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1. ABSTRACT

As the populations of the Western world become 
older, they will suffer more and more from bone defects 
related to osteoporosis (non-union fractures, vertebral 
damages), cancers (malignant osteolysis) and infections 
(osteomyelitis). Autografts are usually used to fill these 
defects, but they have several drawbacks such as 
morbidity at the donor site and the amount and quality of 
bone that can be harvested. Recent scientific milestones 
made in biomaterials development were shown to be 
promising to overcome these limitations. Cell interactions 
with biomaterials can be improved by adding at their 
surface functional groups such as adhesive peptides and/
or growth factors. The development of such biomimetic 
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materials able to control bone cell responses can only 
proceed if it is based on a sound understanding of bone 
cell behavior and regulation. This review focuses on bone 
physiology and the regulation of bone cell differentiation 
and function, and how the latest advances in biomimetic 
materials can be translated within promising clinical 
outcomes.

2. INTRODUCTION

People over 65  years old make up the most 
rapidly growing Canadian population (1). Five million 
Canadians were over 65  years old in 2011, and this 
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number is estimated to double by 2036, so that they will 
account for a quarter of the population (2,3). The World 
Health Organization (WHO) estimates that the worldwide 
population aged over 60 will reach 2 billion by 2050 (4). 
These older people are most at risk of bone disorders 
like secondary metastasis causing bone cancer or 
osteoporotic fractures which are leading causes of pain 
and disability (5). Osteoporosis Canada reports that 
over 80 percent of the fractures sustained by people 
over 50 years old are caused by osteoporosis (6). Major 
bone loss associated with osteoporosis (particularly in 
vertebral fractures or non-union fractures) can be difficult 
to repair, so becoming a significant financial burden. The 
annual cost to Canadians of treating osteoporosis and 
the resulting fractures could reach 30 billion dollars by 
2018 (7).

Bone is the basic support of locomotion 
system, where muscles, ligaments and tendons are 
attached to it. It also provides mechanical support and 
protects vital organs. It contains bone marrow, the main 
site of hematopoiesis and an important reservoir of 
minerals (8,9). Osteointegrative, osteoconductive and 
osteoinductive biocompatible bone substitutes should, 
ideally, be used to heal fractures and bridge bone 
losses (8). Osteointegration requires extensive interaction 
between the bone substitute and the recipient’s bone site. 
Osteoconduction can only occur if the bone substitute 
is readily colonized by bone cells and blood vessels, 
while osteoinductive substitute must be able to stimulate 
host’s mesenchymal stem cells (MSCs) from surrounding 
tissues to differentiate into bone-forming cells (10).

Biological graft such as autografts, the gold 
standard used by surgeons, and allografts are the 
most commonly used (10). Autografts use patient’s 
own living bone tissue, while allografts use cadaveric 
bone. Autografts provide an osteoconductive scaffold, 
osteogenic cells and osteoinductive growth factors, while 
allografts have a limited range of these properties (10). 
However, the size of an autograft is limited by the amount 
of bone that can be harvested, and 8.5 to 20 percent of 
cases suffer from postoperative complications like nerve 
injury, infections, blood loss, morbidity and chronic pain 
at the donor and/or recipient’s sites (10,11). Most grafts 
are harvested from iliac crests so as to limit structural 
modification, but their size may vary considerably 
(5 to 70 cm2) (12,13). Larger grafts can be taken from the 
tibia or femur, providing generally greater quantities of 
osteogenic growth factors such as bone morphogenetic 
proteins (BMPs) (13). These donor sites do not provide 
horseshoe shaped grafts consisting of cortical bone 
(tricortical graft) that give greater structural support 
and mechanical resistance, unlike the iliac crest. In 
contrast to autograft bone, allograft is frozen in liquid 
nitrogen and undergoes a serie of treatments such as 
purification (NaHCO3, H2O2, NaOH), conditioning and 
sterilization. These treatments have a considerable effect 

on the biological and mechanical properties of bone 
tissue (14–16). With modern procurement and sterilization 
methods for bone tissue, the risk of infection transmission 
by allografts such as human immunodeficiency virus is 
estimated to be 1 in 2.8 billion (17,18).

Biomaterials with the same characteristics 
as bone grafts have to be developed to overcome 
these problems (limited graft size, morbidity and 
chronic pain)  (19). The biomaterial may be inorganic, 
like hydroxyapatite (HAP) or titanium (Ti), natural, 
such as collagen or alginate, or synthetic polymer like 
polycaprolactone (PCL), polylactate, or even a composite 
material (8). Inorganic biomaterials like calcium phosphate 
ceramics have the same physical properties as bone 
mineral and induce a minimal immune response in vivo 
during implantation. However, the solubility of the calcium 
phosphate ceramics influences the activity of osteoclasts, 
the cells responsible for bone resorption (19,20). Other 
materials, including synthetic polymers, can be broken 
down over time and replaced by regenerated tissue in the 
long term (19). However, they interact poorly with bone 
cells, resulting in the development of third generation 
biomaterials, such as biomimetic materials (8,21,22).

Several strategies have been used to create 
biomimetic materials. One of them is to functionalize the 
biomaterial by adding extracellular matrix (ECM) proteins, 
recombinant growth factors and/or peptides derived from 
them in order to mimic bone as close as possible to its 
physiology (23–28). The therapeutic potential of these 
biomimetic materials depends on their capacity to control 
the behavior of MSCs (29). Biomimetic materials must 
first promote the adhesion of MSCs to their surface and 
favor the response of these cells to specific growth factors 
leading to their differentiation into bone-forming cells. The 
interactions between cell membrane receptor integrins 
and the proteins/peptides at the surface of the biomimetic 
material play a crucial role in this phenomenon (30,31).

In the present review, we first describe the 
principal components of bone and their roles in bone 
healing and remodeling. We then look at the adhesion 
of bone cells to ECM and biomaterials and the crucial 
role of cell-biomaterial interactions in the integration and 
repair of bone tissue. Finally, the roles of each of these 
elements will be set in the context of the latest advances 
in the field of biomimetic materials.

3. BONE CELLS AND THE EXTRACELLULAR 
MATRIX

3.1. Bone cells
Bone remodeling is a physiological process 

in which bone resorption is followed by the formation 
of new bone. The cells responsible for these 
interrelated processes include the bone-resorbing cells, 
i.e.  osteoclasts, which are derived from hematopoietic 
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cells of the monocyte-macrophage lineage, and bone-
forming cells, i.e.  osteoblasts, which differentiate from 
bone marrow MSCs. Osteoblasts, osteoblast-derived 
osteocytes and osteoclasts are highly specialized bone 
cells (32).

Mature osteoblasts have a lifespan of about 
3  months, and are protein-secreting cells with a well-
developed rough endoplasmic reticulum and a large Golgi 
apparatus (33). They synthesize the collagen-based 
matrix, the osteoid, at a rate of 2 to 3 microns3 per day 
and mineralize it 10 days after its deposition. As a result, 
osteoblasts become surrounded by mineralized tissue. 
Osteoblasts that cover the bone surface become inactive 
lining cells, or they die by apoptosis. Osteoblasts can 
control the differentiation of bone resorbing osteoclasts 
by secreting the receptor activator of NF-kappaB ligand 
(RANKL) and osteoprotegerin (OPG) (34).

Osteocytes make up 90 to 95 percent of all 
bone cells and have a half-life of about 25  years (35). 
They originate from osteoblasts once they have become 
enclosed within the mineralized tissue. They are 
interconnected together via adherent and gap junctions. 
The osteocytes are sensors of bone mechanical stimuli 
and the microdamage induced by cyclic loading. They 
may also respond to fluid flow induced by strain in the 
canaliculi (36). Osteocytes secrete major bone-regulating 
factors. They are the main source of RANKL in skeletal 
tissue, and also produce OPG and sclerostin, which 
influence the activity of other specialized bone cells (37). 
Bone microdamages may also cause osteocytes to 
enter apoptosis, which favors the release of chemotactic 
signals that target osteoclasts (38).

