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1. ABSTRACT

Fertilization is a hallmark event of sexual 
reproduction marked by the fusion of male and 
female gamete to form zygote. It is a highly complex, 
yet a robust process that is intricately regulated by 
various signalling molecules. A healthy fertilization 
is determined by the quality of zygote which is 
contingent on the health of egg and sperm. The 
relationship between infertility and gametic health 
can be reciprocal. On one hand gametogenesis 
has to be dynamic and unremitting to sustain the 
reproductive health, while on the other hand it has 
to be error free for proper embryonic development. 

Complex cellular interactions make gametogenesis 
highly vulnerable to extrinsic as well as intrinsic 
intrusions. Molecular disparities during these phases 
may result in complete fertilization failure. Present 
review provides an overview of the regulation of 
gametogenesis, determinants of healthy gamete, 
players at fertilization window and what may 
go wrong during the development of zygote to 
embryo leading to implantation failure. We have 
outlined different ‘windows’ of vulnerability during 
gametogenesis supported by evidences affecting 
the fertility potential of both the partners.
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2. OVERVIEW OF GAMETOGENESIS AND 
FERTILITY

The fusion of haploid spermatozoon and oocyte 
is the culminating event in mammalian fertilization. It 
enables the creation of a new, genetically distinct diploid 
organism. Sexual reproduction in mammals starts during 
gametogenesis, a process of formation of gamete from 
germ cells. Formation of male gamete spermatozoa and 
female gamete egg is known as spermatogenesis and 
oogenesis respectively. The formation of a genetically 
and functionally competent gamete is essential for 
normal fertilization and early embryonic development. 
In both the sexes, gametogenesis follows a series of 
mitotic and meiotic divisions to give rise to male and 
female gamete with haploid genome. In males, each 
spermatocyte undergoes meiosis and produces four 
haploid spermatids that differentiate into functional 
sperms. In contrast, primary oocyte in female produces 
four cells, out of which only one remains functional. 
Sperm and ova fertilize to form a zygote which develops 
into embryo and ultimately into a genetically and 
phenotypically distinct individual. The two key aspects 
of gametogenesis include (i) the expression of genes 
that transform the canonical mitotic cell division program 
into the specialized meiotic division pattern and (ii) a 
morphogenesis program that produces gametes (2). 
To decipher the probable causes of fertilization failure, 
it is imperative to understand the origin and formation 
of male and female gametes as well as molecular 
mechanism underlying fusion of gametes and further 
embryonic development. A multitude of reports and 
evidences have highlighted the critical determinants of 
healthy gametogenesis and embryonic development 
whose alteration may result in poor fertility outcomes. 
The need of the hour is to understand the mechanism 
of gamete development and fertilization followed by 
systematic investigation of the alterations which results 
in reproductive incompetence. This will certainly provide 
a roadmap to decipher the molecular targets and 
therapeutic interventions for treatment of infertility.

3. REGULATION OF OOGENESIS AND  
SPERMATOGENESIS

Oogenesis and spermatogenesis include 
multistep events of mitotic and meiotic divisions 
to finally produce ovum and sperm respectively, 
which differ characteristically in several aspects. 
Ovum contains all the indispensable components to 
initiate a life. The complex cytoplasm of egg is rich 
in enzymes, mRNAs, organelles etc. which regulates 
various metabolic events of fertilization and embryonic 
development, however sperm, contains a motile 
nucleus and is devoid of cytoplasm.

The mechanism of oogenesis varies 
drastically across different species. Some species such 
as sea urchins and frogs routinely produce thousands 

of eggs during their lifetime while some species like 
humans produces very few eggs in their lifetime. 
In humans, diploid cells in the ovary i.e. oogonium 
undergoes rapid cell division initially during embryonic 
stage till seventh month of gestation period to produce 
millions of primordial germ cells (PGCs) known as 
primary oocytes which are enclosed in a follicle inside 
ovary. Out of these million cells, only few primordial 
cells enter meiosis and remain halted in diplotene 
stage till puberty. In humans, first half of meiosis 
occurs in embryo which after resumption at puberty, 
gets completed in adult (3). During follicular growth, 
primary oocyte undergoes 500 folds increase in the 
volume along with an enormous increase in number of 
follicular granulosa cell, which surrounds the growing 
oocyte. One-third of known early miscarriage cases 
are due to chromosomal anomalies, which arise due 
to errors in the formation of eggs (4).

A significant progress has been made in the 
interpretation of factors regulating the development 
as well as maturation of gametes. Advancement in 
molecular biology and in-vitro culture techniques has 
enabled us to study the influence of these diverse 
factors on the process of folliculogenesis, oocyte 
growth and maturation. The regulation of events 
occurring before the birth of an individual has always 
been a matter of fascination and discussion. Errors 
occurring during gametogenesis, fertilization and early 
embryogenesis can have a great impact on fertility.

4. MOLECULAR PLAYERS OF OOGENESIS 
AND REPRODUCTIVE HEALTH

4.1. Regulation at early stages of oogenesis

Female fertility is determined by the ability of 
oocyte to undergo meiosis, successful fertilization and 
healthy embryonic development (5). Folliculogenesis 
starts during the second trimester of fetal development 
in humans. Human follicle development entails intra-
ovarian and endocrine interactions that provide 
intrafollicular microenvironment for developing healthy 
oocyte. Lack of coordination between developing 
oocyte and the surrounding somatic cells results in 
poor developmental competence of the oocyte that 
may lead to infertility related issues (6,7). Apoptosis 
is a crucial strategy involved in follicular atresia. Many 
pro-apoptotic and anti-apoptotic proteins such as 
BAX, BAD and BCL2 regulate the process of germ 
cell death. A recent study showed that deficiency of 
Bax gene in mice resulted in more primordial follicles 
within their ovarian reserve that is very much needed 
for oocyte to undergo fertilization(7).

Majority of ovarian primordial follicles remain 
in quiescent phase as a reservoir of germ cells. A 
balance in dormancy and activation is controlled 
by coordinated actions of activators/suppressors 
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in close association with surrounding somatic cells 
and intra-oocyte interactions (8). Primordial follicles 
are under inhibitory control. They get release by this 
inhibition either by depletion of inhibitory factors or 
increase in stimulatory factors (9). Primordial follicles 
after activation get converted to primary, secondary 
and antral follicles. Depending on the stimulation of 
gonadotropins, these antral follicles may or may not 
reach till ovulation. Maximum antral follicles directly 
from the dormant stage or during folliculogenesis 
undergo atresia. Multiple growth factors and signalling 
pathways have been identified to regulate the activation 
of primordial follicles (10). A nerve growth factor (NGF) 
neurotropin and its tyrosine receptor kinase (NTRK1) 
are essential for activation of primordial follicles (11). 
The regulation of oocyte survival depends on other 
neurotropins like brain derived neurotrophic factor 
(BDNF) and neurotropin 4 (NT4) (12). Recently it 
has been shown that PTEN/PI3K signalling is also 
involved in primordial follicle activation. Absence of 
PTEN, a negative regulator of PI3K in oocytes result in 
increased phosphorylation of another components of 
the pathway like AKT and FOXO3a (Forkhead Box 03). 
The inactivation of AKT and FOXO3a leads to follicle 
activation (13). A recent study showed premature 
activation of primordial follicles in mouse ovaries, 
deficient in FOXO3a (14). Simultaneously, tuberous 
sclerosis complex I and mammalian target of rapamycin 
complex (mTORC1) are responsible for the arrest of 
primordial follicles. These two signalling pathways 
synergistically regulate the resting and activation of 
primordial follicles. Reports says that Forkhead boxL2 
gene (Foxl2) is expressed in pre-granulosa cells but 
decreases gradually in granulosa cells of pre-antral 
follicles, focussing its role in quiescence of primordial 
follicles (15).

