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1. ABSTRACT

Nitric oxide (NO) acts as a major signal 
molecules and modulate physiology of mammalian 
oocytes. Ovarian follicles generate large amount of 
NO through nitric oxide synthase (NOS) pathway to 
maintain diplotene arrest in preovulatory oocytes. 
Removal of oocytes from follicular microenvironment 
or follicular rupture during ovulation disrupt the flow 
of NO from granulosa cells to the oocyte that results 
a transient decrease of oocyte cytoplasmic NO level. 
Decreased NO level reduces cyclic nucleotides level 
by inactivating guanylyl cyclases directly or indirectly. 
The reduced cyclic nucleotides level modulate specific 
phosphorylation status of cyclin-dependent kinase 
1 (Cdk1) and triggers cyclin B1 degradation. These 
changes result in maturation promoting factor (MPF) 
destabilization that finally triggers meiotic resumption 
from diplotene as well as metaphase-II (M-II) arrest in 
most of the mammalian species.

2. INTRODUCTION

Meiotic cell cycle in mammalian oocyte 
involves several stop/go channels (1–3). Follicular 
oocytes are arrested for the first time at diplotene 
stage and remain arrested at this stage in the ovary 
from birth to puberty (2, 4–9). The diplotene arrest 
for such a long period is mainly due to continuous 
transfer of several signal molecules from encircling 
granulosa cells to the oocyte via gap junctions (5, 
10–12). Pituitary gonadotropins surge disrupt gap 
junction and cumulus-oocyte communication, which 
interrupt supply of several signal molecules to the 
oocyte leading to meiotic resumption from diplotene 

arrest (13–17). Further, physical removal of encircling 
granulosa cells disrupt transfer of signal molecules to 
denuded oocyte resulting in spontaneous resumption 
from diplotene arrest under in vitro culture conditions 
(3, 12, 18–20).

Meiotic cell cycle in follicular oocyte progresses 
from diplotene arrest to metaphase-I (M-I) stage (5) and 
further gets arrested at metaphase-II (M-II) stage by 
extruding first polar body (PB-I) at the time of ovulation 
in most of the mammalian species (2, 8, 9, 21, 22). 
These freshly ovulated oocytes remain arrested at 
M-II stage until fertilization (2, 3, 12, 20–25). However, 
if fertilization does not occur, postovulatory aging 
mediates spontaneous exit from M-II arrest by triggering 
the initiation of extrusion of second polar body (PB-II) 
in oocytes of several mammalian species (22, 26, 27). 
However, PB-II does not get completely extruded and 
oocytes are further arrested at metaphase-III (M-III) like 
stage (20–24, 28, 29).

Several signal molecules are involved in meiotic 
cell cycle regulation of mammalian oocytes. These signal 
molecules are generated either by encircling granulosa 
cells or oocyte itself (2, 3, 13–17). Changes in levels 
of these signal molecules decide whether meiotic cell 
cycle has to be resumed or remain arrested at diplotene 
stage or M-II stage (12, 13, 16, 20, 30). The adenosine 
3’,5’-cyclic monophosphate (cAMP), guanosine 
3’,5’-cyclic monophosphate (cGMP), hydrogen peroxide 
(H2O2), calcium (Ca2+) and nitric oxide (NO) are major 
signal molecules involved in the modulation of meiotic 
cell cycle in mammalian oocytes (2, 3, 5, 20).
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It is accepted that NO is one of the major 
signal molecules that alters oocyte physiology (31–
33). It is generated through enzymatic as well as non-
enzymatic pathways in various cell types including 
follicles of mammalian ovary (5, 34). The enzymatic 
pathway includes nitric oxide synthases (NOS) that 
are responsible for NO generation in mammalian 
ovary. These enzymes convert L-arginine to L-citrulline 
to generate NO in various cell types (35). NO is also 
generated through non-enzymatic pathway from nitrite 
at low-pH under reducing conditions involving H2O2 and 
D- or L-arginine (36–39). The NO generated through 
non-enzymatic pathway may also play a similar role as 
NO generated enzymatically (40).