Osteoclasts are large multinucleated cells with 
diameter about 50 to 100 microns formed by the fusion 
of monocytes, which are mononuclear cells. Osteoclasts 
have a lifespan of about 2 weeks. They become activated 
when they attached to the bone matrix (33,39). Osteoclasts 
are highly motile and alternate between migratory and 
bone-resorbing stages, showing remarkable changes 
in their phenotype during these phases. When adhered 
to the bone, the osteoclasts become polarized and 
reorganize their cytoskeleton. A sealing zone is formed 
by densely packed actin-rich podosomes that delimit 
the ruffled border, a highly specialized area composed 
of membrane expansions directed toward the targeted 
bone surface. The ruffled border is formed by polarized 
vesicular trafficking and plays a critical role in the 
degradation of bone matrix through acidification by 
vacuolar H+ ATPases and degrading enzymes released 
by the fusion of secretory lysosomal vesicles such as 
matrix metalloproteinases (MMP) and cathepsin K, 
or acid phosphatases such as tartrate resistant acid 
phosphatase (TRAP). These proteases can degrade the 
mineralized osteoid to form Howship lacunae 40 to 60 
microns deep (40). Osteoclasts also transport vesicles 

from basal to the apical cell membrane by transcytosis 
that contain calcium and phosphate ions and hydrolyzed 
osteoid proteins released during bone resorption (41). In 
non-resorptive or migrating osteoclasts, the sealing zone 
switches to a podosome belt, and relaxed osteoclasts are 
depolarized (42).

3.2. Osteoid and mineral phase
Osteoid accounts for 20 to 25 percent of the 

bone mass. It is made up of over 90 percent of type  I 
collagen (43,44). Collagen fibrils (15 to 500 nm in diameter) 
are stabilized by intramolecular and intermolecular 
crosslinks formed by covalent, electrostatic and hydrogen 
bonds (45). Collagen fibrils can co-assemble to form 
collagen fibers of about 10 microns in diameter (45). The 
structure and the organization of collagens influence the 
mechanical properties of bone, such as its ductility and 
fracture resistance (46).

Osteoid matrix also contains around 5 
percent of non-collagenous proteins. These are 
proteins like the small integrin-binding ligand N-linked 
glycoproteins (SIBLING), such as osteopontin (OPN), 
matrix extracellular phosphoglycoprotein (MEPE) 
and bone sialoprotein (BSP) (47). SIBLING proteins 
undergo extensive post-translational modifications, 
including N/O-  linked glycosylation, sulfation and/or 
phosphorylation, that influence their function (for review 
see (48)). They are important in the regulation of bone cell 
function and matrix mineralization, acting via their RGD 
sites and their acidic serine-rich and aspartate-rich motif 
(ASARM) (48–51). Holm et al. recently found that the 
trabecular bones of BSP-/- knockout mice were less well 
mineralized than those of their wild type controls (52).

Adhesive proteins like fibronectin are also 
crucial for bone: they interact with cells via integrins to 
regulate their activity (53,54). Schwab et al. recently 
reported that fibronectin was better than vitronectin for 
the adherence of human bone marrow MSCs and their 
differentiation into osteoblasts (53).

Osteoid also contains the small leucine-rich 
proteoglycans (SLRPs), biglycan and decorin, whose 
central protein cores are linked by glycosaminoglycans 
such as chondroitin sulfate (55). Ingram et al. showed 
that biglycan was present in both cortical and trabecular 
bone, while decorin was mainly located in the canaliculi 
of osteocytes and in the matrix near the Haversian 
canals  (55). The collagen fibrils are abnormal in 
decorin-/-  and biglycan-/-  double-knockout mice (56). 
SLRPs can regulate the hydrostatic and osmotic 
pressures as well as the transport of nutrients and 
growth factors  (57). Chen et al. used neonatal murine 
calvarial cells extracted from biglycan-/-  knockout 
mice and adenovirus encoding biglycan to show that 
this proteoglycan was required for the osteogenic 
differentiation of calvarial cells induced by BMP-4  (58). 
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SLRPs also play a key role in regulating the mechanical 
properties of bone, especially its poroelasticity (57).

The mineral part of bone is almost entirely made 
of HAP crystals, constituted of calcium and phosphate 
ions. It accounts roughly for 65 percent of the bone 
mass (59). It also contains other ions - fluoride, manganese 
and magnesium  -  with some carbonate substitution. 
Mineralization of the osteoid begins with the nucleation 
of calcium phosphate followed by crystal growth (60). 
Nucleation can develop from supersaturated concentrations 
of calcium and phosphate ions. It occurs in specific 
vesicles that bud off from the membranes of hypertrophic 
chondrocytes and osteoblasts and in the interstitial space 
through the action of specific SIBLING proteins (60). The 
apatite crystals first form in the gaps between the collagen 
molecules. Several recent in vitro studies have suggested 
that collagen itself has specific sites rich in charged amino 
acid that favor crystal nucleation (61–63). Wang et al. 
found that collagen could sequester enough calcium, 
phosphate and carbonate ions to favor their spontaneous 
transformation into apatite crystals (64). However, there 
is still some debate about the results of these studies 
because most of them used tendon or isolated collagen 
fibrils as models, which lack the SIBLING proteins.

4. BONE CELL DIFFERENTIATION AND 
BONE HEALING

4.1. Signaling pathways contributing to 
osteogenic differentiation of mesenchymal 
stem cells

The use of MSCs in tissue engineering is 
a promising strategy to enhance bone healing and 

regeneration (65). However, fundamental understanding 
of the osteoblastic commitment capacity of implanted 
MSCs and its regulation will be critical (65). The 
differentiation of MSCs into osteoblasts, chondrocytes, 
and adipocytes is regulated by growth factors, cytokines, 
hormones and vitamins (Figure 1) (66).

Many growth factors, including fibroblast 
growth factor (FGF), insulin-like growth factor (IGF), the 
transforming growth factor-beta family (TGF-beta) and 
the platelet-derived growth factor (PDGF), are involved in 
the differentiation of MSCs into osteoblasts (67–70). For 
example, Baker et al. found that bone ossification was 
abnormally slow in IGF-1-/- mice (68).

FGF and IGF bind to receptors belonging to the 
tyrosine kinase receptor family, FGF receptor (FGFR) 
for FGF and IGF type  I receptor (IGFIR) for IGF. The 
receptors bearing their growth factors form dimers that 
are activated by trans-phosphorylation of their tyrosine 
residues. These receptors then recruit intracellular 
adaptor proteins such as growth factor receptor-bound 
protein 2 (Grb2) and (Src homology 2 domain-containing)-
transforming protein (Shc). The son of sevenless (Sos) 
is then recruited and the extracellular signal regulated 
kinase 1/2 (ERK1/2) mitogen activated protein kinase 
(MAPK) cascade is activated. This cascade can trigger 
the differentiation of MSCs into osteoblasts (83,84).

The BMPs also play a crucial part in bone tissue 
formation. More than 20 BMPs have been identified to 
date (23,29). These molecules are synthesized by the 
MSCs and osteoblasts and are members of the TGF-beta 
family (85,86). Marshall Urist showed that implanting 

Figure 1. Signaling pathways regulating the differentiation of MSCs into osteoblasts (ALP, alkaline phosphatase; CSL, CBF1 Suppressor of Hairless 
Lag-1; EphB4, Ephrin type-B receptor 4; Hey, Hes-related with the YRPW motif; MAML, Mastermind-like; NICD, Notch intracellular domain; PI3K, 
phosphatidyl inositol 3 kinase; Sema4D, semaphorin 4D; VEGF, vascular endothelial growth factor (71–82). [Illustration using Servier Medical Art, http://
www.servier.fr].
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demineralized bone in a muscle led to de novo bone 
formation. He also discovered that BMPs gave the 
organic bone matrix its osteoinductive properties  (87). 
Each kg of demineralized bone matrix contains 1 – 2 
microg BMPs  (88–90). The osteogenic potential of 
BMPs has been verified in vivo by injecting C2C12 cells 
transformed with adenovirus encoding BMPs (AdBMP) 
into mouse quadriceps muscles (91). Kang et al. 
found that AdBMP-6 or AdBMP-9 triggered ossification 
most rapidly and efficiently, followed by AdBMP-2 and 
AdBMP-7(91). Like other members of the TGF-beta 
family, BMPs act on cells by inducing two type  I and 
two type  II serine/threonine kinase  receptors to form a 
heterotetrameric complex. A total of 7 type I receptors and 
5 type II receptors have been identified to date. They can 
bind over 30 TGF-beta family ligands and all have similar 
structures (92). For example, the kinase domains of the 
BMP type  I receptors (BMPR) BMPR-IA and BMPR-IB 
share 85 percent amino acids homology (92).

