7/8 rewards in two consecutive run.
Probe: 120-second run for retrieval of 4 unrewarded arms.
Control: 90-second visuo-motor control run to follow a defined path to
the rewards.

Mixed strategy

Session 3 (Interactive Learning)
Training: Interleaved trials of both previous experiments; Equal number of trials were randomly administered with no more than three consecutive trials of
either strategy.
Probe 1: 120-second retrial probe to find rewarded arms; Same start view in a rotated maze; no match between learnt pattern of turns and landmark guidance.
Competitions occurs.
Probe 2: 120-second retrial probe to find rewarded arms; Randomized initial view as well as reduced number of landmarks encourage use of cooperation.

3. Analysis
3.1. Behavioral data analysis

Subjects participating in the study could solve the maze task at above
chance levels. However, different success rates were obtained. After
scanning procedures, they were debriefed about their experience
and the behavior that they pursued to accurately select the rewarded
arms and their preference for using extra-maze landmarks and/or
their learning. Some specific questions were then asked to iden-
tify the kind of interaction that occurred among the navigational
systems. The scoring of these questions, along with the measured
performances, were employed to classify the accomplished task as
spatial, response, or mixed strategy. An overview of the subjects’
behavior while undergoing testing is now given.

At the first experiment, where spatial strategy was exploited,
subjects reported locating rewards by referring to the landmarks and
their relationships; e.g. a reward was at the right of the tree or a
reward was found at the end of an arm running into the rock. Those
who thoroughly used spatial memory did not mention the idea of
same start position at center, or its use. In the second experiment,
subjects learned how to use the same starting position and link re-
wards to the initial view. In this task, subjects remembered state-
ments like these: turn to the right as much as three arms from the
starting position or use a sequence of 1–4–5–7 to count the rewarded
arms clockwise. After the scan, only, two subjects could verbalize
the sequence of left and right turns that they had employed.

Five subjects reported that in the second experiment it was easy
for them to memorize the location of the egocentric cue (the butter-
fly). While, others remarked that they preferred to remember the
representation of environment and relationships between landmarks.
Performance of each subject within the first and second experiments
was assessed quantification of how correctly he/she could learn and
retrieve each strategy. Various factors including, the number of trials
taken to reach the training criterion, the number of correct arms
visited in the retrieval phase, the average time to finish a trial in
each phase, and the path length of each probe was measured. Also,
any change in the slope of learning was measured by summing up
the scores obtained at the end of each run over the total number
of trials required to reach the pre-set learning criterion. Subject’s
average rating on these measures was reported Table 2. During
the encoding or training stage of each experiment, subjects could

learn the reward contingency of the arms up to the predetermined
criteria. On average, participants required 12.87 ± 2.35 and 11.37
± 2.1 trials to reach learning criteria for the spatial and response
strategies, respectively. Moreover, by performing response learn-
ing, participants scored shorter average latency compared with the
response learning experiment (p < 0.05). Statistical comparison of
performance among single strategies was made with a paired t-test to
determine whether engaging in special or response learning differed
in terms of time and/or the number of trials. This test was significant
(T =−2.5, p= 0.05). Meanwhile the retrieval or within probe stages,
the behavioral performance in adopting a navigational strategy, was
then evaluated. Average performance of retrieval was 62.5% for
spatial and 71.8% for response learning. However, statistical compar-
ison of retrieval tasks showed no significant differences between the
allocentric and egocentric recall accuracy (T = 3.2, p = 0.1). Thus,
time taken to finish spatial or response probes were not significantly
different. Subjects were significantly faster in retrieval than in the
corresponding encoding condition (paired t-test, p < 0.01).

For the mixed strategy task, learning criteria were achieved
within 15 ± 4.15 trials on average. the learning of mixed strategies
was measured by whether performance improvemed or deteriorated.
When both strategies are cooperatively employed, it is expected
that such performance is reflected by improved accuracy. For those
who were not helped by the alternative strategy, the accuracy rate
decreased significantly. The competition trial, on the other hand,
was characterized by decreased accuracy. In the competition probe,
accuracy is defined as the ratio of the number of correct selections
from one category4 to the total number of rewards. Information
about behavioral measurements and the subject’s own statements
after the scan were combined to determine the strategy that each
participant chose to solve the maze. This makes sense as the mixed
strategy task was more complex and confusing than either single
strategy task.