A positive effect of Anti Mullerian hormone 
(AMH), a member of TGFβ superfamily is reported in 
initiation of growth of primordial follicle. Null mutations 
in downstream intracellular signalling molecule of 
TGFβ ligand like SMAD lead to an arrest of primordial 
follicle to antral follicle transition (16). The conversion 
of primordial follicles to primary follicles depends on 
the early expression of oocyte originated transcription 
factors, Sohlh1 and Nobox. A deficiency of Nobox 
expression downregulates oocyte specific transcripts 
such as Mos, Oct4, Rfpl4, Fgf8, Dnmt1o, Gdf9, Bmp15, 
Zar1 and H100 showing an essential regulatory role of 
Nobox gene in follicular maturation(17).

4.2. Regulation of Oocyte maturation

Meiotic competence is the ability of oocyte to 
resume meiosis and get mature while developmental 
competence refers to the capacity of the oocyte to 
get fertilize and develop into a healthy embryo. It 
relates with cytoplasmic maturity of the developing 
oocyte. Cyclic adenosine monophosphate (cAMP) 

produced within the oocyte is crucial for tethering 
oocytes under meiotic arrest (18). The influx of cAMP 
within the oocyte occurs via gap junctions between 
cumulus cells and oocyte. cAMP is also endogenously 
produced by G-protein coupled receptor 3 and 12 
activation (19, 20). The inflow of cyclic guanosine 
monophosphate (cGMP) via gap junction checks the 
activation of oocyte cAMP-phosphodiesterase enzyme 
that degrades intracellular cAMP and by-passes 
meiotic resumption (21). Recent studies showed a 
close association between developing oocyte and 
surrounding cumulus cells. The interactions mediated 
by gap junction communication and oocyte secreted 
paracrine factors are crucial determining factors in 
regulation of follicle growth and differentiation. Gap 
junctions allow the passage of different types of 
molecules (amino acids, pyruvate) from cumulus cells 
to the oocyte (22). Oocyte promotes the expression of 
NPR2 (natriuretic peptide receptor 2) on the cumulus 
cells. On activation, NPR2 stimulates the production of 
cGMP which inhibits PDE3A activity within the oocyte. 
Recently, in vitro experiments clearly revealed the role 
of GDF9, BMP15, FGF8 and estradiol in the regulation 
of NPR2 expression and activity (23). Thus oocyte 
meiotic maturation involves a cascade of events that 
initiates with LH surge and ends in the extrusion of 
first polar body. LH surge is followed by expansion of 
cumulus cells which initiates with the accumulation of 
hyaluronic acid within the cumulus cells in response 
to gonadotropins. LH surge further induces epidermal 
growth factor (EGF) like peptides that act through 
protein kinase A (PKA) and culminates in the elevated 
expression of transcripts like Has2, Ptx3 (Pentraxin3) 
and Tnfaip6 (tumor necrosis factor-induced protein-6) 
in the cumulus cells necessary for cumulus expansion, 
an event necessary for ovulation (24, 25). The release 
of developmentally competent oocytes from ovarian 
follicle at appropriate timing is under tight regulation. An 
ovulatory stimulus sensed by the somatic cells of follicle 
guides the resumption of meiosis, release of oocyte 
from the ovary as well as structural reorganization of 
the follicles (26). Successful ovulation is controlled by 
various endocrine, paracrine, immune and metabolic 
signals from the surrounding follicles and oocytes itself 
(27) as is shown in Figure 1.

5. HORMONAL PLAYERS OF OOGENESIS

5.1. Autocrine regulators

Many of the studies from past two decades 
have demonstrated that maturation of the cumulus-
oocyte complexes (COC) is regulated locally by 
gonadotropins. However additionally, an autocrine 
regulatory system and paracrine mode of cross-
talk between cumulus cells and oocyte play an 
indispensable role in sustaining the fertility potential of 
a female (28). The maturation of the COC is triggered 
by an autocrine secretion of epidermal growth factor 
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(EGF)-like factors in the cumulus cells. These EGF- 
like factors stimulate their own synthesis, cleavage and 
release. Cleavage of EGF-like factors is sustained by 
members of disintegrin and metalloproteinase (ADAM) 
family thus, allowing the activation the EGF receptor 
(EGFR) in the cumulus cells (29). EGFR signalling 
stimulates oocyte maturation and synthesis of several 
proteins required for cumulus expansion such as, 
prostaglandin-endoperoxide synthase 2 (PTGS2), 
hyaluronan synthase 2 (HAS2), pentraxin 3 (PTX3) 
and tumor necrosis factor-stimulated gene 6 protein 
(TSG6) (30). The disruption of EGFR signalling has 
been shown to cause disruption of meiotic resumption 
in mice, thus highlighting its significance in oocyte 
nuclear maturation (31).

5.2. Paracrine regulators

Earlier studies reported that early preantral 
follicles are independent of hormonal regulation, 
although follicle stimulating hormone receptors are 
seen on granulosa cells, both in mouse and humans 
(32). Later on, data reported the stringent regulation of 
preantral follicles by FSH and other local intraovarian 
factors. Local intraovarian paracrine factors released 
from oocytes, theca cells and granulosa cells like 

Granulosa cell derived natriuretic factor drives the 
growth of preantral and antral follicles (33). TGFβ 
superfamily are pleiotropic cytokines and versatile 
regulators of numerous biological functions in 
metazoans. They play crucial role during cellular growth 
and tissue morphogenesis. Prospective functions of 
TGFβ in reproduction involve regulation of secondary 
sexual development, spermatogenesis, ovarian 
function, immunological regulation of pregnancy, 
embryonic implantation and placental development 
(34). Cell and tissue specific conditional knock-out 
studies have provided platform for understanding 
the in vivo functions of TGFβ superfamily signalling 
in reproduction and fertility. The TGFβ superfamily 
consists of more than 40 proteins discovered till date 
which share 30–80% sequence homology.

The most characterized modules of the TGFβ 
signalling pathway includes ligands, receptors, and 
SMAD transducers (SMA and MAD (mother against 
decapentaplegic-related proteins). Ligands of TGFβ 
includes activins/inhibins (activins A, AB, B, inhibins A, 
B), bone morphogenetic proteins (BMPs), growth and 
differentiation factors (GDFs), anti-Müllerian hormone 
(AMH) also known as Mullerian-inhibiting substance, 
and nodal growth differentiation factor (35,36). TGFβ 