There are two pathways involved in BMP 
signaling, the canonical Smad pathway and a pathway 
involving TGF-beta activated tyrosine kinase 1 (TAK1) and 
MAPK (93). In the canonical Smad pathway, after BMPs 
binding to receptors, the type I receptor is phosphorylated 
by the type  II receptor, which in turn leads to the 
phosphorylation of Smad1/5/8 (94). The phosphorylated 
Smad1/5/8 then form a complex with Smad4. This 
complex is translocated to the nucleus, where it activates 
the transcription of osteogenic genes like Runx2, osterix 
(Osx) and osteocalcin (OC) (94–96). Liu et al. reported that 
small interfering RNA (siRNA) against Smad1 reduced the 
amount of ALP mRNA induced by BMP-2 in MC3T3-E1 
preosteoblasts and inhibited matrix mineralization (97).

The canonical Smad pathway is regulated 
at many levels (Figure  2). The number of available 
BMP receptors at the cell surface can be modulated 
by endocytosis. Extracellular regulation occurs when 
antagonists such as Noggin, Chordin and Gremlin 
bind to BMPs and inhibit their interaction with their 
receptors (98–100). The Smad pathway is also regulated 
by the transmembrane pseudoreceptor BMP and activin 
membrane-bound inhibitor (BAMBI), which interacts with 
BMPRI to prevent the transduction of the signal (101). 
The inhibitory Smads (I-Smad), Smad6 and Smad7, 
are intracellular regulators of the Smad pathway. They 
bind to the intracellular domain of type  I receptors to 
form a stable complex that prevents the activation of 
Smad1/5/8  (102,103). Other intracellular regulators 
of the Smad pathway are the phosphatases. Protein 
phosphatase, Mg2+/Mn2+ dependent, 1A (PPM1A) 
dephosphorylates Smad1 and inhibits its BMP-2-induced 
transcriptional activity (104).

The interaction of a BMP with its receptors can 
also activate the MAPK signaling pathway (Figure  2). 
The MAPK pathway is divided into 3 cascades: ERK1/2, 
p38 and c-jun N-terminal kinase (JNK). The BMPs 
facilitate the recruitment of a MAPKKK, TAK1, to the 
type  I receptor and then the activation of the 3 MAPK 
cascades (93). The mechanism by which TAK1 is 
activated by type  I receptors is still unknown. Perhaps 
the X-linked inhibitor of apoptosis (XIAP) mediates 
the signal transduction between BMP receptor and 
TAK1 (105). The phosphorylated ERK1/2, p38 and JNK 
are then translocated to the nucleus, where they interact 
with the factors controlling the transcription of specific 
genes  (106). ERK1/2, p38 and JNK can have either 

Figure 2. Regulation of BMP-induced signaling (93,94,97,100,101,104,106,109–112). [Illustration using Servier Medical Art, http://www.servier.fr].
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positive or negative effect on osteoblastic differentiation. 
Xu et al. showed that inhibiting p38 decreased the 
synthesis of ALP by C3H10T1/2  cells infected with 
AdBMP-9  (107). Similarly, Lauzon et al. found that the 
inhibition of either JNK or ERK1/2 increased ALP activity 
in MC3T3-E1 preosteoblasts stimulated with BMP-9 or 
BMP-2 in the presence of fetal bovine serum (108). Others 
have found that ERK1/2 regulates the Smad canonical 
pathway by phosphorylating Smad1 at the linker region, 
so preventing the complex formed by Smad1 and Smad4 
from being translocated to the nucleus (109).

BMPs and other growth factors can act in 
synergy to trigger the differentiation of MSCs or bone 
cells. Lauzon et al. showed that IGF-2 increased the BMP-
9-induced ALP activity in MC3T3-E1  cells  (108). FGF2 
(or bFGF) is also involved in osteogenic differentiation 
through its action on the concentration of BMP-2. The 
concentration of BMP-2 in FGF2-/-  mice is drastically 
decreased leading to reduced bone formation (113). 
Epidermal growth factor (EGF) also enhances the ALP 
activity in immortalized mouse embryonic fibroblasts that 
have been infected with AdBMP-9 (114).

The canonical Wnt/beta-catenin signaling 
pathways, Notch and Hedgehog (Hh) are also crucial 
for the differentiation of MSCs into osteoblastic lineage 
(Figure  3) (115,116). The Wnt/beta-catenin pathway is 
important for determining the fate of stem cells; it not 
only favors osteogenic differentiation, it also inhibits 
adipogenic differentiation (117). Canonical Wnt agonists 
act on cells by binding to its receptor Frizzled (Fzd) and 
its co-receptors low density lipoprotein receptor related 
protein 5 and 6 (LRP5/6). This leads to the recruitment 
of the Dishevelled (Dvl) protein, which inhibits the 
phosphorylation of the beta-catenin by glycogen 
synthase kinase-3 beta (GSK-3 beta) and its subsequent 

ubiquitination and degradation by proteasomes. The 
unphosphorylated beta-catenin can then translocate 
to the nucleus and interact with the transcription factor 
T-cell factor/lymphoid enhancer factor (TCF/LEF). This 
complex enables the transcriptional activity of genes 
encoding proteins like Runx2 and BMP-2  (118–120). 
Tang et al. showed that C3H10T1/2  cells infected with 
AdWnt-3a increased ALP activity and enhanced the ALP 
activity induced by AdBMP-9 (121).

Notch is a transmembrane receptor that 
interacts with the ligands Delta or Jagged present on 
the surface of neighboring cells. Notch intracellular 
domain (NICD) is then cleaved by gamma-secretase 
and moves to the nucleus, where it binds to transcription 
factors like CBF1, suppressor of hairless (CSL) and 
the co-activator Mastermind-like (MAML) to stimulate 
the transcription of genes encoding Hairy enhancer 
of split (Hes) and Hey (124). Ugarte et al. showed 
that activating the Notch pathway in human MSCs 
by causing them to overproduce Jagged1 or NICD, 
induced mineralization and increased their ALP 
activity and BMP-2 expression, while inhibiting their 
differentiation into adipocytes (128). However, activating 
the Notch pathway does not stimulate OC synthesis, 
which suggests that the Notch pathway induces early 
osteogenic differentiation but not the formation of 
mature osteoblasts. The transcription factors like Hes 
and Hey, which are Notch targeted genes, also influence 
the responses of cells to BMPs. Sharff et al. observed 
that silencing Hey1 in C3H10T1/2  cells reduced their 
BMP-9-mediated ALP activity. Infecting the cells with 
AdRunx2 caused the ALP activity to recover  (129). 
BMP-2 also triggers C2C12 cells to undergo osteogenic 
differentiation by increasing the expression of genes 
encoding for ALP and OC, together with increased 
expression of gene encoding for Hey1 and decreased 

Figure 3. Crosstalk between Wnt and growth factors that regulate osteoblast behavior (APC, adenomatous polyposis coli; Dkk-1, Dickkopf-1; GFs, 
growth factors; STKR, serine/threonine kinase receptor) (93,94,106,109,119,122–127). [Illustration using Servier Medical Art, http://www.servier.fr].
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Hes1 transcripts  (130). However, Zamurovic et al. 
found that Hey1 antagonized the transcriptional activity 
of Runx2 in MC3T3-E1 preosteoblasts stimulated by 
BMP-2, which led to decreased mineralization (131).

Hedgehog (Hh) is also involved in osteogenic 
differentiation. It binds to its receptor Patched at the 
cell surface, which prevents Patched from inhibiting 
the transmembrane protein Smoothened. This enables 
Smoothened to activate a signaling cascade leading 
to stabilization of the transcription factor Gli2. The 
newly-stabilized Gli2 then activates the transcription of 
target genes such as that encoding Gli1, which is also 
a transcription factor that promotes the expression of 
genes like those encoding ALP and BSP (124,132). The 
effect of Hh on differentiation depends on the species. 
Plaisant et al. observed that conditioned medium from 
sonic Hh-secreting cells inhibits the synthesis of ALP, 
Runx2, osteonectin and OPG by human multipotent 
stem cells derived from adipose-tissue (122). There 
is also a crosstalk between Hh and the Wnt pathway. 
Hu et al. showed that inhibiting the Wnt pathway in 
C3H10T1/2 cells by transfecting the cells with retrovirus 
encoding Dkk-1 decreased the ALP production induced 
by a constituvely active Smoothened protein  (125). 
Spinella-Jaegle et al. found that stimulating 
C3H10T1/2  cells with sonic Hh increased the ALP 
activity induced by BMP-2. However, sonic Hh had no 
effect on the ALP activity in MC3T3-E1 preosteoblasts 
induced by BMP-2 (123).