Cooperative trials led to greater pattern completion; participants
had to turn at the center to find a salient landmark, use the environ-
mental landmark(s) to orient themselves and then count or pattern
the arms to reach a reward. Hence, more time elapsed. This was
significant in four out of eight subjects, i.e. only four subjects could
interchangeably use either strategy. The latency during retrieval was

4Either spatial or response; whichever is greater.
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Table 2. Behavioural performance of two single strategy tasks

Performance Factor Spatial strategy Response strategy

Number of trials to reach learning criteria 12.87 ± 2.35 10.37 ± 2.1
Number of correctly visited arms 3.125 ± 0.8 3.375 ± 0.7
Average time to finish trial 13.46 ± 4.31 11.37 ± 3.65
Path length of each probe trial 19.44 ± 6.81 17.21 ± 4.83
Slope of change in learning 0.65 ± 0.14 0.70 ± 0.07
Time taken to complete each test 96.2 ± 11.3 88.87 ± 14.8

also increased. Significantly fewer successful trials compared to
single spatial strategy (p < 0.05) and response strategy (p < 0.01)
were observed. Competition trials, on the other hand, were charac-
terized by increased latency and decreased accuracy compared to
using the single spatial (in 6 subjects T = 3.6, p < 0.01) and single
response strategy (in 5 subject T = 2.8, p < 0.03). In summary,
when both strategies competed to form a behavior, participants no-
ticed a mismatch between habitual learning and landmark related
learning. Hence, they committed more errors and needed more time
to solve the virtual maze compared to using a single strategy. In
the competition probe, memorizing the egocentric cue was more
frequently reported by subjects (88%) than remembering the layout
of the environment (65%).

3.2. NeuroImage analysis

3.2.1. Maps of brain activity

fMRI images were analyzed using statistical parametric mapping
(SPM). Functional MRI time series were often modeled using a gen-
eral linear model (GLM) to conduct individual first-level parametric
analysis for each subject. Relevant contrasts parameter images were
then generated and subsequently subjected to a second-level ran-
dom effects analysis to provide statistical inferences. The following
statistical models were developed to detect and evaluate functional
activations:

(1) An analysis of Performance-Independent Effects was con-
ducted by contrasting both navigational strategies within learning
stage. This analysis aimed to investigate patterns of functional neural
activity related to separate usage of spatial or response strategies
during learning. A GLM was designed including conditions of events
formed by trials of both type of learning. For constructing the design
matrix and its conditions, trial to trial scans were required. Fortu-
nately, it was very straightforward to separate images related to every
single trial–initiated at the center of maze-using “Maze analyzer”
module of the Mazesuite. As the number of training trials varied be-
tween sessions and participants, the last eight trials of each task were
analysed. The GLM included two regressors each formed by trials
of the last two consecutive training runs that a participant had per-
formed during the first two sessions. The time series were high-pass
filtered (minimum cutoff period 128 s) to remove slow signal drifts
and modeled as the weighted sum of regressors corresponding to
effects of interest and potentially confounding factors. These regres-
sors were used as covariates in the GLM and entered into the design
matrix along with regressors based on estimates of head movement
(the six motion parameters) obtained from the realignment procedure.
The inclusion of regressors based on movement estimates prevents
confounding factors from affecting the parameters estimated for the
effects of interest.

After fitting the best model, subject-specific parameters pertain-
ing to each regressor (β s) were calculated for each voxel under the
GLM assumption. Main effects of spatial and response learning were
linearly contrasted by applying a t contrast vector to the parameters
to determine whether the estimated contrast is significantly different
from zero. To threshold the statistical maps, the significance level
was set at 0.05. In this test, two contrasting images were created for
each person (Fig. 2). They depicted the neural activity maps associ-
ated with spatial > response (c) and response > spatial (d). Table 3
presents the Talariach coordinates of the voxels of peak activation,
the voxel sizes detected, and t values. Significant clusters were re-
solved into peak-height of the local maxima, and local maxima signif-
icant at the uncorrected level p < 0.05 are reported. As can be seen,
learning with spatial strategy is associated with activation of regions
including hippocampus, orbitofrontal cortex, parahippocampal gyrus,
middle temporal gyrus, cuneus and left crecuneus. Increased activity
within the right hippocampus was more pronounced than that within
left hippocampus (paired t-test using mean beta-values; t(18) = 3.71,
p < 0.07). Significantly strong activation in the bilateral parahip-
pocampal gyri and orbitofrontal cortex was also observed. On the
other hand, it can be seen that response learning is associated with
greater BOLD activity in prefrontal cortex (PFC), with activity more
pronounced in dmPFC. Significant activity in the caudate nucleus (t
=3.46, p < 0.06; Fig. 2a) was also observed. Increased activation
in this region was expected as it has been consistently shown to be
involved in tasks which require response learning. Further areas
with increased activity included: the left postcentral gyrus, the left
anterior insula, and bilateral parietal lobule. For the specific analysis
of each cluster, percent signal change (PSC) values were computed
for each cluster and are shown as bar graphs below each rendered
image in Fig. 2e and 2f. The error bars indicate BOLD activity
changed across subjects in all the identified regions of each activity
map.