Figure 1. Genetic dissection of female fertility pathways in human. Every woman has a pool of resting oocytes in the form of primordial follicle. Various 
transcriptional regulators are involved in the recruitment and maintenance of follicles. Once these follicles are depleted, a woman cannot conceive 
naturally. Further development of follicles is gonadotropin dependent followed by ovulation.
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ligands bind to their receptors and interact with SMADs 
to activate gene transcription. TGFB1R (TGFβ receptor 
1) is a major Type 1 receptor of TGFβ ligands. The 
role of TGFβ signalling has been extensively studied 
in oogenesis and female reproduction. From the very 
early stages of oogenesis, two well-known members of 
TGFβ superfamily, GDF9 and BMP15 act as a positive 
regulator in the transition of preantral to antral stage. 
These two molecules act in a hormone independent 
manner and regulate granulosa cell proliferation. A 
clear participation of androgens and oocyte secreted 
factors has also been indicated in various studies. 
Another two members of TGFβ superfamily, activin and 
inhibin have an opposing effect in follicle development. 
Though activin is expressed in majority of the tissues, 
circulatory Inhibin is chiefly secreted from ovary and 
testis (37). Inhibin A and Inhibin B are produced during 
various stages of follicular development (38). Both 
inhibin A and inhibin B acts on pituitary to suppress 
FSH secretion, without causing any affect to the LH 
secretion. The principle site of inhibin synthesis in 
female is granulosa cells (39). In general, activin 
(Activin-A and Activin-B) are known to increase the 
follicle diameter as well as differentiation of granulosa 
cells however it seems to stimulate the follicular 
growth in the immature ovary and suppress the growth 
of surrounding follicles in adults (40). A large number 
of seminal studies have highlighted the potential of 
inhibin and activin in modulating the potential of the 
oocyte to undergo meiosis (41). Inhibin-A and Inhibin-B 
checks the active cell proliferation and ovarian tumor 
development (42, 43, 44). Another FSH suppressing 
protein, isolated from the ovarian follicular fluid is 
follistatin. This protein however, shows no homology 
with the activin/inhibin family (45,46). The actions of 
follistatin are reported to promote luteinization (47,48).

A group of investigators generated a 
conditional knockout (cKO) of TGFβ receptor 1 (Tgfbr1) 
in the female reproductive tract and found that Tgfbr1 
cKO females show impaired embryonic development 
due to the formation of an oviductal diverticulum (36). 
Leiomyoma, commonly known as uterine fibroid, 
is a leading cause of fertility disorders and mortality 
in women (49). Among the three TGFβ isoforms 
(TGFBs1–3), TGFB3 has been shown to play a crucial 
role in development of leiomyoma by promoting cell 
growth and fibrogenesis (50). Deregulated TGFβ 
signalling is associated with Intrauterine growth 
restriction (IUGR), a complication of fetal growth in 
pregnancy. Serum levels of TGF β1 in the IUGR fetus 
are found to be lower than controls (51).

5.3. Endocrine regulators

The progression of folliculogenesis and 
ovulation is dependent on pituitary gland secreted 
gonadotropins, Follicle stimulating hormone (FSH) 
and Luteinizing hormone (LH). Principal actions 

of these hormones result in follicular maturation, 
steroidogenesis, granulosa cell luteinization and 
follicular rupture. These hormones act on the ovary 
to complete the maturation of follicles necessary 
before ovulation. Before a follicle ruptures and 
ovulates, it undergoes biochemical alterations like (i) 
increase in size, (ii) increase in LH/hCG receptors (iii) 
accumulation of cAMP (iv)increase in responsiveness 
from LH to FSH. Action of FSH and LH is mediated by 
binding with their respective receptors.

Knockout mouse models of FSH-R and 
LH-R showed the relevance of gonadotropin mediated 
signalling. Deficiency of FSH leads to infertility due to 
disruption of folliculogenesis and initiation of apoptosis 
(52, 53). Under the influence of gonadotropins, theca cells 
undergo active steroidogenesis producing androgens 
and estrogens. Acting through androgen receptor 
and estrogen receptor, steroids lead to granulosa cell 
proliferation and survival respectively (54). According 
to two-cell two- gonadotropin model, LH stimulation 
promotes theca cells to produce androgens and 
granulosa cells produce estrogen under the influence of 
FSH. Under the action of aromatase enzyme, estradiol 
is the predominant estrogen produced by pre ovulatory 
granulosa cells. It enhances the response of granulosa 
cells to the released gonadotropins. Members of 
Insulin growth factor (IGF) family (IGF1, IGF2) along 
with gonadotropins determine follicle selection and 
progression through different antral stages.

6. REGULATION OF SPERMATOGENESIS

Spermatogenesis is a process of male germ 
cell development which continues throughout the life 
of a male and underlies an orchestrated interaction 
between various metabolic pathways and factors. 
It starts with proliferation of spermatogonial stem 
cell and through a series of sequential divisions and 
differentiation gives rise to a mature sperm which fuses 
with egg to form a new individual. Thus, on one hand 
it has to be dynamic for regular production of gamete 
but has to ensure that it carries a healthy material for 
successful fertilization.

The anatomical compartmentalization of 
testicular tissue into the seminiferous tubule and the 
interstitium is achieved by peri tubular myoid cells 
which surrounds the seminiferous tubules. These 
compartments perform two essential functions of 
testis that is, the hormone production and germ cell 
development respectively. Though anatomically 
separated, both the compartments of testis are 
functionally connected.

Spermatogenesis starts with multiple rounds 
of mitotic spermatogonial stem cell (SSCs) division 
followed my meiotic division to produce primary 
spermatocyte. Primary spermatocyte divides to form 
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secondary spermatocyte which divides again to 
form round spermatids. The round spermatid then 
undergoes an extraordinary series of differentiating 
events that gives rise to a morphologically distinct 
mature sperm. This is during this phase when the sperm 
begins to form acrosomal and axonemal structures 
for successful fertilization and effective motility 
respectively. Further, it involves nuclear compaction 
and chromatin remodeling of the sperm head to form a 
microtubular structure known as manchette (55).

Sertoli cells also referred to as ‘nurse cells’ 
constitute the primary structural unit of seminiferous 
tubule. It nurtures the developing germ cells in the form 
of nutritional support by forming intimate cytoplasmic 
associations during various stages of germ cell 
development. Each Sertoli cell supports around 30–50 
germ cells (56). Residing at the basement membrane 
these cells occupy around 17–20% of the volume of 
seminiferous epithelium of an adult male (57).

In males, Leydig cell is the chief cell present 
in interstitium responsible for testosterone production. 
Interstitial space also harbours some other cells such 
as mast cells, fibroblasts and macrophages. Under 
the stimulation of LH secreted by anterior pituitary and 
FSH secreted by Sertoli cells, Leydig cells produces 
testosterone that diffuses through the interstitium to 
drive the spematogenic wave.

From the past one decade, discoveries on the 
critical regulation of spermatogenesis have evidenced 
the significance of several molecular pathways that 
are crucially involved in testicular homeostasis. Most 
of these studies come from the experiments performed 
on genetically modified mice. The dynamic process 
of cell proliferation and differentiation is regulated by 
various endocrine, autocrine and paracrine factors and 
signalling molecules that commits a germ cell to either 
“differentiate or die” (58).

6.1. Endocrine performers at spermatogenesis

The endocrine regulation of spermatogenesis 
is largely defined and directed by hypothalamic-
pituitary-gonadal (HPG) axis. The fundamental player 
of HPG axis include, the gonadotropin releasing 
hormone (GnRH), secreted by hypothalamus. A 
pulsatile release of GnRH regulate the secretion 
of FSH and LH. Abnormally low GnRH secretion in 
males may result in hypogonadotropic hypogonadism 
(HH) via decreased FSH and LH secretion (59). 
Inadequate functions of FSH and LH receptors and 
other signalling pathways of hormone synthesis due 
to genetic alterations may also result in abnormal 
spermatogenesis and male infertility.