The NOS genes are expressed in ovary, 
oocyte, follicles and granulosa cells suggesting 
their roles during folliculogenesis, oocyte growth 
development and meiotic maturation (33, 41–48). All 
three NOS isoforms, neuronal nitric oxide synthase 
(nNOS), endothelial nitric oxide synthase (eNOS) and 
inducible nitric oxide synthase (iNOS) are expressed 
at various stages of folliculogenesis in mouse, rat, 
porcine and bovine ovaries (49–53). The eNOS and 
iNOS levels increase in theca and granulosa cells 
during follicular development in porcine ovary (54). In 
addition, eNOS mRNA has been detected in rat ovary 
and porcine oocytes cultured in vitro (49, 55). Recent 
studies show the involvement of NOS/NO system in 
the control of meiotic maturation of cumulus-oocyte 
complexes (COCs) (35–48).

The involvement of NO in the regulation 
of oocyte meiotic cell cycle has been reported 
in several mammalian species. However, a 
discrepancy exists between the level of NO and 
meiotic cell cycle resumption/arrest. Few studies 
suggest that increase in the level of NO derived from 
both eNOS and iNOS induce meiotic resumption 
from diplotene arrest (34, 41–43, 54, 56–59) as well 
as M-II arrest (26). However, other reports advocate 
a transient decrease of NO level during meiotic 
resumption from diplotene arrest (19, 60–64) as well 
as M-II arrest (65). A reduced level of NO reduces 
guanylyl cyclase (GC) activity, reduces cAMP level 
by decreasing adenylyl cyclase (AC) activity in 
oocyte cytoplasm (5, 60, 66, 67). The reduced cyclic 
nucleotides level signals downstream pathways to 
destabilize maturation promoting factor (MPF) that 
finally triggers meiotic resumption from diplotene 
arrest as well as M-II arrest in several mammalian 
species (3, 11, 12, 68).

This review mainly focuses on NO signaling 
during meiotic cell cycle resumption from diplotene 
stage, progression via M-I to M-II stage, a period 
when oocyte achieve meiotic competency. Further, 
we have attempted to update the involvement of NO 
during meiotic exit from M-II stage, a first step towards 

spontaneous egg activation that limits assisted 
reproductive outcome (ART) in mammals.

3. NO AND MEIOTIC RESUMPTION FROM 
DIPLOTENE ARREST

Follicular oocytes are arrested at diplotene 
stage of meiotic cell cycle for a long time in several 
mammalian species (5, 10, 16, 17). These diplotene 
arrested oocytes are morphologically characterized by 
the presence of germinal vesicle (GV: Figure 1A) in 
the cytoplasm and nucleolus within the GV (3, 5, 11, 
12, 69). The diplotene arrest in follicular oocyte for a 
long time might be due to synthesis and secretion of 
various reactive nitrogen species (RNS) such as NO 
through NOS-mediated pathway either from follicular 
cells or from oocyte itself or both (5, 15). Resumption of 
meiosis from diplotene arrest, which is morphologically 
characterized by germinal vesicle breakdown (GVBD: 
Figure 1B) occurs due to disruption of gap junctions 
by pituitary gonadotropins surge at the time of puberty 
(3, 14). Disruption of gap junctions interrupts intercellular 
communication within the follicle (18). As a result, 
transfer of several signal molecules from encircling 
granulosa cells to the oocyte is disrupted (13, 15).