(2) The next analysis looked at brain activity in recall (probe)
trails of each individual strategy. This analysis evaluated performance-
related activation. In this case, Activations were modeled within
a number of selected areas in order to increase the sensitivity of
analyses. Regions of interest (ROIs) were selected for this test by
focusing on those regions that showed increased functional activa-
tion in the previous analysis (Fig. 3a). I.e. regions which were
involved in successful learning of each navigational strategy, were
targeted within the left and right hemispheres. These ROIs (with
the number of functional voxels) were selected: hippocampus left
(50) and right (40), Orbitrofrontal cortex left (55) and right (30),
Parahippocampal gyrus left (40) and right (40), caudate left (40) and
right (35), Putamen left (35) and right (35), dmPFC left (100) and
right-sided (80). The average BOLD time series was calculated for
each selected cluster of voxels when each of the strategies was ad-
ministrated. Then, the statistical significance of activity correlation
among navigational strategies was assessed over each selected ROI.
The Pearson correlation coefficients were computed among both
series for each brain regions. Fig. 3b depicts the results of correlation
analysis and the corresponding levels. Post hoc statistical analysis
informs about the significance of correlation sexist in the activation
of right hippocampus, bilateral OFC, mPFC and caudate when both
strategies were individually involved. This test is one step toward
the determination of regions that might be activated in exploiting the
interactive strategies.

(3) Another functional analysis was done based on univariate
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Fig. 2. Activated regions for two main effect of encoding, spatial > response (c) and response > spatial (d), are displayed via whole-brain three-dimensional
rendering on the cortical surface. Highlighted voxels are significant at uncorrected p < 0.05. (a) and (b) are sub-views showing activated voxel selected
from two sample clusters: (a) displays the first eigenvariate of the extracted BPLD signal in PFC and (b) plots the adjusted data and fitted response for
precuneus. Bar graphs in (d) and (f) present percent signal change (PSC) values for each cluster in spatial learning and response learning respectively. Regions
in abbreviation are (CA: caudate, MPC: medial prefrontal cortex, SPL: Superior parietal lobule, IPL: Inferior parietal lobule, PoCG: Postcentralgyrus, PUT:
putamen, AC/MFG: Anterior cingulate/medial frontal gyrus, HIP: hippocampus, OFC: orbitrofrontal cortex, PHG: parahippocampalgyrus, MTG: Middle
temporal gyrus, PCUN: precuneus, CUN: cuneus).

SPM second level analysis which introduces the following DCM
analysis. Six experimental conditions were included in this SPM.
Two were learning conditions derived from trials of the encoding

phase of the last session. Event times for these conditions were
selected from the first repetitive trial of each learning type until the
end. Spatial and response trials were separated in this phase to create
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Table 3. Regions with increased activity during learning with spatial response strategies. The table shows Talairach coordinates, the t values
referred to the peak voxel of each cluster and the cluster extents given as numbers of functional voxels

Anatomical Region Brodman Area
Talairach Coordinate Left

(t-value/cluster size)
Talairach Coordinate Right

(t-value/cluster size)
X Y Z X Y Z

Spatial learning > Response learning
Hippocampus −28 −24 −16 (4.07/37) 32 −14 20 (4.12/66)
Orbitrofrontal cortex 10,11 −6 33 −27 (3.72/34) 8 36 −31 (5.42/55)
Parahippocampal gyrus 36 −32 −30 −17 (3.85/49) 37 −25 −16 (3.84/41)
Middle temporal gyrus 21 −58 −37 −8 (5.13/33) 59 −57 6 (4.61/28)
Precuneus 7 −6 −56 32 (3.78/14)
Cuneus 17 −10 −93 3 (4.23/21) 12 −90 4 (5.02/15)
Response learning > Spatial learning
Caudate nucleus −14 −5 20 (4.88/29) 18 −8 23 (5.12/23)
Medial Prefrontal Cortex −12 57 4 (5.62/46) 2 58 4 (6.23/54)
Superior parietal lobule 7 −16 −63 55 (3.65/16) 20 −61 60 (3.26/22)
Inferior parietal lobule 40 50 −54 41 (4.39/18)
Postcentral gyrus 3 −53 −10 43 (3.67/22) 53 −15 48 (4.03/18)
Putamen 7,19 −23 4 4 (3.78/33) 25 −8 7 (3.24/29)
Anterior cingulate/medial frontal
gyrus

32 −1 8 44 (3.65/17)