Studies from past have highlighted a critical 
participation of testosterone in the maintenance of 

spermatogenic functions. FSH and testosterone are 
considered as master regulators of spermatogenesis. 
They perform their actions at multiple sites during 
spermatogenesis either alone or in concert. 
Testosterone performs its biological actions on 
spermatogenesis via androgen receptors (ARs) located 
on Sertoli cells (60). High testicular testosterone level 
and adequate expression of ARs on Sertoli cell is 
indispensable for male gonadal development (61). 
Various gene association studies on human have 
revealed that the loss of function mutation in FSHβ 
genes results in absence of sperm (azoospermia), 
and delayed virilisation in men. Recently, a peptide 
hormone known as INSL3 has come into picture. INSL3 
is secreted by Leydig cells and act as a downstream 
effector of HPG axis. It safeguards the action of LH 
and FSH for proper reproductive functions (62).

Sertoli cells utilize unusual features of 
cellular metabolism by preferentially metabolizing 
glucose to lactate. However, the reason behind 
preferential transportation of lactate to germ cells is 
not well understood (63). Germ cells utilize lactate as 
main energy substrate. Lactate has been reported to 
provide anti-apoptotic effect to the germ cells. Sertoli 
cells produce lactate under the influence of FSH, 
insulin and IGF-1 (64, 65, 66).

6.2. Autocrine and paracrine regulation

A wide variety of cytokines and growth 
factors are involved in regulating the process of stem 
cell renewal during spermatogenesis. Interleukin-1 
(IL-1) has been reported to play significant biological 
functions during spermatogenesis particularly during 
spermiogenesis (67,68). IL-1 expression is shown in 
various testicular cells such as Sertoli cells, Leydig 
cells, germ cells and macrophages. Human sperm 
produces bioactive IL-1 (69, 70, 71). IL-1 has been 
shown to effect Leydig cell proliferation and induction 
of acute inflammation in testicular circulation (72, 73, 
74). It also plays a crucial role in germ cell development 
by regulating glucose metabolism pathway (75). 
Some other factors which regulate spermatogenesis 
include Leukemia inhibiting factor (LIF), which is 
involved in primordial germ cell proliferation and cell 
survival (76,77). Similarly, stem cell factor (SCF) and 
its receptor c-kit are shown to regulate the migration 
and proliferation of primordial spermatogonial cell 
population.

The potential role of TGFβ superfamily 
in spermatogenesis has been extensively studied. 
TGFβ signalling acts a mediator of cell-cell interaction 
during development of seminiferous epithelium at 
the time of puberty. All the three isoforms of TGFβ 
ligand, TGFB1–B3 are known to in-vitro regulate the 
gonocyte, pubertal spermatogonia, and spermatocyte 
cell numbers in rodents via apoptosis(78,79). TGFβ3 
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is the major isoform expressed in mature testicular 
tissues of rat and the targets of TGFβ signalling are 
shown to be present on Leydig cells and gonocytes 
(80,81). Recently a group of researchers developed a 
conditional knockout of TGFβ receptor type II in germ 
cells of mouse. Most of the knock-out animals died 
during fetal life, the surviving adults however showed 
a loss of spermatogonial stem/progenitor cells and 
sterility (82).

7. GAMETOGENESIS AND  
ENVIRONMENTAL INTERVENTIONS

The ability of humans to actively manipulate 
the environmental resources is setting enormous 
threats on reproductive fitness and survival of 
individuals and the species in long run. The effect of 
environment on gametogenesis and embryonic health 
has been widely studied. Environmental exposures 
are even shown to cause transgenerational long term 
effects. Numerous natural and synthetic compounds 
are reported to effect endocrine organs and impair 
human health. During the last decade, the plethora of 
synthetic chemicals developed has upraised significant 
trepidations with respect to their hostile effects on 
health (83).

Endocrine-disrupting compounds (EDCs) 
are synthetic or natural compounds that interfere 
with hormone-regulated cell signalling pathways and 
effects gene expression (84). These compounds 
interfere with endogenous endocrine actions (85). 
EDCs may act via nuclear receptors, non-nuclear 
steroid hormone receptors, non-steroid receptors, 
orphan receptors, enzymatic pathways of steroid 
biosynthesis and various other mechanisms which 
regulate the endocrine and reproductive functions. 
Most commonly found EDCs include diethylstilbestrol 
(DES), a synthetic estrogen as well as industrial 
or agricultural substances such as plasticizers or 
insecticides, industrial solvents/lubricants and their 
derivatives such as polychlorinated biphenyls (PCBs), 
polybrominated biphenyls (PBBs), plasticizers 
(phthalates), plastics (bisphenol A (BPA)), pesticides 
(methoxychlor, dichlorodiphenyltrichloroethane (DDT) 
and fungicides (vinclozolin) (86, 87, 88, 89, 90). 
Natural chemicals present in edible food products such 
as genistein and coumestrol also act as endocrine 
disruptors (83). EDCs affect the hormonal pathways 
through various mechanisms. Pubertal timing can be 
influenced by either prenatal or postnatal exposure 
to EDCs. EDCs exposure can disrupt early stages 
of the CNS development and sexual differentiation. 
Recent evidences have suggested that exposure to 
EDCs can adversely affect the future progeny of the 
exposed individuals (91, 92, 93). Kisspeptins are 
neuropeptides encoded by the KISS1 gene and are 
broadly documented as the fundamental activators 
of the HPG axis at the inception of puberty (94). In 

rats, the neonatal exposure to EDCs such as BPA and 
genestein has been shown to obstruct the kisspeptin 
synthesis (95, 96).

The reports on the effect of EDs on female 
reproductive development are few. Some reports 
suggest that a high serum concentration of BPA is 
associated with increased risk of infertility in women 
(97,98). Elevated levels of serum DDT during pregnancy 
may also result in embryonic lethality (99). Additionally, 
occupational exposure to pesticides and plastics may 
also contribute as a risk factor for female infertility 
(100). The clinical relevance of EDs are implicated in 
the development of multitude of pathogenic infertile 
phenotypes in women such as endometriosis, various 
uterine disorders and ovarian dysfunctions, such as 
polycystic ovary syndrome (PCOS) and premature 
ovarian failure (POF) (101). Furthermore, in utero 
exposure to DES in women raises an 80% higher risk 
of endometriosis development than unexposed women 
(102). ED may impede folliculogenesis, resulting in 
meiotic aberrations such as aneuploidies and multiple 
oocyte follicles or follicular atresia. ED are also 
involved in depletion of follicular reserves, resulting in 
POF (103). This syndrome occurs before the age of 40 
years and affects around 1% of women (104).

A number of other lifestyle factors such as 
smoking, mobile phone usage, nutritional deficiencies 
may affect vital reproductive functions. A few studies 
have reported a decline in percentage of sperm cells 
and sperm motility in correlation with the frequency of 
mobile phones usage (105).

Consumption of a diet rich in carbohydrates, 
fiber, folate, and lycopene is correlated with enhanced 
semen quality. However, low consumption of proteins 
and fats are more beneficial for fertility. Furthermore, 
vitamin C has significant effects on semen quality 
(106). Obesity can also have significant effect on 
male and female infertility. Obese women present 
higher rate of recurrent and early miscarriage 
as compared to non-obese women (107). The 
association of obesity with erectile dysfunction is well 
documented (108). Psychological stress may also 
impair reproductive functions. Stress and depression 
are believed to decrease testosterone and LH 
pulses resulting in disruption of gonadal functions, 
which ultimately results in decline in normal sperm 
parameters (109, 110). Women who obtain support 
and counselling for increased anxiety and depression 
levels have increased chances of becoming pregnant 
(111). Cigarette smoking in men results in decrease 
in semen volume (112), decline in total sperm count, 
abnormal morphology, motility and poor fertilizing 
capacity (113, 114, 115). Chemicals present in 
cigarette smoke may impair the mechanism of 
oocyte pick-up and the transport of fertilized embryos 
which results in an increased incidence of ectopic 
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pregnancies, longer conception time and infertility in 
women (116). Soares et al. demonstrated that women 
with a smoking frequency of 0–10 cigarettes per day 
display a significantly higher pregnancy rate (52.2.%) 
than women who smoked 10 or more cigarettes per 
day (34.1.%), suggesting that cigarette smoking 
results in compromised uterine environment and 
lower pregnancy rate (117).