Pituitary gonadotropins modulate expressions 
of various NOS isoforms (70). Both pregnant mare’s 
serum gonadotropin (PMSG) and human chorionic 
gonadotropin (hCG) have been shown to influence 
eNOS and iNOS expressions in rat ovary (34). The 
presence of various NOS isoforms has been reported 
in mouse (45), rat (57), porcine (42) and bovine 
oocytes (44, 46). The NO generated either by follicular 
somatic cells or by oocyte itself is involved in the 
maintenance of meiotic arrest at diplotene stage for a 
long time, while its reduced level triggers resumption 
of meiosis from diplotene arrest (19). This possibility is 
strengthened by observations that a decreased level 
of NO through iNOS-mediated pathway is involved 
during luteinizing hormone (LH)/hCG-induced meiotic 
resumption from diplotene arrest in mouse oocytes 
(70, 71). Similarly, hCG reduced iNOS expression in 
granulosa cells and thereby NO levels in follicular fluid, 
which triggers meiotic resumption from diplotene arrest 
in rat oocytes (31, 72, 73). However, NO donor inhibits 
LH-induced disruption of gap junctions, cumulus cells 
expansion, mitogen-activated protein kinase (MAPK) 
activity, resumption of meiosis from diplotene arrest 
and increases cGMP production in rat ovary (74).

Follicular oocytes are capable of generating 
NO sufficient to modulate oocyte physiology (74). 
This is supported by the observations that eNOS 
expression increases during acquisition of meiotic 
competency in porcine follicular oocytes (52, 55, 75, 
76). The increased level of eNOS has been reported 
in rat oocytes (34). Further, an increased iNOS 
expression has been observed in mouse (56, 76) and 
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rat diplotene-arrested oocytes (19) during final stages 
of folliculogenesis. These studies suggest that oocytes 
are capable of generating NO through NOS-mediated 
pathway sufficient enough to maintain meiotic arrest at 
diplotene stage inside the follicular microenvironment 
from birth to puberty (19, 56, 63).

Role of NO during meiotic resumption 
from diplotene arrest in follicular oocytes remain 
controversial. Few studies suggest that an increase 
of NO level induces meiotic resumption from diplotene 
arrest in mouse (56, 59), rat (57), porcine (42, 43, 
54) and murine oocytes (58). However, other studies 
suggest that reduced level of NO associates with 
meiotic resumption from diplotene arrest in mouse 
(60), rat (19, 63) and cattle oocytes (61, 62, 64) The 
biphasic role of NO has also been documented. Few 
studies indicates that lower concentration (0.0.1 
mM) of NO donor such as sodium nitroprusside 
(SNP) induces meiotic resumption, while higher 
concentrations (0.5. mM) inhibit meiotic resumption 
from diplotene arrest in bovine oocytes cultured in 
vitro (77). The NO donor has been used to prevent 
meiotic resumption from diplotene arrest in mouse 
(78, 79), rat (19, 31), cattle (64), canine (80), bovine 
(77) and porcine oocytes (54). Studies suggest that 
iNOS inhibitor such as aminoguanidine (AG) induces 
meiotic resumption from diplotene arrest in rat (19, 31) 
and mouse (59) cumulus-enclosed oocytes cultured 

in vitro. Based on these studies, we propose that 
reduced level of NO through iNOS-mediated pathway 
could play an important role during meiotic exit from 
diplotene arrest in mammalian preovulatory oocytes. 
The dual actions of NO (stimulation or inhibition; 
depending on its concentration) have been reported 
during meiotic resumption from diplotene arrest in 
mouse oocytes cultured in vitro (60). A possibility 
exists that the differential actions of NO in meiotic cell 
cycle resumption/arrest might be due to geographical, 
species or follicular stage variations in mammals. 
However, more studies are required to elucidate 
the molecular mechanism(s) by which NO regulates 
meiotic cell cycle in mammalian oocytes.