Fig. 3. (a) Shows the axial, coronal and sagittal views of selected ROIs (regions with strong activity) and (b) Bar plot which graphically displays the computed
Pearson correlation coefficients among a series of both single strategy probes for each ROI.
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Fig. 4. The procedure of design matrix construction for the third functional test. (a) Two dimensional view of maze analyzer software; a region was defined
around the center to select more realistic images. (b) Table extracted from Mazesuite software which indicates the entrance and exit time to the defined region.
Information in table (b) has been turned into a graph (c) to visualize events during the whole probe. (d) and (e) are SPM graphics representing the brain maps
and design matrix, respectively. Lower table describes significant clusters found during the interactive task for a subject.

strategy-dependent learning conditions. A reward condition was
also defined for this SPM to be comprised of images taken when a
reward was delivered at the end of a trial until a few seconds to the
following trial. The last two task-dependent conditions, referred to
as competition and cooperation, were subsequently definedfor probe
trials. To increase accuracy, only those images taken in a region
concentrated at the center of the radial maze and that covered 30%
of each arm were entered into the GLM. The idea is that interactions
among strategies are formed when a subject is making decisions at

the center of maze or early following arm entrance. Estimates of
head movement from the realignment procedure were also included
in the design matrix. Regressors corresponded to stimulus functions
convolved with a canonical hemodynamic response function. Subse-
quently, the GLM was estimated. In this analysis, the main effects
of competition and cooperation were tested to identify significant
activations. The size of the effect for both kinds of interactions was
estimated using the GLM described and applied to each subject. As
it can be inferred from the table given in Fig. 4, the triple regions of
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Fig. 4. (Continued.)

hippocampus, striatum, and mPFC show significant activation at the
uncorrected cluster level (p < 0.05). Further, in order to determine
wheather the contrast in activation is seen on average, a second level
analysis was undertaken. Random effects group analysis (SPM sec-
ond level statistical analysis) was executed such that a contrast image
of the first level analysis from each subject was fed into a GLM that
implemented a one sample t-test. Statistical significance for the sec-
ond level group analyses was defined as family-wise error-corrected
cluster probability (p) less than 0.05 (two tail). The group effect size
in this analysis, I.e. mean across all subjects, indicated a significant
activation in allmentioned regions due to the interaction of strategies
(t < 0.05). It is worthwhile mentioning that the individual statistical
parametric maps of this test, as computed within-subject contrasts,
are employed for subject-specific ROI identification in subsequent
effective connectivity analyses.

3.2.2. DCM of navigational cooperation and completion

To characterize and compare context-dependent inter-regional inter-
actions, this paper goes beyond the assessment of functional connec-
tions among neuronal regions by elucidating effective connectivity
(i.e. the directional influences that regions have on each other). To
determine how the hippocampus, striatum, and mPFC interact to
control navigation, it is necessary to understand how information
propagates through these regions; whether they compete via mutual

inhibition or interact in such a way that activity in one region excites
neuronal activity in another.

DCM, as a data-driven technique, is a general framework for
inferring processes and mechanisms at the neuronal level from mea-
surements of brain activity [26]. DCM is not directly employed
for the measured time-series; rather, in DCM, the hidden neuronal
dynamics are modeled and combined with a forward model that
translates neuronal states into predicted measurements. In fMRI
studies, this modeling is generally used to estimate which model of
neuronal regions and interregional interactions best corresponds to
observed hemodynamic responses. In particular, DCM can measure
effective connectivity specific to certain experimental conditions. In
summary, as generative models of brain responses, DCMs provide
posterior estimates of effective strength of connections and their
activity dependent modulations [26].

In DCM, a mathematical model of underlying neuronal connec-
tivity among a priori selected sets of brain regions (called DCM
nodes) is defined by a system of bilinear differential state equations
with coefficients specified via three different sets of parameters: (i)
input or extrinsic parameters that quantify how brain regions respond
to external stimuli, (ii) endogenous or latent parameters that charac-
terize context-independent inter-regional interactions, and (iii) mod-
ulatory parameters that measure changes in effective connectivity
induced by the experimental conditions. The connectivity parameters
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can be estimated by fitting a “generative model” to the measurement
data. For the key concepts and methodological issues associated with
DCM, see [27, 28]. for a mathematical explanation of DCM and its
Bayesian statistical foundations, see [29, 30].

Here, DCM was employed to model a network that mediates
a mixed-strategy navigation task to characterize how functionally-
related brain regions influence each other (directionally or recip-
rocally) and how neurophysiological mechanisms in terms of the
system’s learning interactions are encoded by specific parameters
(connectivity, strength). More importantly, it was proposed to deter-
mine whether there any differences within the effective connectivity
of a network that underlies navigational strategy interaction when the
type of interaction is either cooperation or competition; i.e. whether
the modulatory inputs related to strategy cooperation or competition
results in different coupling structures. The hypothesis is that in spite
of existing similarities in structural and functional connectivities,
some differences might be found in causal connectivities within a
network of hippocampus, striatum and mPFC and subsequently some
inferences could be made about parametric modulations occurred
under the influence of experimental inputs/stimuli related to naviga-
tional strategies. Notably, solving mazes either by spatial or response
or mixed strategy exerts different stimuli via extra maze landmark or
intramaze beckon.