4.2. Osteoclastogenesis
Osteoclastogenesis involves the commitment 

of hematopoietic precursor cells to the monocyte/
macrophage lineage, the fusion of several precursors and 
their transformation into mature osteoclasts (32). These 
processes are regulated by two major signaling pathways 
that are activated by macrophage colony-stimulating factor 
(M-CSF) and RANKL, a member of the tumor necrosis 
factor (TNF) ligand superfamily. M-CSF promotes RANK 
expression and mediates the proliferation of osteoclast 
precursors and their differentiation and survival. RANKL 
is crucial for osteoclast differentiation, survival and 
bone-resorbing activity (Figure  4) (133–135). RANKL 
also favors the retention of the osteoclast precursors in 
bone by down-regulating the gene encoding the receptor 
S1PR1 of the lipid mediator sphingosine-1 phosphate 
(SP-1), which favors the passage of osteoclast 
precursors from the bone to blood vessels (136). M-CSF 
and RANKL are synthesized by osteoblasts, osteocytes, 
bone marrow stromal cells and lymphocytes in response 
to stimulation by factors including hormones (parathyroid 
hormone (PTH), vitamins D), inflammatory cytokines 
(Interleukin-1 (IL-1), IL-6, TNF alpha, interferon-gamma, 
IFN gamma) (137–140).

M-CSF binds to the tyrosine kinase receptor 
c-Fms on osteoclast precursors and causes activated 
c-Fms to form dimers. These become phosphorylated on 
their multiple tyrosine residues, enabling them to interact 
with proteins containing SH2 domains like Grb2 (Y697, 

Figure 4. Osteoclast structure and regulation by cytokines and growth factors (AP-1, activating protein-1; PLCgamma, phospholipase C gamma; TRAP, 
tartrate resistant acid phosphatase) (32,72,140,144,148,149,154–156). [Illustration using Servier Medical Art, http://www.servier.fr].
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Y974), c-Src (Y559), PI3K (Y721) and to transduce 
intracellular signaling of M-CSF. PI3K then stimulates Akt, 
while Grb2 activates the Ras/Raf/MEK/ERK pathways by 
interacting with Sos (for review see (141,142)). These 
pathways are mainly involved in the proliferation and 
survival of osteoclast precursors. However, Amano 
et al. recently demonstrated that the M-CSF-triggered 
differentiation of murine 4B12 precursor cells (Mac-1(+) 
c-Fms (+) RANK (+) cells from calvaria of 14-day-old 
mouse embryos) into osteoclasts also depended on the 
activation of ERK5 (143).

RANKL acts on osteoclast precursors by binding 
to its RANK receptor, which, in turn, allows the binding 
of TNF receptor associated factor-6 (TRAF6) to the 
intracellular domain of RANK. It induces the activation 
of several signaling pathways including NF-kappaB, 
MAP kinases (JNK, ERK1/2, and p38), and also leads 
to the mobilization of the phosphatidylinositol 3-kinase 
(PI3K)/Akt pathway (32,144). RANKL may also activate 
the calcium signals that lead to the activation of another 
major transcription factor, nuclear factor of activated T 
cells cytoplasmic 1 (NFATc1), through an immunoreceptor 
tyrosine-based activation motif-mediated co-stimulatory 
signaling (145). RANKL-RANK binding induces the 
hydrolysis of phosphatidylinositol 4,5-bisphosphate by 
phospholipase C to give inositol-1,4,5-trisphosphate 
(IP3) and diacylglycerol (DAG) (for review see (146)). The 
subsequent release of calcium ions from the endoplasmic 
reticulum induced by IP3 activates calcineurin, which 
then stimulates NFATc1 by dephosphorylating it (147). 
NFATc1 activates genes encoding proteins essential 
for osteoclastogenesis, such as dendritic cell-specific 
transmembrane protein (DC-STAMP), which is required 
for cell fusion (148). The activation of NFATc1 by RANKL 
is amplified by stimulating osteoclast precursors with 
immunoglobulin-like receptor ligands that bind triggering 
receptor expressed in myeloid cells 2 (TREM-2) or 
osteoclast-associated receptors (OSCAR). These 
receptors become activated by associating with adaptor 
proteins containing the immunoreceptor tyrosine-based 
activation motif (ITAM). The ITAM-mediated signal from 
TREM-2 involves the 12  kDa DNAX-activating protein 
(DAP12), while OSCAR involves the Fc receptor common 
gamma (149,150). The adaptors recruit the protein 
tyrosine kinase Syk, and the resulting signal leads to the 
release of calcium and activation of transcription factors 
like NFAT and NF-kappaB. Barrow et al. recently reported 
that OSCAR can bind strongly to type  I collagen (151). 
This interaction promotes osteoclastogenesis (151). 
The effects of pro-osteoclastogenic factors may also 
depend on signaling modulators. The recombinant 
recognition sequence binding protein at the Jkappa 
site (RBP-J) is a novel transcription factor which 
inhibits osteoclastogenesis by imposing a requirement 
of ITAM-mediated co-stimulation for TNF alpha and 
RANKL signaling (152). Activating RBP-J in osteoclast 
precursors suppresses the osteoclastogenesis induced 

by inflammatory stimuli, such as TNF alpha. Conversely, 
inactivation of RBP-J considerably increases RANKL-
independent osteoclastogenesis (153). Finally, the fine-
tuning of bone resorption also involves OPG, a secreted 
decoy RANKL receptor that competes with RANK and 
inhibits osteoclast differentiation and functions. RANKL 
signaling can be completely blocked by sequestering 
RANKL using OPG (32,144). It is also inhibited by 
cytokines such as IFN gamma (140).

Osteoclastogenesis is also regulated by BMPs 
like BMP-2 (157–159). Thus, the differentiation of bone 
marrow cells into osteoclasts requires less RANKL (half 
optimal dose) when BMP-2 is present in the culture 
medium (159). The extracellular inhibitor of BMP-2, 
Noggin, severely impairs the osteoclastogenesis induced 
by RANKL and the BMP type  II receptors BMPRII is 
required for osteoclastogenesis in vitro (157,159). Using 
human mononuclear leukocyte suspensions isolated from 
umbilical cord blood, Fong et al. showed that BMP-9 could 
protect osteoclasts against apoptosis via a decrease in 
caspase-9 activation (160). BMP-9 also enhanced the 
bone resorption by mature osteoclasts (160).

4.3. Bone healing
Bone healing can be divided into two processes, 

one not excluding the other: intramembranous and 
endochondral healing. Intramembranous process 
occurs in fractures that heal by first intention. Fracture 
sites should have no defect and should be mechanically 
stable (described in more details in the next section). 
The healing of larger bone fractures involves both 
endochondral bone formation and intramembranous 
healing. Endochondral healing (second intention) 
occurs in four phases: inflammation and hematoma 
formation, fibrocartilagenous callus formation, bony 
callus formation, and finally bone remodeling (for review 
see (161)). The periosteum is important for bone healing 
especially during endochondral healing since it provides 
chondrogenic lineage precursor cells (162). Each phase 
requires different cytokines, growth factors and vitamins. 
Growth factors like BMP, TGF-beta, IGF, FGF, PDGF and 
VEGF all are involved in bone repair (Figure 5) (163). The 
PTH is also important in bone healing process since it can 
enhance bone formation by increasing cartilage volume 
as well as bone mineral density (for review see (161)).

Several types of cells are also involved in 
the endochondral bone healing. Macrophages are 
recruited during hematoma formation/inflammation 
to remove damaged cells and tissue. They secrete 
cytokines that foster the recruitment (infiltration) and 
stimulation of leukocytes to the injury site (168,169). 
Prostaglandin E2, which is present at the fracture site, 
can also recruit T lymphocytes during this step (170). 
The second phase of bone healing is the formation of 
the fibrocartilagenous callus. The chondrogenic lineage 
precursor cells in the periosteum move to the injury site, 
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where they differentiate into mature chondrocytes under 
the influence of BMP-2, which is present throughout 
bone healing (167). Other cytokines and growth factors 
also promote the differentiation of the precursor cells 
into mature chondrocytes. TGF-beta3 also facilitates the 
differentiation of stem cells into chondrogenic lineage 
(TGF-beta3-BMP2 synergy) (171). FGF-2 can enhance 
and control the proliferation of the chondrocytes and 
osteoblast progenitors during each of the bone healing 
step (165). The transition between the fibrocartilagenous 
and bony callus phases is promoted by angiogenesis 
and the differentiation of precursor cells into mature 
osteoblasts. VEGF and angiopoietin are involved in the 
vascularization of the callus and the final bone formation/
mineralization (161).