8. DETERMINANTS OF HEALTHY  
GAMETE: GOOD GUY OR BAD GUY

A drastic increase in female infertility rate has 
been observed from past decade. Fertility requires both 
sperm and egg to be potentially fit. Let’s first discuss 
about male gamete. Sperm is a DNA filled bag with a 
tail behind. A sperm is considered healthy if it contains 
normal DNA and is able to efficiently transfer its 
content to the egg. Once the sperm delivers the DNA, 
the rest of the job is taken by the egg to accomplish. 
It provides the environment for perfect combination of 
the two DNA and further replication and division in an 
equal fashion.

From the last one decade, massive studies 
across the globe have highlighted the biological 
competence of sperm in fertilization and embryonic 
development. Sperm morphology, progressive motility 
and concentration are some of the potential and 
classically known determinants of sperm quality (118). 
However, the recent evidences report that increase 
in DNA fragmentation particularly during the clinical 
settings of assisted reproductive technology has 
attracted enormous attention. This established DNA 
fragmentation index (DFI) as an autonomous predictor 
of fertility. It has been estimated that a DFI above a 
threshold of 30 % results in complete pregnancy 
failure, either by natural conception or by an aid of 
assisted reproductive technologies (ART). DFI thus 
plays as a predictive indicator for male fertility in vivo 
(119). A sperm carrying damaged DNA is associated 
with high frequency of miscarriage and pregnancy loss 
(120, 121, 122). A damaged DNA may get incorporated 
into the embryonic genome that results in severe 
pathological consequences. It can also potentially be 
inherited through the germ line in several generations 
(120). Thus it becomes particularly essential to screen 
the sperm quality before proceeding for assisted 
reproductive technologies.

Women are born with a particular set of eggs 
whose numbers start depleting as they age. Each ovary 
depletes their egg at its own rate. The career of egg 
starts from puberty and continues till menopause. With 
each menstrual cycle, the conception rate drops. Poor 
egg quality is one of the main reason of infertility in 
women. It is not only the number of eggs that matter but 
also the quality of eggs produced that effects fertility. 
Egg quality refers to ability of the egg to get fertilize and 

develop into embryo. The quality of egg determines the 
embryo implantation rate. The quality of egg declines 
with the age of women and poses a threat to fertility. 
There are certain factors that are responsible for the 
assessment of poor egg quality. They are: i) Diminished 
ovarian reserve ii) Advanced maternal age. Ovarian 
reserve is the ability of a woman’s ovaries to produce 
egg and giving birth to a baby (123). There are certain 
factors affecting ovarian reserve and age is one of 
them. The rate of infertility is universal and increases 
with age though the time is variable and may also occur 
in younger women. Two woman of the same age may 
have different probability of getting pregnant. In 20s or 
early 30s, a woman carries more good quality eggs but 
as she advances towards late 30s and 40s, quality and 
quantity both declines. Poor quality eggs are a major 
contributor towards infertility.

Ovarian reserve can also be affected at 
younger age. Genetic makeup of a woman and 
environmental factors like stress, smoking, alcohol 
consumption, cancer treatment or endometriosis 
may contribute to a decline in ovarian reserve of a 
woman. Ovarian reserve needs to be evaluated even 
in younger woman. There are few evaluation tests 
that are performed for assessing ovarian reserve of a 
woman who are suspected of being infertile and wish 
to go for Assisted Reproductive Technology like in-vitro 
fertilization. They include:

8.1. Day 3 FSH test

The evaluation begins with the test to measure 
the levels of hormone like FSH, LH and estradiol. 
They are generally measured at day 2, 3 and 4 of 
menstrual cycle. FSH level is most crucial among all. 
Brain establishes its connection with ovaries via FSH. 
When brain signals ovaries to mature and release an 
egg, the level of FSH rises, and once ovulation occurs, 
a signal is sent back to brain to stop the secretion of 
FSH, thus a feedback loop exists between brain and 
ovary. In case the communication between brain and 
ovary is disturbed, the level of FSH rises. Woman with 
abnormal FSH level at day 3 of the cycle are known to 
have poor ovarian reserve. They often face difficulty in 
conceiving and may lead to miscarriage if conception 
occurs.

8.2. Anti Mullerian hormone test (AMH)

A recent way to detect ovarian reserve 
is to check the level of AMH, a hormone secreted 
by cells residing within the developing follicle. The 
level of AMH in blood is a good indicator of ovarian 
reserve in a woman. AMH test tells us about fertile 
years of a woman and not about the quality of eggs 
she produces. The level of AMH does not vary with 
the cycle so the test can be done at any day of the 
month.
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8.3. Clomiphene citrate challenge test (CCCT)

Ovulation inducing agent, clomiphene citrate 
(Clomid, serophene) is provided to woman undergoing 
CCCT for five days. FSH and estradiol levels are 
analysed both before and after treating with Clomid. 
Abnormal FSH level shows poor chances of conception 
and successful pregnancy (124).

8.4. Basal antral follicle count

A transvaginal ultrasound study to measure 
woman’s ovarian reserve or remaining egg supply 
decides fertility potential. Antral follicle count predicts 
the number of mature follicles in the ovary. Along with 
woman’s age and day 3 hormone levels, the basal 
antral follicle count is tested for women who are at 
risk of infertility and are planning to go for in-vitro 
fertilization.

8.5. Lifestyle and gamete quality

A poor diet and lifestyle can severely affect 
the fertility potential of an individual. Ovaries need a 
good blood supply of oxygen, nutrients and hormones 
to perform its function in an uncompromised manner. 
Blood supply is related to both quantity and quality of 
eggs within the ovary. As we know that potent oxidant 
increase with age and accumulates more with intake of 
highly cooked foods or with higher sugar consumption. 
In males, an imbalance of reactive oxygen species 
causes sperm DNA damage. In females, oxidation 
product accumulation correlates well with the 
decreased viability of granulosa cells and thus leading 
to poor egg and embryo quality. Studies reported that 
antioxidants act to reduce reactive oxygen species 
including superoxide anions, hydroxyl radicals and 
hydrogen peroxide (125). A better diet with more 
fruits, green vegetables, green tea rich in antioxidants 
are recommended for better egg quality. Dietary 
modifications have also been shown to improve 
ovulatory infertility disorder. Commonly reported 
supplements and dietary intake include vitamin C, D, E 
and folate. Studies show an increased rate of infertility 
in women, having Vitamin D deficiency. Women with 
higher Vitamin D level in their follicular fluid and 
serum showed good pregnancy result following IVF 
(126). The incidence of infertile men is also quite high 
having Vitamin D deficiency (127). Similarly Vitamin E 
deficiency is also related with negative reproductive 
outcomes in males and females affecting sperm 
motility in men and egg quality in women (128).