The nodes for DCM were selected based on previous neurocog-
nitive knowledge about the active regions reported in navigational
related tasks as well as the results of the functional analysis done in
the previous section to define activation clusters via group analysis.
The SPM described in the previous section was used to extract ROIs.
The treshold of brain activations to be selected as DCM nods was
set to uncorrected cluster p < 0.05. The cluster-defining t-threshold
was also set to t = 3.5. Spheres of 8 mm radius around the individual
peak activation of each region were inspected and subsequently the
functional time series of the BOLD signal was extracted from each
ROI in a subject-specific manner. By extracting the principal eigen-
variate of each ROI, their functional activities were abstracted into a
time-series. The same ROIs were used for each subject.

Following node selection, the structure of the DCM was de-
signed. A fully connected network model was constructed with bidi-
rectional connections between all regions. Inferences associated with
model structure were not considered here. Instead, emphasis was
placed on characterizing the context-sensitive modulations of model
parameters. The model space is shown schematically in Fig. 5, which
indicates bidirectional effective connectivity amongst the hippocam-
pus, striatum, and mPFC. This model is structured by direct input, as
reward, to the mPFC, learning-related inputs that drive endogenous
connections (spatial learning affects HIPP ↔ mPFC connections,
whereas, the response learning affects STR↔ mPFC connections),
and modulatory effects of competitive or cooperative connectivity
targeted connections between hippocampus and striatum. Four al-
ternative models5, that shared identical intrinsic connectivity, were
specified. DCM uses an expectation maximisation (EM) algorithm
to produce probabilistic estimates of the expected value of each pa-
rameter. The procedure of Bayesian model selection on the basis
of free energy approximation summarizes “log-evidence” relative
differences as posterior probability for each competing model [24].
Estimation over the four models was employed to find the highest
posterior probability.

5Two modulatory effects on two directional connectiivities.

The results of DCM comparison are illustrated in Fig. 6. Four
models, two with a cooperation modulatory effect (model 1 and
model 2) and two with a competition effect (model 3 and model
4) were compared. As inferred, model 1 in which the cooperative
modulatory effect is on direct interaction from hippocampus to cau-
date, was favored by Bayesian model selection in all participants
who could employ the cooperative interactive strategy (Fig. 6c and
6d). This means that when the model was modulated by cooperation
effect of interest as an experimental manipulation, the connection
from hippocampus to striatum was strengthen (significant connec-
tion strengths at 95% confidence were found) supporting the idea
of co-activated systems. Parameters of the selected model were
averaged over subjects using a Bayesian model averaging proce-
dure [27] which are given in a table in Fig. 6a. On the other hand,
the competition effect does not drive any of the connections between
the two regions (the connectivity parameters were not significantly
greater than threshold of zero) supporting the idea that navigational
systems operate independently in parallel. Albeit, connections from
hippocampus and striatum to mPFC were strengthen (Fig. 6b) by
competition. Hence, it can be proposed parallel models with less
effective connectivity preferably occur between hippocampus and
striatum during the competitive task.

4. Discussion
In the last two decades, little multidisciplinary functional neuroimag-
ing research has aimed to identify the neural substrates and their
interactions that subserve navigational learning from different per-
spectives. Here, it has first been answered how brain regions are
functionally coupled with each other to mediate reward-based spatial
and response learning, either independently and/or interactively. Fur-
ther, analysis of effective connectivity was addressed to supplement
complementary functional connectivity analyses by considering di-
rectional effective connectivities within a plausible network of brain
regions. Assessing the modulation of effective connectivities in such
network by experimental manipulation is very new in this field.

In goal-directed navigational tasks, the causal efficacy of the path
that is taken, and the resultant outcome (i.e. reaching to goal) given
the current state or context, is perceivable. The navigator selects
the best choice and regulates behavior using goal representations.
The internally represented goal motivates the navigator to solve
hidden-goal tasks in different situations including usage of either or
both navigational systems as required. Despite the relative clarity
of knowledge about goal-directed navigation behavior, the brain
function and the neuronal underpinnings of such behavior remained
largely unknown.

The functional analysis reported here pursued three hypotheses
under different environmental conditions and across subsequent vis-
its to the environment. It was tested whether spatial/response learn-
ing is hippocampus/striatum dependent and which other brain re-
gions might be involved when each type of learning was individually
applied. The pattern of brain activation for spatial learning confirms
the activity of hippocampus, parahippocampus and OFC for data,
which is extremely consistent with previously reported fMRI studies
on spatial learning [31–33]. On the other hand, response learning,
which was most successful among all participants, was associated
with increased activity in striatum and mPFC, confirming previous
findings on habitual stimulus-response learning [34–36].