Finally, the last stage of bone healing is bone 
remodeling, which can be subdivided in five distinct 
phases: quiescence, preosteoclast recruitment and 
osteoclast differentiation, bone resorption, preosteoblast 
recruitment and osteoblast differentiation which ultimately 
lead to the formation of structured bone. The first step 
is osteoclastogenesis and two hypotheses have been 
advanced to explain osteoclast activation. The first is that 
osteoclastogenesis is activated by the apoptotic bodies 
of the osteocytes while the second is that the death of 
osteocytes leads to a reduction in the amount of TGF-
beta (172–174). The activated osteoclasts then start to 
resorb bone (155,156). Resorption takes up to 30 days, 
while bone formation and the recruitment of osteoblasts 
and osteoblast precursors can take 150  days. The 
cell signaling that triggers the passage from bone 
resorption to formation is not yet fully understood. Mature 
osteoblasts then synthesize the bone matrix and allow its 
mineralization.

The various cells involved in bone remodeling 
communicate with each other in several ways throughout 
the process. Osteoclasts synthesize Sema4D that inhibits 
the formation of the bone matrix by osteoblasts  (72). 
Sema4D binds to the Plexin-B1 receptors on the 
osteoblasts and these then activate RhoA to prevent the 
matrix mineralization induced by IGF-1 (72).

5. CELL ADHESIONS

5.1. Types of cell adhesions
Interactions between cells and ECM or 

biomaterials are essential for tissue integrity and repair. 
They influence cell survival, proliferation, differentiation 
and migration. The integrins are the main heterodimeric 
alpha beta transmembrane glycoproteins cell receptors 
involved in the adhesion of cells to ECM proteins and 
biomaterials (175). There are presently 18 alpha and 8 beta 
subunits that assemble to form 24 distinct integrins. They 
interact with adhesive proteins from the ECM via specific 
amino acid sequences. The most common site on ECM 
proteins to which integrins bind is the tripeptide sequence 
Arg-Gly-Asp (RGD). It is found on type I collagen, OPN, 
BSP, thrombospondin and fibronectin (176). Alphav beta3 
integrins bind to several proteins, including fibronectin, 
vitronectin and BSP, while alpha5 beta1 integrins interact 
specifically with fibronectin. Collagen type I also interacts 
with alpha1 beta1 and alpha2 beta1 integrins (175,177).

5.1.1. Osteoblasts
Osteoblasts can bear alpha1, alpha2, alpha3, 

alpha4, alpha5, alpha6, alphav, beta1, beta3 and 
beta5 integrin subunits depending on their stage of 
differentiation. Alpha2, alpha3, alpha5, alphav, beta1 
and beta3 subunits are present on osteoblasts, alpha2 

Figure 5. Endochondral healing process following bone fracture (161,163–167). [Illustration using Servier Medical Art, http://www.servier.fr].
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integrin subunit is found only on cells close to the bone 
surface while alphav beta3 integrins are found mainly on 
osteocytes (54).

Osteoblasts can adhere to 2D systems in vitro 
via integrin adhesion architectures that are organized 
as focal complexes, focal adhesions and fibrillar 
adhesions, but the morphology, size and subcellular 
distributions of these cell adhesion sites differ (178). 
Focal complexes that are 0.1 to 2 microns in diameter 
are the main precursors of focal adhesions. They recruit 
vinculinand phosphoproteins and exert stress between 
1 and 3  nN/micron2. Focal adhesions are elongated 
streak-like structures (3 to 10 microns) that are often 
located at the cell periphery (179). They anchor bundles 
of actin stress fibers (F-actin) through a plaque made 
up of several proteins including integrins and structural 
proteins. Integrin-mediated adhesions called adhesomes 
are composed of more than 180 components (180). 
Adhesomes contain actin-associated proteins (tensin, 
vinculin, alpha actinin), adaptor proteins (vimentin, 
Shc-transforming protein 1) and signaling proteins 
(tyrosine or serine/threonine kinases and members 
of the Rho GTPases)  (181). Three proteomic studies 
on the composition of adhesomes in cells attached to 
fibronectin and control cells on matrices like poly-L-lysine 
have identified more than 700 components  (182–184). 
These studies also found new focal adhesive proteins 
such as actin linkers (adducing) and ubiquitin ligase 
proteins. However, only 63 proteins associated with 
integrin-mediated adhesion are common to all three 
studies, perhaps because of the cell types and substrata 
used (182–185). Robertson et al. recently used proteomic 
and phosphoproteomic methods to analyze the 

components of integrin-mediated adhesions that attached 
A375-SM human melanoma cells to polystyrene (PS) 
surfaces coated with fibronectin or control PS surfaces 
coated with transferrin (186). They found more than 1170 
proteins in adhesomes, including 499 phosphoproteins. 
Hoffman et al. also recently used fluorescence cross-
correlation spectroscopy and fluorescence recovery 
after photobleaching and found that some components 
of the adhesome existed as cytoplasmic pre-assembled 
complexes that were available for rapid assembly 
and adhesion site formation (187). Clearly, further 
investigations are required to give a better picture of the 
composition and how the adhesome is assembled.

The formation of focal adhesion sites depends 
on the activation state of the integrins, and this implies a 
change in their conformation (Figure 6). The binding of 
structural proteins such as talin to the cytoplasmic tail of 
the beta integrin subunits allows the integrin head region 
to be repositioned to point away from the cell surface. 
The cytoplasmic domain of each beta integrin subunit is 
therefore a major factor in establishing the connections 
between the cell cytoskeleton and the ECM. Integrin-
linked kinases (ILK) that interact with beta1 integrin 
subunits are also central to integrin signaling (188). 
The interaction of talin with vinculin then promotes the 
clustering of activated integrins (189). The cytoplasmic 
domains of beta integrin subunits also contain one or 
two conserved Asn-Pro-X-Tyr, or Asn-Pro-X-Phe motifs 
that interact with phosphotyrosine proteins such as focal 
adhesion kinase (FAK) (190). FAK is a non-receptor 
protein tyrosine kinase that possesses three domains, 
an N-terminal ezrin radixin moesin (FERM) domain, 
a central kinase catalytic domain and a C-terminal 

Figure 6. Activation of integrin and focal adhesion organization (E1, Epidermal Growth Factor domain 1; Beta T, beta tail) (199,200). [Illustration using 
Servier Medical Art, http://www.servier.fr].
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FAT domain. FERM is involved in protein-protein 
interactions (191–193) (for review see (194)). It interacts 
especially with the phenylalanine 596 in the central 
catalytic domain of FAK, thus inhibiting the kinase (195). 
The FAK kinase contains three tyrosines (Y397, Y576 
and Y577); their phosphorylation is essential for the 
activation of FAK (196). Integrin clustering first causes 
the rapid autophosphorylation of FAK at Y397. FAK 
phosphorylated on Y397 then interacts with proteins like 
the Src-family kinases that phosphorylate other tyrosine 
residues in FAK such as the two tyrosine residues in the 
catalytic loop of the kinase domain (Y576 and Y577) 
so increasing the FAK kinase activity. These kinases 
also phosphorylate two proteins that interact with FAK, 
Crk-associated substrate (CAS) and paxillin (197). 
Paxillin contains many tyrosine and serine/threonine 
phosphorylation sites and is believed to modulate both 
cell adhesion and growth factor signaling pathways (198). 
Paxillin activates some members of the RhoGTPases 
family such as Ras-related C3 botulinum toxin substrate 
1 (Rac1) and cell division cycle 42 (Cdc42) by recruiting 
Pak-interacting exchange factor and guanine exchange 
factor (GEF). These members of the RhoGTPases family 
are involved in cell adhesion and organization of the 
cytoskeleton (181). Their activation depends on GEF 
catalyzing the exchange of a GDP for a GTP on the 
RhoGTPases proteins. Inactivation of the RhoGTPases 
is mediated by a GTPase activating protein (GAP) that 
favors the hydrolysis of GTP to GDP. FAK-Src complex 
acts via p190RhoGAP to keep a RhoGTPase called 
RhoA inactive during the early steps of cell adhesion 
and spreading. In contrast, Cdc42 and Rac1 are active: 
Cdc42 regulates the formation of filopodia while Rac1 
regulates membrane ruffling lamellipodia. RhoA becomes 
activated by GEFs like p115RhoGEF and p190RhoGEF 
at a later step in cell spreading, which favors the 
formation of actin stress fibers and the maturation of focal 
adhesions. Stimulation of RhoA suppresses the activity 
of Rac1 (181).