The decrease of intraoocyte NO level may 
induce meiotic resumption from diplotene arrest in 
follicular oocytes. The removal of diplotene-arrested 
oocytes from preovulatory follicle probably deprive 
the supply of NO from follicular cells to the oocyte 
resulting into decrease of intraoocyte NO level that 
might be associated with spontaneous resumption of 
meiosis under in vitro culture conditions (19, 63, 81). 
This reduced NO level in follicular fluid during ovarian 
stimulation provides some beneficial effect to oocyte 
quality in human (82). These findings suggest that 
reduced NOS activity in response to LH/hCG surge or 
removal of oocyte from its follicular microenvironment 
result in the decrease of intraoocyte NO level that could 

Figure 1. A. Schematic diagram showing a proposed model for the involvement of nitric oxide (NO) signaling during meiotic resumption from diplotene 
arrest in mammalian oocytes. The synthesis and transfer of NO from encircling granulosa cells to the oocyte and from oocyte itself maintains high level 
of NO in diplotene arrest. The increased level of NO elevates guanosine 3’,5’-cyclic monophosphate (cGMP), adenosine 3’,5’-cyclic monophosphate 
(cAMP), protein kinase A (PKA) and Cdc25B, which maintains stabilized maturation promoting factor (MPF) and thereby diplotene arrest in follicular 
oocytes. B. Luteinizing Hormone (LH) surge disrupts gap junction, intercellular communication and reduces nitric oxide synthases (NOS) expression in 
granulosa cells as well as in oocyte. The reduced NOS expression decreases total NO level in oocyte. The decrease in NO level reduces cGMP, cAMP, 
PKA and Cdc25B levels that trigger MPF destabilization. The destabilized MPF finally induces meiotic resumption from diplotene arrest in mammalian 
oocytes.
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be associated with meiotic resumption from diplotene 
arrest in mammalian oocytes.

The downstream pathway(s) by which 
reduced NO level triggers meiotic resumption from 
diplotene arrest remains to be elucidated. Few 
studies indicate that iNOS-derived NO increases 
guanylyl cyclase and thereby cGMP level to maintain 
meiotic arrest at diplotene stage. On the other hand, 
decrease of NO level and thereby reduced cGMP 
level may facilitate meiotic resumption (31, 59, 70, 
71, 77, 83, 84). The reduced cGMP level activates 
cAMP-phosphodiesterase 3A (PDE3A) and reduces 
intraoocyte cAMP level (17, 83, 85). A reduction 
of intraoocyte cAMP inactivates protein kinase A 
(PKA) since high cAMP level and PKA activation 
play a critical role in the maintenance of meiotic 
arrest (70, 86). The inactive PKA inactivates Cdc25B 
phosphatase in rat oocytes (83, 87–89). If the Cdc25B 
is inactive the phosphorylation of Thr14/Tyr15 of 
cyclin-dependent kinase 1(Cdk1), a catalytic subunit 
of MPF is increased resulting in MPF destabilization 
and meiotic resumption from diplotene arrest (86, 
90, 91). Thus, reduced intraoocyte NO level possibly 
through cGMP/PDE/Cdc25B/MPF-mediated pathway 
may induce meiotic resumption from diplotene arrest 
in mammalian oocytes (17, 19, 31).

The reduced Cdc25B expression level induces 
an accumulation of Thr14/Tyr15 phosphorylated Cdk1 
level (86, 92). However, Thr161 phosphorylated 
Cdk1 as well as cyclin B1 levels decrease during 
meiotic resumption from diplotene arrest. Although 
MPF destabilization does not solely depends on 
cyclin B1 degradation (93), phosphorylation at 
Thr14/Tyr15 and dephosphorylation at Thr161 
residues of Cdk1 destabilizes MPF (92–95). On the 
other hand, dephosphorylation at Thr14/Tyr15 and 
phosphorylation at Thr161 residues stabilizes MPF 
(68). The involvement of NO in the regulation of specific 
phosphorylation/dephosphorylation of Cdk1 such as 
Thr14/Tyr15 and Thr161 and cyclin B1 degradation 
shows the NO-mediated regulation of MPF activity 
in rat oocytes. Studies from our laboratory suggest 
that high levels of Thr161 phosphorylated Cdk1 as 
well as cyclin B1 level and low levels of Thr14/Tyr15 
phosphorylated Cdk1 and cyclin B1 are associated 
with the maintenance of diplotene arrest via Cdc25B-
mediated pathway (19, 63).