Subsequent functional analysis, bases on the first test, explored
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Fig. 5. Dynamic causal modeling: (a) Structure of model overlaid on the normalized brain template indicating bidirectional effective connectivity amongst the
hippocampus, striatum, and mPFC. (b) Inputs to model including a reward input to the mPFC, two learning-related inputs driving endogenous connections
and two modulatory effects of competition and cooperation targeting connections between hippocampus and striatum. (c) responses of nodes after model
estimation.

whether the selected regions might reveal increased activation and
significant correlation among both single strategies. A number of
ROIs, depicted in Fig. 4, were candidate for an a priori model of
functional connections. The correlation between averaged BOLD
activities (time series) for spatial and response probes was computed
for these ROIs. The higher the correlation, the more probable that
a region was involved in interactive navigational tasks. The third
functional hypothesis was further related to interaction among nav-
igational strategies. A random effects analysis was undertaken at
the group level during successful trials when two strategies were
interactively employed. Based on functional analysis, it was found
that the hippocampus, the striatum, and the mPFC are functionally
connected when strategies either compete or cooperate. However,
the characteristics of such connections and their variability are not
then clear.

Consequently, the DCM technique was employed to quantify dy-
namic context-dependent modulations of connectivity. Such analysis
may indicate the direction of information transmission between se-
lected regions. The result of this analysis confirmed effective connec-
tivity between hippocampus and striatum when navigational strate-

gies cooperate. Although, similar patterns were not found for the
alternative interaction (i.e. competition). This observation suggests
that connectivity within a dynamic causal model of human navigation
fundamentally differ when cooperation occurs-emerging regional
cooperation or when competition occurs-causing antagonistic func-
tion. Therefore, effective connectivity between hippocampus and
striatum might reveals aspects of the neural basis of navigation along
with functional connectivity, when neither of them are attributed to
structural connectivities. In [36], authors have discussed that the
functional connectivity among hippocampus and caudate may stem
from their common engagement with the frontal cortex. They sup-
ported the hypothesis that the frontal cortex serves as a common
link between hippocampus and caudate. This corresponds to what
was concluded here for competitive interaction among strategies, by
showing increased reciprocal hippocampal and striatum connectivity
with mPFC during successful competitive trials, wherein the stream
of information transfer is toward/from the mPFC. Nevertheless, it is
not yet possible to conclude their is homologous involvement of hip-
pocampus and striatum in navigation. This means that the common
engagement of brain regions, especially for cooperative tasks, even
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Fig. 6. DCM results: Models for cooperation and competition with almost identical architecture were compared, modulatory effect related to each interaction
was assigned to HIPP↔ STR connections. Model 1 includes cooperation effect on HIPP -> STR, Model 2 includes cooperation effect on STR -> HIPP,
Models 3 and 4 include competition effect on HIPP -> STR and STR -> HIPP respectively. The BMS results were shown via bar plots on the right ((c) and (d))
and the table on the left top (a) reports the parameters of the winning model (a) as mean strength in Hz. Table in (b) also presents connections for a competition
model (Models 3) for comparison.

functionally and/or causally, does not mean that they have similar or
equivalent roles in the interactions subserving navigation.

5. Conclusion
The exhaustive experimental paradigm of this study allowed the test-
ing of a variety of hypotheses about the activation of brain regions
associated with reward when spatial or response learning was inde-
pendently or interactively exploited. Inclusion of multiple training,
probe and control conditions for the adopting of different naviga-
tional strategies, in isolation and/or combination, was the strength
of results reported here. The research highlights new findings about
brain connectivity subserving human navigation.

To assess and discuss the results of such multi-stage testing,
several points should be considered, and a few are noted here. Al-
though every effort was made to ensure that any confusion or ad-
ditional cognitive activity did not produce activation during the ex-
periments, it is probable that not all efforts subjects made to solve
the maze under controlled conditions were eliminated, including the
use of alternatives. Therefore, further qualitative and quantitative

evaluations and validations are required. This kind of experiment
should be performed with a large testing group as subjects are highly
variable their behavior, including their selections and actions and
their adoption of a variety of cognitive strategies. More importantly,
to ensure that the random effects analysis represent that the model
parameters are probabilistically distributed in the population, it is
very appropriate that such research should be tested on more data.
However, such research is not feasible due to limitations in fMRI
access. Furthermore, the natural variability in the strategies that were
taken by navigators needs to be considered. In addition to experi-
mental deficiencies, some conceptual issues are likely also present.
There are many alternatives for the generative model of effective
connectivities underlying the recorded data. Specificaly, for a task
as complex as reported here, the balance between model complexity
and accuracy is debatable. Although Bayesian model selection aims
to select the best among a set of plausible alternatives, there are
still concerns about model space, couplings, and modulatory effects
with DCM modeling. Therefore, it is an open question that requires
further organized research guided by hypothesis driven experiments.