Fibrillar adhesions, consisting of tensin-alpha5 
beta1 integrin complexes that bind to fibronectin, are 
more centrally located in the cell than are focal adhesions. 
The formation of fibrillar adhesions is closely linked to the 
capacity of cells to polymerize fibronectin to form ECM 
fibrils (201,202). The translocation of fibrillar adhesions 
is highly directional, proceeding centripetally from the 
cell periphery towards the center and is always aligned 
along the long axis of the focal adhesion. Multi-ligand 
alphav beta3 integrins remain within focal adhesions, 
while alpha5 beta1 integrins are translocated at 6.5 
microns/h parallel to the actin microfilaments in fibrillar 
adhesions  (201,202). Lin et al. recently reported that 
osteoblasts at 12 hours organize endogenous fibronectin 
into fibrils on self-assembled monolayers bearing amine 
groups, while those bearing hydroxyl and methyl groups 
limit such fibronectin fibril formation (203).

However, it is known that the components of 
2D and 3D adhesions differ considerably: 3D adhesions 
used mainly alpha5 beta1 integrins instead of alphav 
beta3 and had a low FAK phosphorylation (204).

5.1.2. Osteoclasts
Osteoclasts contain alpha2, alpha5, alphav, 

beta1 and beta3 integrin subunits. However, the 
adhesion receptor alphav beta3 is the major integrin 
expressed by osteoclasts and a marker of the osteoclast 
phenotype. The engagement of alphav beta3 integrin 
leads to the formation of a multi-molecular complex that 
includes c-Src and PI3K (205). In addition to its role in 
cell-matrix attachment, alphav beta3 is also involved 
in other aspects of osteoclast biology, and osteoclasts 
that lack alphav beta3 are dysfunctional (206,207). The 
bone matrix mediates anti-apoptotic signals via integrins, 
and alphav beta3 occupancy promotes osteoclast 
survival  (208). In contrast, unoccupied alphav beta3 
sites may induce osteoclast apoptosis via caspase-8 
activation, and in the absence of alphav beta3 (beta3-
/- knockout mice), delayed cell death occurs as a result of 
caspase-9 activation (209,210).

Upon adhesion, osteoclasts reorganize their 
cytoskeleton and form podosomes which are small 
adhesion structures (1 micron diameter) with a dense 
actin core surrounded by a rosette-like structure 
containing proteins such as alphav beta3 integrins, 
structural focal adhesive proteins (talin and vinculin), 
actin-associated proteins (gelsolin and alpha-actinin), 
tyrosine kinases (c-Src and Pyk2) and small GTPases. 
RhoGTPases have been involved in the organization of 
F-actin cytoskeleton in different cell types, and in mature 
osteoclasts Rac, Cdc42 and Rho regulate the podosome 
formation into the sealing zone (211–213). The podosome 
core also contains large amounts of proteins involved in 
actin polymerization. Thus, the Arp2/3 complex that is 
activated by Wiscott-Aldrich syndrome protein (WASP) 
takes part in the formation of the actin podosome core, 
while the formin protein initiates the unbranched F-actin 
strands and the formation of stress fibers (214). Cortactin, 
which interacts with the Arp2/3 complex, is also involved 
in the formation and stabilization of the branched actin 
network  (215). By contrast, formation of the ruffled 
membrane involves vesicular trafficking regulated by 
the Rab family of GTPases, particularly lysosomal 
Rab7 (216).

Osteoclasts are capable of adhesion on 
different substrates by distinct F-actin structures. When 
osteoclasts adhere on plastic or glass, podosomes form 
clusters organized in a podosome belt around the cell, 
in which podosomes can be individualized (Figure  7). 
Upon adhesion to bone or mineralized ECM, podosomes 
undergo major reorganization as part of the osteoclastic 
terminal differentiation into bone resorbing cells. In 
non-active (non-resorbing) unpolarized osteoclasts, 
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podosomes are dispersed on the adhesion surface or 
organized in a loose belt of podosomes (216). When 
osteoclasts are activated to resorb bone, they strongly 
attach to the bone matrix by densely packed F-actin rich 
podosomes to form the sealing zone that delineates 
the cellular area in contact with the bone surface where 
the ruffled membrane enlarges and beneath which the 
resorption lacuna occurs (42,217). Some studies suggest 
that a podosome belt prefigures the sealing zone but this 
is rather controversial (217–220). Microtubules, made up 
of alpha-  and beta-tubulin heterodimers in filamentous 
networks, also regulate the podosome organization at the 
end of osteoclast maturation (217). Podosomes are also 
involved in the migration of osteoclasts, perhaps through 
a saltatory mode (221). Touaitahuata et al. suggested 
recently that adhesion is essential for osteoclast 
differentiation while podosome formation is not (219).

5.2. Influence of ECM-integrin interactions on 
cell behavior

Integrins that are involved in the interactions 
between cells and the ECM may also influence the 
responses of cells to growth factors such as BMPs, 
VEGFs, PDGFs and IGFs (222–225). Integrins and 
growth factors influence each other in many ways. 
Integrins can be co-localized with growth factor receptors. 
Lai and Chen demonstrated that specific integrin subunits 
(alphav, beta1, beta3, alphav beta3, alphav beta5, alphav 
beta8) were located with type I and type II (BMPRI and 
BMPRII) BMP receptors (222). They also showed that 
blocking the alphav integrin subunits with antibodies 
decreased the ALP activity induced by BMP-2. Goel 
et al. found that IGFIR was located together with beta1A 
integrins at focal adhesion points in GD25  cells  (224). 
Interactions that involve the insulin receptor substrate-1 
(IRS-1) maintain IGFIR in an activated state that favors 
cell proliferation and tumor growth. In contrast, beta1C 
integrin subunits that form a complex with Gab1/
Shp2 promote the recruitment of Shp2 to IGFIR, which 

then leads to dephosphorylation of the receptor. This 
inactivation of IGFIR slows down cell proliferation and 
thus inhibits tumor growth (224).

Integrin also act on growth factor signal 
transduction by recruiting adaptors to the plasma 
membrane or specific signaling proteins involved in the 
adhesome. Integrins can induce the phosphorylation of 
growth factor receptors in the absence of their ligand (226). 
Veevers-Lowe et al. found that the PDGF receptor beta 
in human bone marrow MSCs attached to fibronectin via 
their alpha5 beta1 integrins was already phosphorylated, 
without any growth factor stimulation (226). This activation 
is essential for MSC migration (226). The N-terminal 
FERM domain of FAK also interacts with growth factor 
receptors such as those of PDGF (226–229). In addition, 
Tamura et al. demonstrated that FAK was essential for 
the differentiation of MC3T3-E1 preosteoblasts induced 
by recombinant human BMP-2  (230). No ALP activity 
was detected in FAK-deficient cells treated with BMP-2.

These versatile integrins also modulate the 
internalization and degradation rate of growth factor 
receptors. Reynolds et al. showed that the alphav beta3 
inhibitor stimulated tumor growth and tumor angiogenesis 
by recycling the VEGFR2 internalized in endosomes back 
to the plasma membrane and by decreasing VEGFR2 
degradation (223). Finally, integrins stimulate the 
synthesis of growth factors. Mai et al. reported recently that 
silencing the gene encoding for the beta1 integrin subunit 
inhibited the synthesis of BMP-2 and the differentiation of 
MC3T3-E1 preosteoblasts into osteoblasts by preventing 
activation of the gene encoding ALP (231).

However, growth factors also regulate the 
synthesis of specific integrins. Mena et al. observed 
that stimulating human umbilical vein endothelial cells 
(HUVECs) with VEGF-A increased the production of 
alpha5 and beta1 integrin subunits (232). Similarly, our 
research group has shown that a peptide derived from 
the knuckle epitope of BMP-9 increased the amount 
of alphav integrin subunits in the plasma membrane of 
MC3T3-E1 preosteoblasts attached to PS coated with 
peptides derived from BSP (233). Lai and Chen also 
showed that stimulating human osteoblasts (HOB19) 
with BMP-2 led to the synthesis of alphav, beta1 and 
beta3 integrin subunits in human osteoblasts (222). As 
BMP-2 increased the amount of alphav beta3 integrins in 
human osteoblasts, it favored their adhesion to OPN and 
vitronectin (222).

The crosstalk between integrin and growth 
factor signaling pathways coordinates MSCs and bone 
cells behaviors. Researchers that develop biomimetic 
materials must therefore be aware of such complex 
interactions. They have to get a better understanding of 
the influence of biomimetic materials on the ability of cells 
to respond to growth factors, cytokines and hormones.