4. NITRIC OXIDE AND MEIOTIC RESUMPTION 
FROM METAPHASE-II ARREST

Meiotic cell cycle progresses from diplotene 
stage to M-I in response to pituitary gonadotropin just 
prior to ovulation (2). M-I arrest occurs for a very short 
period and oocyte achieves M-II stage at the time of 
ovulation in most of the mammalian species (2, 3, 25). 
Freshly ovulated oocytes are physiologically arrested 

at M-II stage (Figure 2A) of meiotic cell cycle and 
morphologically characterized by the presence of PB-I 
in mammals (2, 3, 25). These freshly ovulated oocytes 
await for fertilizing spermatozoa in the ampulla of 
fallopian tube for certain period of time. If the fertilization 
does not occur within the window period, these oocytes 
undergo postovulatory aging-mediated spontaneous 
exit from M-II arrest (20–24, 28). The spontaneous 
exit from M-II arrest is morphologically characterized 
by the initiation of extrusion of PB-II that never gets 
completely extruded (23, 24, 28). Due to scattered 
chromosomes in the cytoplasm, these oocytes are 
unable to complete meiosis and are further arrested at 
M-III like stage (Figure 2B) (21). This is a pathological 
condition observed in various mammalian species 
including human that affects oocyte quality, fertilization 
rate and reproductive outcome (22, 65, 96). A growing 
body of evidences suggests the involvement of various 
signal molecules such as cAMP, cGMP, H2O2, Ca2+ and 
NO in regulation of meiotic cell cycle at M-II stage in rat 
oocytes (3, 20, 25–29).

The role of NO during regulation of meiotic 
cell cycle at M-II arrest remains ill understood. Recent 
studies from our laboratory suggest that NO modulates 
meiotic cell cycle in ovulated oocytes (26, 97). The 
biphasic role of NO during meiotic cell cycle regulation 
at M-II stage has also been reported in mammalian 
oocytes (60, 65). A NO donor such as S-nitroso, 
N-acetyl penicillamine (SNAP) prevents meiotic exit 
from M-II arrest in mouse and rat aged oocytes (65, 
97). A possibility exist that a certain amount of NO is 
required to maintain egg quality, fertilization ability and 
embryonic development (65). This is further supported 
by the observations that low concentration of NO 
induces meiotic resumption, while high concentration 
maintained meiotic arrest in bovine, mouse and rat 
oocytes (60, 77, 97).

NO donor has been used to prevent 
spontaneous exit from M-II arrest in mouse and rat 
oocytes (65, 97). Our recent study suggests that 
SNAP prevented spontaneous exit from M-II in a 
concentration-dependent manner. The SNAP (1 mM) 
was sufficient to prevent spontaneous exit from M-II 
in majority of oocytes (~ 90%) that otherwise resume 
meiosis under in vitro culture conditions without 
showing any degenerative features (97). NO has been 
reported to delay oocyte aging, maintain egg quality 
and developmental potential and prevent chromosomal 
abnormalities (65). Exposure of freshly ovulated 
oocytes to NO donor has been reported to prevent 
reduction in microtubule dynamics, zona pellucida 
dissolution time; spontaneous cortical granule loss 
and rate of spindle abnormalities (65, 96).

A possible mechanism(s) by which NO 
delays oocyte aging and prevent postovulatory aging-
mediated spontaneous exit from M-II arrest remain 
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to be elucidated in mammals. However, few studies 
suggest that NO prevents cortical granule exocytosis 
possibly by inhibiting increase in cytosolic free Ca2+ 