Folate is another important component 
that is needed for the synthesis of DNA, transfer 
RNA, methionine and cysteine required for rapid cell 
growth. DNA synthesis plays a crucial role in germ 
cell development; therefore folate is an obvious 
component to play its role in reproduction. Limited 

knowledge is available about its functional outcome 
in infertile couples. Studies from our lab have already 
established an association of folate and other 
derivatives with adverse pregnancy outcome like 
early miscarriage in North Indian population (129, 
130). Folate supplementation during pre-conception 
period may improve various reproductive outcomes 
(131). Studies by Steegers-Theunissen et al., Brouns 
et al., Szymanski and Kazdepka-Zieminska, showed 
that women who received folic acid supplementation 
had better quality of eggs as well as good ovarian 
reserve (132, 133, 134). Folate has diverse role to 
play in different stages of female reproduction like 
oocyte maturation, implantation, placenta formation 
and embryo development. Because of its essential 
role in DNA synthesis and repair, folic acid present at 
preimplantation stage is essential for proper embryo 
development in mouse (135). Nutritional status of 
mother defines future fetal growth and development. 
It does not tell us that pregnant woman should ‘eat for 
two’, as various animal studies show that both maternal 
undernutrition and over-nutrition reduce placental-fetal 
blood flow and stunt fetal growth. Fetal growth is most 
vulnerable to maternal dietary deficiencies of nutrients 
(e.g., protein and micronutrients) during the peri-
implantation period and the period of rapid placental 
development. Folate supplementation during pre-
conception period may improve various reproductive 
outcomes.

Another important factor is obesity, especially 
in woman, as it interferes with the process of ovulation. 
Obese women are more prone to face poor pregnancy 
outcomes like stillbirth and miscarriage even when 
they are ovulating. Obesity in males is associated with 
erectile dysfunction and reduced libido (136). Obesity 
also results in deposition of fat in testes (137). Smoking 
is other environmental factor adversely effecting 
quality of the gamete. In females, natural fertility is 
greatly affected and rates of successful pregnancy 
with IVF decreased by 50%. Second hand smoking 
in infants leads to asthma, bronchitis, pneumonia and 
infant death syndrome. Active and passive smoking 
are harmful for both mother and infant. Several studies 
have highlighted the adverse effects of smoking on 
sperm quality. A recent study reported that smokers 
have significantly lower semen quality than non-
smokers (138).

Alcohol and caffeine consumption in woman 
are known to have synergistic effect on infertility. 
Significant intake of caffeine reduces the chances 
of successful pregnancy with IVF. Similarly, in men, 
alcohol intake may lead to decreased libido and sexual 
potency (139). Alcohol abuse can also result in altered 
testosterone production and can result in testicular 
shrinkage (140). Finally, any discussion on lifestyle and 
fertility is incomplete without talking of stress, anxiety 
and depression. The effect of environment and lifestyle 
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on gametes health is shown in Figure 2. A sharp 
decline in successful pregnancy rate involves stress 
as a major factor involved behind it. Stress reduction 
programs can play its role up to a certain extent but 
it depends on the couple to modify their lifestyle and 
choices and lessen the chances of failing pregnancy 
and adverse outcome. In conclusion, we can say that 
unlike genetic causes, environmental and lifestyle 
factors can be targeted for preventive measures.

9. GAMETE INTERSECTION: THE PLAYERS 
OF FERTILIZATION WINDOW

Mammalian gamete intersection is an 
intricate process of cell-cell interaction and signal 
transduction event that initiates with the maturation 
of the gametes in the oviduct and terminates with 
the formation of a zygote in receptive endometrium. 
Reproduction comprehends a series of different steps 
which has to be accomplished in a well-orchestrated 
manner to form the first cell of a new individual known 
as zygote. Post coitus, entry of sperm into the female 
reproductive tract culminates in various events like 
sperm capacitation, oocyte activation followed by 
binding and penetration into zona pellucida. These 
events are regulated by several variables which 
are secreted by oviduct. A failure of synchronization 
among these variables may lead to infertility related 
issues. Oviduct or fallopian tubes are the site for sperm 

capacitation, oocyte fertilization and early embryonic 
development. Functionally, oviduct plays important 
role in both hosting gametes and matching the optimal 
environment for maintenance of fertilization window.

Numerous evidences strongly support the 
fact that oviduct undergoes important modifications in 
numerous aspects, including its anatomy, histology and 
physiology of the mucosa. More precise information 
however, is needed about the genes expressed, 
proteins synthesized and secreted from the oviduct in 
different regions to clarify the key players of fertilization 
window. In this section, we focused on oviduct and its 
secretory proteins functions necessary for fertilization 
and implantation. We also discussed molecular 
determinants of sperm capacitation, acrosome 
reaction and cortical reaction during sperm-egg fusion.

Oviduct helps sperm to navigate toward the 
egg after being placed in the female reproductive 
tract. Oviduct also contributes in cryptic female choice, 
regulating the entry of only few sperm out of millions. The 
mechanisms of cryptic female choice are retrograde 
flow of sperms after coitus due to active contractions 
of female reproductive tract and selective phagocytic 
ingestion of sperms by neutrophils inside oviduct. 
Spermiation releases functionally incompetent and 
immotile sperms from the seminiferous tubules which 
are activated in epididymis producing motile sperm 

Figure 2. Various determinants of gametogenesis.
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with symmetrical flagellar beats and linear trajectory 
motion. Once they reach in the female reproductive 
tract, they interact with oviduct. Only few sperm reach 
the oviduct, they wait for several days until ovulation 
occurs. Oviduct microenvironment supports the 
viability of sperm population. Acidic vaginal pH is also 
helpful in sperm selection event by immobilizing the 
abnormal sperm. Oviductal fluid is a complex mixture 
of identified and unidentified components produced 
by oviductal epithelial cells and plasma transudate. 
Functionally, oviductal secretions are known to be 
involved in Zona pellucida (ZP) maturation and ZP 
hardening during gamete intersection (prevention 
of polyspermy) and active sperm physiology (110). 
These molecular factors can be classified in different 
groups as: (i) growth factors and their receptors (ii) 
hormones and their receptors (iii) proteases and 
inhibitors (iv) antioxidants(v) defense agents (vaginal 
pH) (vi) glycosidases and glycosyltransferases (viii) 
chaperones and heat shock proteins (ix) cytokines 
and their receptors (x) glycosaminoglycans and 
proteoglycans (141). These factors are essential for 
the sperm’s maturation and receptive endometrium 
preparation. Disturbance in oviductal fluid components 
may lead to defective sperm capacitation, acrosomal 
reaction and non-competent blastocyst development. 
Various proteins responsible for maintenance of 
sperm motility and vitality, oocyte and endometrium 
preparation are summarized in Table 1. Increasing 
knowledge about the biochemical nature and function 
of the oviduct fluid will allow us to develop better 
assisted reproductive technologies, embryo culture 
medium and condition to improve the low rate of 
blastocyst formation in humans.

Various reports suggest that oviduct 
provides a microenvironment for sperm capacitation. 
Capacitation involves morphological, biochemical and 
physiological changes in sperm that confers the sperm 

ability to gain hyperactivated motility, actin remodeling, 
initiation of acrosomal reaction (AR) and gamete fusion. 
Recent studies shows that there is increase in Ca2+, 
bicarbonate (HCO3−) concentration, intracellular pH, 
cyclic adenosine monophosphate (cAMP) levels, 
reactive oxygen concentration and Kinase/Proteases 
activity for acquisition of motility and fluidity in sperm 
membrane. However inhibition in phosphatases 
activity and shedding of proteins and cholesterol from 
the sperm plasma membrane are required (142).