Journal of Integrative Neuroscience 41

Acknowledgments
This paper was funded by Qazvin Islamic Azad University. I thank
Dr. Esmaeilzadehha very much for his regular cooperation and
assistance. Also, many thanks to Dr. Oghabian who put at our
disposal the imaging related equipment. I am indeed very thankful
to the “Wellcome Trust Centre for Neuroimaging” for providing
available educational videos and texts on fMRI data processing which
extended the horizons of my view on this broad and complex subject.
The data for this research was obtained with great difficulty. To
do the experiments and obtain images of each subject, required the
hospital to be paid as much as scanning a patient without insurance.

Conflict of Interest
All authors declare no conflicts of interest.

References
[1] Iaria G, Petrides M, Dagher A, Pike B, Bohbot VD (2003) Cognitive

strategies dependent on the hippocampus and caudate nucleus in hu-
man navigation: variability and change with practice. Journal of Neuro-
science 23(13), 5945-5952.

[2] Konishi K, Bohbot VD (2013) Spatial navigational strategies correlate
with gray matter in the hippocampus of healthy older adults tested in a
virtual maze. Frontiers in Aging Neuroscience 5(6), 1.

[3] Dahmani L, Bohbot VD (2015) Dissociable contributions of the pre-
frontal cortex to hippocampus-and caudate nucleus-dependent virtual
navigation strategies. Neurobiology of Learning and Memory 117, 42-
50.

[4] Weniger G, Siemerkus J, Schmidt-Samoa C, Mehlitz M, Baudewig
J, Dechent P, Irle E (2010) The human parahippocampal cortex sub-
serves egocentric spatial learning during navigation in a virtual maze.
Neurobiology of Learning and Memory 93(1), 46-55.

[5] Ito R, Robbins TW, Pennartz CM, Everitt BJ (2008) Functional interac-
tion between the hippocampus and nucleus accumbens shell is necessary
for the acquisition of appetitive spatial context conditioning. Journal of
Neuroscience 28(27), 6950-6959.

[6] Vanni-Mercier G, Mauguiere F, Isnard J, Dreher JC (2009) The hip-
pocampus codes the uncertainty of cue–outcome associations: an in-
tracranial electrophysiological study in humans. Journal of Neuro-
science 29(16), 5287-5294.

[7] Haber SN, Kim KS, Mailly P, Calzavara R (2006) Reward-related corti-
cal inputs define a large striatal region in primates that interface with as-
sociative cortical connections, providing a substrate for incentive-based
learning. Journal of Neuroscience 26(32), 8368-8376.

[8] Gruenbaum B (2009) Cooperation & competition between navigation
systems in the rat brain: The role of the hippocampus and striatum
during a dissociative maze task. University of Connecticut Honors
Thesis.

[9] McDonald RJ, Devan BD, Hong NS (2004) Multiple memory systems:
the power of interactions. Neurobiology of Learning and Memory 82(3),
333-346.

[10] Bohbot VD, Lerch J, Thorndycraft B, Iaria G, Zijdenbos AP (2007)
Gray matter differences correlate with spontaneous strategies in a human
virtual navigation task. Journal of Neuroscience 27(38), 10078-10083.

[11] Khamassi M (2007) Complementary roles of the rat prefrontal cortex
and striatum in reward-based learning and shifting navigation strategies.

[12] Harris MA, Wiener JM, Wolbers T (2012) Aging specifically impairs
switching to an allocentric navigational strategy. Frontiers in Aging
Neuroscience 4(7), 29.

[13] Pine DS, Grun J, Maguire EA, Burgess N, Zarahn E, Koda V, Fyer A,
Szeszko PR, Bilder RM (2002) Neurodevelopmental aspects of spatial
navigation: a virtual reality fMRI study. Neuroimage 15(2), 396-406.

[14] Siemerkus J, Irle E, Schmidt-Samoa C, Dechent P, Weniger G (2012)
Egocentric spatial learning in schizophrenia investigated with functional
magnetic resonance imaging. NeuroImage: Clinical 1(1), 153-163.

[15] Marsh R, Hao X, Xu D, Wang Z, Duan Y, Liu J, Kangarlu A, Martinez
D, Garcia F, Tau GZ (2010) A virtual reality-based FMRI study of
reward-based spatial learning. Neuropsychologia 48(10), 2912-2921.