(65). Increased cytosolic free Ca2+ has been reported 
to induce postovulatory aging-mediated spontaneous 
exit from M-II arrest by inducing MPF destabilization 
in rat and mouse oocytes (20, 22, 28, 92). Reports 
suggest that NO may act as an antioxidant that could 
reduce reactive oxygen species (ROS) and peroxyl 
lipid radicals in oocytes (65, 96). Artificial increase 
of NO helps in restoring the balance between NO 
available biologically and excess production of 
free radicals that contributes to aging (65). Another 
possible mechanism by which NO could participate in 
preventing postovulatory aging mediated spontaneous 
exit from M-II arrest is by activating guanylate cyclase 
that leads to an increased production of cGMP (65, 
96, 98, 99). Study from our laboratory suggests that 
NO donor prevented postovulatory aging-mediated 
spontaneous exit from M-II arrest by maintaining 
stabilized form of MPF (97). NO donor prevented 
decrease of Thr161 phosphorylated Cdk1 and cyclin 
B1 levels thereby maintaining M-II arrest in rat oocytes 
cultured in vitro (97). Further, NO donor prevented 
the increase of Thr14/Tyr15 phosphorylated Cdk1 
level and inhibited Cdk1 activity thereby maintaining 
M-II arrest in rat oocytes cultured in vitro (97). 

These studies suggest that NO modulates specific 
phosphorylation of Cdk1 and its activity resulting in 
the accumulation of stabilized MPF that is responsible 
for the maintenance of M-II arrest in rat oocytes (97). 
Based on our laboratory investigations and other 
findings, we propose that the follicular rupture results in 
disruption of the ovarian support to the ovulated COCs. 
Disruption of gap junctions, dispersion of granulosa 
cells and peripheral granulosa cell apoptosis results in 
the interruption of transfer of various signal molecules 
such as cAMP, cGMP and NO. Postovulatory egg 
aging further declines synthesis and secretion of 
these signal molecules from the oocyte itself (22, 
100). Under these conditions, oocytes are unable to 
retain the sufficient level of these signal molecules 
required for M-II arrest. Thus, net reduction of NO, 
cGMP and cAMP destabilizes MPF and mediates 
spontaneous meiotic resumption from M-II arrest. 
Hence, supplementation of NO from extracellular 
sources would be beneficial to prevent postovulatory 
egg aging mediated spontaneous exit from M-II arrest 
as well as deterioration of egg quality (65, 97).

5. CONCLUSION

NO acts as a signal molecule and modulate 
meiotic cell cycle in mammalian oocytes. The high level 

Figure 2. A. Schematic diagram showing a proposed model for the involvement of NO during meiotic resumption from metaphase-II (M-II) arrest in 
mammalian oocytes. Although disruption of gap junctions interrupts the transfer of NO, cGMP, cAMP in oocytes after ovulation, oocyte is capable 
of generating NO sufficient to maintain M-II arrest by preventing MPF destabilization through cGMP/cAMP/PKA/Cdc25B-mediated pathway. B. Post 
ovulatory aging downregulates NOS expression in the oocyte that results reduced NO level in oocyte after ovulation. The decreased NO level destabilizes 
MPF through cGMP/cAMP/PKA/Cdc25B-mediated pathway. The destabilized MPF finally results in meiotic resumption from M-II arrest in mammalian 
oocytes.
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of NO maintains meiotic arrest within the follicle and 
even after ovulation under in vitro culture conditions. 
On the other hand, decrease of intraoocyte NO level 
associates with reduction of intraoocyte cGMP as well 
as level Cdc25B levels. The increased Cdc25B level 
and Thr161 phosphorylated Cdk1 as well as cyclin B1 
levels stabilize MPF and maintain diplotene as well 
as M-II arrest. On the other hand, reduced Cdc25B 
level intern induced an accumulation of Thr14/Tyr15 
phosphorylated Cdk1 level and decreased Thr161 
phosphorylated Cdk1 as well as cyclin B1 levels 
thereby destabilizing MPF. The MPF destabilization 
triggers spontaneous resumption of meiosis from 
diplotene as well as M-II arrest in oocytes. Although, 
role of NO during meiotic cell cycle regulation remain 
controversial, based on existing literature we propose 
that reduced level of NO triggers meiotic resumption 
from diplotene as well as M-II arrest possibly through 
cGMP pathway in most of the mammalian species.
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