After capacitation, sperm are sequentially 
released from the reservoirs and rapidly transported 
to the fertilization site where acrosomal reaction takes 
place (143). Several glycoproteins, carbohydrates 
and adhesion proteins regulate actin remodeling 
process during these events. A study demonstrated 
that focal adhesion complexes (β1-integrin, FAK, 
paxillin, vinculin, talin, and α-actinin linked with 
integrin), present in mammalian spermatozoa are 
essential for maintaining the integrity of the acrosome 
via actin polymerization as well as remodeling (144). 
Another study suggests that a network composed 
of Ezrin, RhoGDI1, RhoA, F-actin and membrane 
proteins influence the fluidity of the sperm membrane 
to promote capacitation (145). Hyperactivation is 
a change in flagellar beating of sperm that reduces 
interaction between sperm and epithelium, initiates 
acrosomal reaction in sperm and aids sperm 
penetration into the zona pellucida of secondary 
oocyte. A study demonstrated that sperm from male 
mice that are null mutants for CatSper1 or CatSper2 
gene fails to get hyperactivated and penetrate 
the zona. This study suggested that CatSper1 or 
CatSper2 genes play important role in infertility 
related issues. Mice homologues PDC-109 protein 
have heparin binding ability and is probably involved 
in stabilizing sperm membranes, reducing membrane 
fluidity and cholesterol mobilization (146).

Table 1. Key regulators for sperm motility, vitality, maintenance and oocyte preparation

S.No. Proteins Function Reference

1 Glycodelin A and F Inhibit capacitation, Inhibit Spermatozoa-zona pellucida binding (165)

2 Glycodelin S Suppresses albumin-induced cholesterol loss, Maintains the 
spermatozoa in an uncapacitated state

(166)

3 Lactoferrin Inhibit gamete interaction and prevent polyspermy (167)

4 Oviduct-specific
glycoprotein (OVGP1)

Functional modification of the ZP, Promotes sperm capacitation, 
Increased embryo development

(168)

5 Glucose-regulated protein78 (Grp78/BiP) Modulates sperm-zona pellucida binding (169,170)

6 Acrosin ( serine protease) Activation of acrosome components, Secondary binding with the ZP, 
Hydrolysis of the ZP

(171)

7 SPESP1 (Sperm Equatorial Segment Protein 1) Gamete interaction (172)

8 TSSK6 (testis-specific serine kinase) Actin polymerization (173)

9 Calpains Spectrin cleavage, Acrosomal Reaction, Gamete fusion (174)

10 Human membrane cofactor protein (CD46) Stabilization of the acrosomal membranes (175)
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In humans, oocytes arrested in prophase 
of meiosis I contain zona pellucida (ZP) proteins 
and undergo posttranslational modifications during 
progression of the oocyte towards metaphase of the 
second meiotic division. Human ovum is enveloped by 
ZP, which is transparent, porous and is glycoprotein 
coated. Human Zona pellucida (ZP) contains ZP1, 
ZP2, ZP3 proteins ZP4 where ZP3, ZP1, ZP4 acts 
to activate the acrosome reaction and ZP2 act as 
secondary acceptor for capacitated spermatozoa. A 
study demonstrated that only ZP2 protein undergo 
N linked glycosylation modifications via the activity 
of proteases released by the cortical granules during 
meiotic maturation of human oocytes. Cortical granule 
released in maturing human oocytes is involved 
in zona resistance after sperm penetration (147). 
Above study suggest that the zona resistance to 
sperm penetration is stabilized by factors secreted 
by the cumulus cells, particularly during Metaphase 
I to Metaphase II transition (148, 149, 150). Recent 
study documented that Estrogen-dependent oviduct-
specific glycoprotein (OVGP1) is involved in sperm-
egg binding and zona penetration rates in human 
(168). Another study suggested that notable increase 
in progesterone, estradiol and luteinizing hormone in 
the female reproductive tract must favor sperm-egg 
encounter and fusion (151).

Cortical reaction, also known as cortical 
granule exocytosis (CGE) is a calcium- regulated 
event. Cortical granules contain proteinases, 
ovoperoxidase, N-Acetylglucosaminidase, hydrolase 
that harden the zona pellucida (152, 153). Cortical 
reaction is mediated by activation of the inositol 
phosphate (PIP2) signalling cascade. The sperm-
egg fusion, facilitated by G-protein’s activation, might 
activate the generation of two important second 
messengers, IP3 and diacylglycerol (DAG). IP3 
induces Ca+2 release from endoplasmic reticulum 
and the latter activates PKC, thus leading to the 
membrane fusion of the oocyte and CGs. Sperm-
egg fusion and cortical reaction lead to changes 
that includes polyspermy prevention, resumption of 
the cell cycle and initiation of the embryonic mitotic 
divisions. In mammals, sperm enters the surface of 
the egg almost tangentially and fuses with numerous 
plasma membranes. Sperm nucleus undergoes 
chromatin decondensation and reconstruction by 
coalescing vesicles. Sperm nuclear DNA is bound 
by basic proteins called protamines, which are 
tightly compacted through disulfide bonds. In the egg 
cytoplasm, glutathione reduces these disulfide bonds 
and permits the uncoiling of the sperm chromatin. 
The mammalian male pronucleus enlarges and 
parallely the oocyte nucleus completes its meiotic II 
maturation. The centrosome associated with the male 
pronucleus produces its asters and interacts with 
the female pronucleus. Each pronucleus migrates 
toward the other and the two nuclear envelopes 

break down. However, instead of producing a 
common zygote nucleus, the sperm-derived and 
egg-derived chromosomes condense separately. At 
prometaphase, chromosomes from the sperm and 
egg intermix on the metaphase equator and a mitotic 
spindle initiates the first mitotic division for completion 
of zygote journey (154).

10. FROM ZYGOTE TO EMBRYO:  
WHAT MAY GO WRONG DURING  
IMPLANTATION WINDOW?

For successful accomplishment of zygote 
to embryo journey, fusion of healthy sperm and 
an egg (ovum) is the pre-requisite event, failure of 
which may lead to defective implantation. Mouse 
and human preimplantation embryo development 
is orchestrated by a series of mitotic divisions and 
cellular differentiation that leads to the formation of 
a multicellular embryo. A zygote undergoes several 
cleavage events, passing through various embryonic 
stages, including 2-, 4-, and 8-cell stage followed by 
compaction (morula formation), cavitation (blastocyst 
formation), zona hatching and finally gets implanted 
into the uterine wall.

Implantation of a blastocyst is a refined 
multistep process which is strongly regulated by 
numerous endometrial factors. During implantation, 
several biochemical changes take place, like cell to cell 
contact between functional blastocyst and receptive 
endometrium, blastocyst invasion and endometrial 
remodeling. Receptive endometrium is rich in 
numerous factors such as growth factors, hormones, 
cytokines, chemokines, proteases, anti-proteases and 
other unknown factors that have a potential to modulate 
blastocyst activity. Embryo-endometrial crosstalk 
disturbances underlie unexplained infertility, recurrent 
implantation failure and early miscarriage related issues; 
enhanced knowledge of this crosstalk, specifically at 
initial fetal-maternal crosstalk may disclose new targets 
to resolve these pregnancy related issues.