Figure 7. Bone resorption and actin ring formation. Mature osteoclasts 
were obtained from cord blood monocytes in long-term cultures in 
presence of MCSF and RANKL. The cells were allowed to settle either 
on devitalized bovine bone slices or plastic. (A) Bone resorption appears 
as dark areas after toluidine blue staining, with a bright aspect under epi-
illumination. (B) Cell cultured on plastic and F-actin, found in actin ring, 
was stained with fluorescent-labeled phalloidin (red) and nuclei with DAPI 
(blue).
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6. BIOMIMETIC MATERIALS

6.1. Materials functionalized with proteins
The biomaterials used in bone repair can be 

inorganic materials, natural polymers, synthetic polymers, 
or even composites. But not all bone biomaterials currently 
in use are osteoconductive and osteoinductive (for 
review see (8,234)). Biomaterials can be functionalized 
with ECM proteins such as fibronectin, collagen, OPN 
and BSP to increase their interactions with cells (53,235). 
The proteins can be immobilized on the surfaces by non-
specific adsorption (physisorption) or by covalent binding 
(for review see (8)). Schwab et al. tested fibronectin, 
vitronectin and OPN adsorbed onto PS. Fibronectin and 
OPN promoted greater hMSC proliferation in comparison 
with the control after 5 and 10 days in standard growth 
medium (53). In addition, MSCs attached to fibronectin in 
osteogenic medium contained more BSP and Runx2 after 
5  days, while MSCs attached to OPN contained these 
markers only after 10 days in culture. Cells on vitronectin 
contained slightly more osteogenic markers, Runx2 and 
BSP, after 10 days in osteogenic medium than did cells in 
standard growth medium. Fibronectin and OPN induced 
MSCs in osteogenic medium to deposit more calcium 
than did cells on vitronectin (53).

Several studies have shown that the density and 
conformation of the proteins adsorbed or grafted onto the 
surface can strongly affect cell behavior (236,237). Faia-
Torres et al. used a gradient of fibronectin (48-213 ng/cm²) 
on PCL surfaces and showed that human bone marrow 
MSCs incubated with intermediate densities of fibronectin 
for 7 days proliferated most rapidly. On the other hand, 
cells incubated for 7 and 14  days in lower and higher 
densities of fibronectin had more ALP activity and 
collagen type I synthesis than did hMSCs on intermediate 
fibronectin densities (237). Lin et al. also used self-
assembled monolayers with terminal −OH, −CH3, and 
−NH2 groups to evaluate the conformation of adsorbed 
fibronectin (203). They showed that fibronectin adsorbed 
onto self-assembled monolayers with terminal  -OH 
groups had more accessible cell-binding domains 
than did the fibronectin on surfaces with terminal  -CH3 
and  -NH2 groups. The more accessible cell binding 
domains of fibronectin adsorbed onto surfaces with 
terminal -OH groups led to greater amount of vinculin and 
tensin and favored initial cell adhesion at 2h as shown 
by an increased area of focal and fibrillar adhesions in 
primary osteoblasts from rat calvaria (203).

The use of proteins extracted from the ECM 
presents other challenges. There can be batch-to-batch 
variations (238). ECM proteins which are extracted and 
purified from non-human species can increase the risk 
of undesirable immune responses and infections (238). 
Peptides derived from proteins that contain the sequence 
recognized by specific cell membrane receptors have 
therefore been developed (Table 1). A major advantage 

of these peptides is that they are readily synthesized and 
purified, which reduces their production costs (239).

6.2. Homogeneous peptide-modified surfaces
One of the most frequent sequences in many 

proteins is the RGD peptide. A RGD sequence derived 
from the BSP (CGGNGEPRGDTYRAY, pRGD) grafted 
to PCL films induced the formation of focal adhesions 
and organization of the actin cytoskeleton in MC3T3-E1 
preosteoblasts placed in serum-free medium for 1h. 
The cells also had a greater cell surface area than those 
on the negative peptide CGGNGEPRGETYRAY (240). 
More importantly, only the MC3T3-E1 preosteoblasts 
attached to PCL functionalized by pRGD responded to 
BMP-2 (100 ng/mL). Shin et al. also used a composite 
scaffold of poly (L-lactide) (PLLA) and biphasic calcium 
phosphate (BCP) grafted with an RGD peptide to 
study the impact of adhesive peptides on the behavior 
of hMSCs (241). The cells on the composite scaffold 
modified with the RGD peptide for 24h contained actin 
stress fibers and paxillin at the focal adhesions while 
those on the unmodified scaffold had none. There were 
also more spread cells on the RGD-modified scaffold. 
The hMSCs on the RGD-modified scaffold for 7 days 
had more ALP activity and, after 14  days, greater 
mineralization than did cells on the unmodified scaffold 
or PLLA grafted with RGD (241). Since type I collagen is 
the major component of bone osteoid, several peptides 
derived from this protein such as DGEA and GFOGER 
have been developed (242–244). The research group 
of Garcia has shown that GFOGER-coated PCL 
scaffolds significantly improved the repair of femoral 
bone defects in rats, 12 weeks after implantation (244). 
Furthermore, Mehta et al. showed that the ALP activity 
of rat MSCs trapped in an alginate hydrogel containing 
a DGEA peptide (H2N-GGGGDGEASP-OH) for 7 days 
was greater in comparison with the controls (alginate 
alone or in combination with RGD) (242). Their 
production of OC and their mineralization were also 
increased (242).

Other peptides that could improve the 
adhesion, proliferation and differentiation of bone 
cells are those containing a heparin-binding site that 
interacts with heparan sulphate proteoglycans at the cell 
surface  (245,246). One peptide sequence that binds to 
heparan sulphate proteoglycans is Lys–Arg–Ser–Arg 
(KRSR), which is found in proteins such as fibronectin, 
vitronectin and BSP (247). Sun et al. have shown that 
MC3T3-E1 preosteoblasts on titanium dioxide (TiO2) 
anodized nanotubes functionalized with KRSR had 
more vinculin at focal points and a better organized 
actin cytoskeleton than did those on nanotubes 
functionalized with the negative peptide KSRR or the 
control nanotubes  (246). The osteogenic differentiation 
of MC3T3-E1 preosteoblasts attached to TiO2 anodized 
nanotubes functionalized with KRSR was also better, 
as shown by the increased concentrations of mRNA 
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encoding osteogenic markers (ALP, BSP, Runx2, OPN, 
Osx and OC) and ALP activity after 7 and 14 days.

There are many other challenges in the use of 
peptides-functionalized surfaces, such as the way they 
are immobilized on the surface to retain their bioactivity, 
their density and conformation (248). Rezania and 
Healy compared the effect of peptides derived from 
BSP (CGGNGEPRGDTYRAY) immobilized on a quartz 
surface at densities from 0.01 to 3.8 pmol/cm² on the 
osteoblastic differentiation of rat calvaria osteoblast-like 
cells (249). A density of at least 0.62 pmol/cm² of BSP 
peptides was necessary to increase the mineralization in 
rat calvaria osteoblast-like cells.

The conformation of the grafted peptide also 
influences cell behavior. The RGD peptide can be used in 
a linear or cyclic conformation. Cyclic RGD peptide is more 
stable than the linear peptide at physiological pH (250). 
Kilian et al. also showed that the cyclic RGD (RGDfC 
where f is a phenylalanine residue with a D configuration) 
enhanced focal adhesion and increased MSC spreading 
more than did the linear RGD (GRGDSC)  (251). The 
cyclic RGD peptide could also enhance the affinity of 
cells for the alphav beta3 integrin better than did the 
linear one (252,253).

Another important challenge is the sterilization 
of biomimetic materials that use bioactive molecules. 
The main sterilization methods used are moist heat, dry 
heat, gamma radiation, ultraviolet radiation, hydrogen 
peroxide, and ethylene oxide (254,255). RGD peptide 
dissolved in ultrapure water is completely broken down 
after exposure to UVC for 12h, while ethylene oxide 
sterilization alters proteins by forming adducts between 
the ethylene oxide and the protein methionine and 
cysteine residues (254,255).

6.3. Mixed peptide surfaces
6.3.1. Combinations of adhesive peptides

It is possible to immobilize a combination of 
peptides derived from different ECM proteins on the 
biomaterial surface so as to mimic more precisely bone 
physiology and so improve the interaction between 
the material and the cells. The frequently used RGDS 
peptides have been immobilized together with KRSR 
peptides on silk fibroid nanofibers (264). This combination 
increases the proliferation of human osteoblasts over 
that of cells on nanofibers of silk fibroid alone. However, 
the potential of RGD and KRSR peptides combinations 
for bone application may be controversial. A combination 
of GCRGYGRGDSPG and GCRGYGKRSRG peptides 
on a titanium implant has no greater synergistic effect on 
bone formation in maxillae of miniature pigs than does 
KRSR alone (265).