[16] Schmidt B, Papale A, Redish AD, Markus EJ (2013) Conflict between
place and response navigation strategies: effects on vicarious trial and
error (VTE) behaviors. Learning & Memory 20(3), 130-138.

[17] Lawton CA (1994) Gender differences in way-finding strategies: Re-
lationship to spatial ability and spatial anxiety. Sex Roles 30(11, 12),
765-779.

[18] Lawton CA (1996) Strategies for indoor wayfinding: The role of orien-
tation. Journal of Environmental Psychology 16(2), 137-145.

[19] Ohnishi T, Matsuda H, Hirakata M, Ugawa Y (2006) Navigation abil-
ity dependent neural activation in the human brain: an fMRI study.
Neuroscience Research 55(4), 361-369.

[20] Poldrack RA, Clark J, Pare-Blagoev E, Shohamy D, Moyano JC, Myers
C, Gluck MA (2001) Interactive memory systems in the human brain.
Nature 414(6863), 546-550.

[21] Brown TI, Ross RS, Tobyne SM, Stern CE (2012) Cooperative in-
teractions between hippocampal and striatal systems support flexible
navigation. Neuroimage 60(2), 1316-1330.

[22] Konishi K, Etchamendy N, Roy S, Marighetto A, Rajah N, Bohbot VD
(2013) Decreased functional magnetic resonance imaging activity in the
hippocampus in favor of the caudate nucleus in older adults tested in a
virtual navigation task. Hippocampus 23(11), 1005-1014.

[23] Spiers HJ, Gilbert SJ (2015) Solving the detour problem in navigation:
a model of prefrontal and hippocampal interactions. Frontiers in Human
Neuroscience 9, 125.

[24] Ayaz H, Shewokis PA, Curtin A, Izzetoglu M, Izzetoglu K, Onaral B
(2011) Using MazeSuite and functional near infrared spectroscopy to
study learning in spatial navigation. Journal of Visualized Experiments
56, 3443.

[25] Jacobs WJ, Laurance HE, Thomas KG (1997) Place learning in vir-
tual space I: Acquisition, overshadowing, and transfer. Learning and
Motivation 28(4), 521-541.

[26] Stephan KE, Kasper L, Harrison LM, Daunizeau J, den Ouden HE,
Breakspear M, Friston KJ (2008) Nonlinear dynamic causal models for
fMRI. Neuroimage 42(2), 649-662.

[27] Stephan KE, Penny WD, Moran RJ, den Ouden HE, Daunizeau J, Fris-
ton KJ (2010) Ten simple rules for dynamic causal modeling. Neuroim-
age 49(4), 3099-3109.

[28] Kahan J, Foltynie T (2013) Understanding DCM: ten simple rules for
the clinician. Neuroimage 83, 542-549.



42 Journal of Integrative Neuroscience

[29] Friston KJ, Litvak V, Oswal A, Razi A, Stephan KE, van Wijk BC,
Ziegler G, Zeidman P (2016) Bayesian model reduction and empirical
Bayes for group (DCM) studies. Neuroimage 128, 413-431.

[30] Penny WD, Stephan KE, Mechelli A, Friston KJ (2004) Comparing
dynamic causal models. Neuroimage 22(3), 1157-1172.

[31] Jordan K, Schadow J, Wuestenberg T, Heinze HJ, Jäncke L (2004)
Different cortical activations for subjects using allocentric or egocentric
strategies in a virtual navigation task. Neuroreport 15(1), 135-140.

[32] Maguire EA, Burgess N, Donnett JG, Frackowiak RS, Frith CD, O’keefe
J (1998) Knowing where and getting there: a human navigation network.
Science 280(5365), 921-924.

[33] Rodriguez PF (2010) Neural decoding of goal locations in spatial navi-
gation in humans with fMRI. Human Brain Mapping 31(3), 391-397.

[34] Baumann O, Chan E, Mattingley JB (2010) Dissociable neural circuits
for encoding and retrieval of object locations during active navigation
in humans. Neuroimage 49(3), 2816-2825.

[35] Doeller CF, King JA, Burgess N (2008) Parallel striatal and hippocampal
systems for landmarks and boundaries in spatial memory. Proceedings
of the National Academy of Sciences 105(15), 5915-5920.

[36] Voermans NC, Petersson KM, Daudey L, Weber B, Van Spaendonck
KP, Kremer HP, Fernández G (2004) Interaction between the human
hippocampus and the caudate nucleus during route recognition. Neuron
43(3), 427-435.


	Introduction
	Materials and methods
	Subjects
	Experimental procedure
	Image acquisition
	Image preprocessing

	Analysis
	Behavioral data analysis
	NeuroImage analysis
	Maps of brain activity
	DCM of navigational cooperation and completion


	Discussion
	Conclusion