11. EMBRYO IMPLANTATION:  
KEY REGULATORY MOLECULES

Embryo implantation is a regulated and 
intricate event which requires a functional blastocyst and 
receptive endometrium for successful establishment 
of pregnancy. The key events demonstrated are: 
1. Blastocyst orientation 2. Apposition (shedding 
of ZP) 3. Blastocyst adherence to the endometrial 
surface 4. Finally, blastocyst gets implanted into the 
receptive endometrium followed by invasion into the 
stroma. Receptive endometrium secretes numerous 
instructional signals and nutritional factors for the 
development of blastocyst (Table 2). In this section, we 
have summarized the role of these factors in endometrial 
receptivity and implantation.
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11.1. Uterine secretions

Uterine secretions are believed to play 
important roles in blastocyst/conceptus survival 
and implantation, uterine receptivity, stromal cell 
decidualization and protection of semiallogenic 
fetus from maternal immune attack in mammals. 
Another important function of uterine fluid includes 
its defensive activity against invading pathogens, 
sperm migration, and lubrication of endometrium. 
Uterine gland secretions include amino acids, ions, 
carbohydrates (glucose), lipids, proteins (cytokines, 
enzymes, hormones, growth factors, proteases 
and their inhibitors, transporters, etc.) and other 
substances in the human uterus (155). A study 
suggest that uterine fluids have different types of 
inflammatory molecules such as Interleukin (IL)-1 
beta, IL-6, IL-12, IL-18, tumor necrosis factor-alpha 
(TNF-alpha), macrophage migration inhibitory factor, 
monocyte chemotactic protein-1, interferon gamma 
inducible protein-10, vascular endothelial growth 
factor (VEGF) for receptive endometrium preparation 
(156). Another study conducted by Bhusane et al 
suggest that uterine fluids have seven differentially 
abundant proteins in the receptive endometrium such 
as alpha-2-macroglobulin, serum albumin, activin 
receptor type-2B, AAT, interalphatrypsin inhibitor 
family heavy chain-related protein (157). Endometrial 
factors have been suggested to explain implantation 
failure and poor reproductive potential of patients 
with polycystic ovary syndrome. Exogenous hormone 
stimulation produces an asynchrony in the secretion 
of uterine fluid proteins.

11.2. Adhesion molecules

Adhesion of the embryo in the receptive 
endometrium is a crucial step in implantation. The 
mother and embryo influences the expression of 
adhesion molecules that is necessary to establish 
a successful pregnancy. Endometrial adhesion 
molecules including cadherins, integrins and selectins 
are known to involve in large number of cellular 

processes like apposition, adhesion, migration, and 
invasion process of embryo.

Selectins, integrins, cadherins, trophinin and 
heparin-binding epidermal growth factor (HBEGF) 
play an essential role in implantation (apposition and 
adhesion). To understand the embryo-endometrial 
interaction, possible mechanism is described as: 
1. integrin–extracellular matrix (ECM) molecule 
attachment 2. integrin-integrin with osteopontin ligand 
3. integrin-selectin interaction 4. tastin/trophinin–tastin/
trophinin attachment 5. cadherin-11 interaction coupled 
by calcium ion 6. lectin-glycan interaction 7. glycan–
glycan attachment.

The glycoproteins also expressed in the 
luminal epithelium are supposed to act as a uterine 
barrier which inhibits the interaction between the 
trophoblasts and luminal epithelium at the time of 
attachment (158). Unmasking of these glycoproteins 
at the implantation site correlates with increased 
blastocyst adhesiveness to the uterus (159). For 
example, MUC1, a mucin-type glycoprotein, is 
integrally located in the apical plasma membrane of 
the luminal epithelium before implantation, however, 
its expression substantially down-regulates during the 
receptive period in a time dependent manner (160).

Fertilization window is narrow time period that 
is indispensable for functional blastocyst attachment. 
It is an ovarian steroid-dependent phenomenon that 
encompasses key elements essential for proper 
hatching, adhesion and attachment of embryo. In 
humans, the fertile window spans around three days i.e. 
from LH+7 to LH+11 (day 20 to day 24) (161). During 
fertile window, endometrium undergoes histological 
modifications such as pinopods appearance i.e. 
belb like protrusions found on the apical surface of 
the endometrial epithelium and acquire adhesion 
ligands to receive the functional embryo. Endometrial 
pinopods express leukemia inhibitory factor (LIF) and 
its receptor, progesterone and integrin αVβ3at mid 
secretory phase which is necessary for blastocyst 

Table 2. Key determinants of embryo implantation

S.No. Proteins Function References

1 Selectins Leukocyte transendothelial trafficking or Leukocyte rolling, Blastocyst apposition (176,177,178)

2 Integrins Cell–matrix and cell–cell adhesion (161)

3 Immunoglobulins Cell–cell adhesion, Transendothelial migration of leukocytes (161)

4 MUC1 Negatively regulates embryo implantation (161)

5 Cytokines (LIF, IL-6, IL-1, HMGB1) Create pro-inflammatory microenvironment for receptive endometrium preparation (161)

6 Prostaglandins Vasoactive factors, Play an important role in ovulation, fertilization and parturition (179)

7 Galectins Supports blastocysts attachment on Luminal Epithelium (180)

8 Heparansulfate proteoglycan (HSPG) Initiating the implantation adhesion cascade (181)
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attachment (162, 163, 164). Studies suggest that 
pinopods detection during the mid-secretory phase 
may be extremely useful for the endometrial receptivity 
assessment.

In a nut shell, oviduct and receptive 
endometrium has an active role in fertilization. If 
anything goes wrong at any stage of ovulation or 
fertilization, the whole process (from gametogenesis 
to fertilization) will be repeated again for successful 
conception. Like egg may not ripen; ripened egg may 
not be released through ovulation; ovulated egg may 
not come to intimate contact between adequately 
numerous, motile or healthy sperm, egg may not get 
fertilized, fertilized egg may not cleaved or not implanted 
properly, endometrium may not be receptive for healthy 
conceptus as shown in Figure 3. Numerous molecular 
mediators are involved in regulating these events 
like intrauterine cytokines, growth factors, adhesion 
molecules and hormones. Understanding the molecular 
mechanism related to fertilization window is the need of 
the hour which will open new methods for clinicians to 
treat infertility and recurrent implantation failure related 
issues and to develop new contraceptive approaches.

12. FUTURE DIRECTIONS

The formation of a genetically and 
functionally proficient gamete is indispensable for 
normal fertilization and early embryonic development. 
A multitude of signalling pathways, intricate series 
of interactions and molecular events are involved 
in sustaining the process of gamete formation and 
its way towards fertilization and development of a 
healthy embryo.

Despite enormous feats and advancement 
in the reproductive research arena, the frequency of 
infertility is still snowballing. The escalating incidences of 
infertility can be attributed to widespread etiologies that 
uncover several genetics, epigenetic and environmental 
factors culminating in poor gamete quality and fertilization 
failure. Though the Assisted reproductive technologies 
have provided some relief to the infertile couples, the 
quality of gametes and embryos still remain questionable. 
Investigations on the molecular mechanisms underlying 
the development of a poor quality gamete and fertilization 
failure are the need of the hour.

Implantation failure seems to be the 
bottleneck of the reproductive event. While a number 
of factors have been identified in the last one 
decade, substantial lacunae entail to understand the 
mechanism that manifests implantation failure. The 
definitive goal of reproductive research at this point 
must be directed towards deciphering the functional 
characteristics of a healthy gamete and to identify 
potential biomarkers that define the mechanisms 
underlying healthy embryonic development.

The knowledge, acquired from this line 
of research, will surely assist investigators to treat 
infertility and recurrent implantation failure related 
issues and will help in developing new approaches and 
specific therapeutics measures for the optimization of 
embryonic health.
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