The two immobilized peptides can also be 
derived from the same protein. Fibronectin possesses 
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a synergistic site PHSRN in its FNIII9 domain that 
enhances the interaction between the RGD sequence in 
its FNIII10 domain and alpha5 beta1 integrin (266). Chen 
et al. developed a simple technique for immobilizing the 
bioactive fibronectin motifs, RGD (KKKGGGGRGDS) and 
PHSRN (KKKGGGGPHSRN) on Ti surfaces modified 
with (3-chloropropyl) triethoxysilane (CPTES)  (260). 
This combination of RGD and PHSRN peptides 
enhanced the adhesion of MC3T3-E1 preosteoblasts 
more than did either of the peptides alone, but there 
were no difference in the osteoblastic differentiation 
after 14  days (260). The best proportion between the 
two peptides that favors the desired cell response and 
tissue repair must be determined. Nakaoka et al. used 
alginate gels functionalized with different ratios of RGD 
(GGGGRGDSP) and PHSRN (GGGGPHSRN) peptides 
to show that cells seeded on alginate containing 67 
percent RGD and 33 percent PHSRN peptides had more 
OC than did cells on gels containing 11 percent RGD 
and 89 percent PHSRN (267). The two bioactive RGD 
and PHSRN motifs can be combined to create a longer 
peptide and so overcome the peptide ratio problem. 
Benoit and Anseth developed a peptide containing 
the RGD and PHSRN motifs separated by 13 glycine 
residues (RGDG13PHSRN) (268). This peptide grafted 
on a poly (ethylene) glycol (PEG) hydrogel favored the 
organization of the actin cytoskeleton in osteoblasts from 
neonatal rat calvaria more than did ungrafted PEG.

Peptides derived from the adhesive protein 
fibronectin can be immobilized with peptides extracted 
from type I collagen so as to better mimic the properties 
of the bone matrix. Reyes et al. immobilized the peptide 
GFOGER (GGYGGGPC(GPP)5GFOGER(GPP)5GPC) 
that targets the integrin alpha2 beta1 with a fragment of 
fibronectin containing the sequences RGD and PHSRN 
recognized by alpha5 beta1 integrins (269,270). This 
strategy activates specific integrins and improves both 
the adhesion of human fibrosarcoma cells and the 
activation of their FAK more than any of the peptides 
alone. Visser et al. designed a peptide containing the 
decapeptide collagen-binding (CBD) motif derived from 
the von Willebrand factor with an RGD motif at the 
C-terminus (WREPSFMALSGRGDS) (271). Absorbable 
collagen type  I sponges (ACSs) functionalized with 
CBD-RGD increased the ALP activity of rat spinal bone 
marrow MSCs by day 10 and enhanced mineralization of 
the matrix on day 21. Moreover, in vivo experiments in 
rats showed that with the injection of ACS functionalized 
by CBD-RGD in combination with BMP-2 formed ectopic 
bone after 21  days compared with ACSs containing 
BMP-2 alone (271).

These strategies can also be used to improve 
growth factor efficiency. The CBD motif has been used 
to develop chimeric recombinant proteins such as CBD-
TGF-beta fusion proteins that enhance the delivery of the 
growth factor to the cells (272).

6.3.2. Mixed adhesive peptides with BMPs or 
their derived peptides

Adhesive peptides can be used in combination 
with growth factors such as the BMPs to develop synthetic 
osteoinductive materials (Table  2). Shekaran et al. 
designed a PEG gel functionalized with the GFOGER 
peptides (GGYGGGP(GPP)5GFOGER(GPP)5GPC) 
using maleimide chemistry in combination with embeded 
BMP-2  (0.03, 0.06 and 0.3 microg per 1.5 microL of 
hydrogel) (273). Implanting these hydrogels in defects 
in the radius bone of B6129SF2/J wild type male mice 
resulted in better bone reconstruction in the presence 
of BMP-2 (mineral density and bone volume) than did 
implants of hydrogel without BMP-2.

Both adhesive peptides and BMPs can be 
covalently bound to surfaces or scaffolds. He et al. 
functionalized a poly(lactide-ethylene oxide fumarate) 
(PLEOF) hydrogel with GRGD peptides, one peptide 
derived from residues 162−168 of OPN and another 
derived from residues 73−92 of BMP-2 (24). Each peptide 
was covalently bound to the PLEOF polymer using three 
types of chemistry. The GRGD peptide contained an 
acrylamide function which bound to the crosslinker N,N-
methylenebis(acrylamide) during the formation of the 
covalent gel, the OPN used an oxime reaction involving 
the –O-NH2 function on the OPN peptide with the aldehyde 
group from the hydrogel, while the BMP-2-azide derived 
peptide was attached via a click chemistry involving the 
propargyl function of the hydrogel. He et al. used bone 
marrow MSCs isolated from young adult Wistar rats to 
show a greater increase in the ALP activity (14 days) and 
calcium content (28 days) in MSCs on this hydrogel than 
in cells seeded on hydrogels containing RGD alone or 
RGD plus BMP-2 (24). The combination of the 3 peptides 
(RGD, BMP-2 and OPN) also improved the production 
of vasculogenic markers like PECAM-1 and VE-cadherin 
in vitro (24). Osteogenic and vasculogenic differentiation 
could greatly enhance the process of bone repair, as good 
vascularization of the biomaterial delivers more oxygen 
and the nutrients necessary for the proper functioning of 
bone cells. However, the size of the protein (for example 
BMP) used in combination with short adhesive peptides 
can block the interaction between the cells and the short 
peptides.

BMPs can be replaced by short derived 
peptides to overcome this problem. These peptides 
can mimic the knuckle epitope of the BMPs and 
interact with type  II receptors such as BMPRII (274). 
Our research group has developed a peptide derived 
from BMP-9 (pBMP-9) based on the studies of Suzuki 
et al. and Saito et al. on peptides derived from the 
knuckle epitope of BMP-2. We have shown that pBMP-9 
(Ac-CGGKVGKACCVPTKLSPISVLYK-NH2) promoted 
the differentiation of murine MC3T3-E1 preosteoblasts 
in the same way as the entire protein BMP-9 (275–277). 
It also induced woven bone formation when injected, 
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together with chitosan, into the quadriceps of mice (278). 
However, the early differentiation of murine MC3T3-E1 
preosteoblasts seems to depend on the type of integrins 
involved in cell adhesion. Marquis et al. found that murine 
MC3T3-E1 preosteoblasts in the presence of pBMP-9 
had enhanced ALP activity when they were adhered to 
polystyrene coated with BSP-derived peptides, while 
cells on peptides DGEA-coated polystyrene targeting 
alpha2 beta1 integrins showed no such increase (233).

Selection of the adhesive peptides to 
combine with peptides derived from BMPs is therefore 
critical. He et al. immobilized the adhesive peptides 
GRGD (1.62 pmol/cm2) and peptide P4 derived from 
BMP-2 (KIPKASSVPTELSAISTLYL) (5.2 pmol/cm2) 
on PLEOF hydrogels (27). This combination acted 
synergistically on the commitment of rat MSCs to 
osteoblast lineage by increasing the ALP activity 
and stimulating better mineralization of the matrix 

Table 2. Targeting specific integrins to improve cell response to growth factors
Integrins Growth factor Culture system Behavior References

Beta1 BMP‑2 In vitro
(MC3T3‑E1)

‑�Blocking the beta1 integrin subunit↓the BMP‑2 transcription 
and secretion induced by mechanical stimulation

‑�BMP‑2 induces MC3T3‑E1 differentiation (↑ in Run×2, Osx 
and ALP mRNA at 12h)

(231)

BMP‑2 In vitro
(MSCs)

‑�↑ beta1 synthesis on alumina surface functionalized with 
BMP‑2 after 2 days compared with alumina alone

(284)

Alpha2 Beta1 BMP‑2 In vivo
(B6129SF2/J wild‑type mice)

‑�Scaffold targeting alpha2 beta1 integrin loaded with BMP‑2 
permitted better bone healing than scaffold targeting the 
integrin alone

(273)

BMP‑2,
BMP‑7

In vitro
(hMSCs from healthy and 
osteoporotic patient)

↓ in alpha2 integrin subunit was concomitant with a ↓ in cell 
migration induced by the BMPs compared with control

(285)

Alpha5 Beta1 BMP‑2 In vitro and In vivo
(MSCs,
Sprague‑Dawley rats)

Fibronectin derived fragments:
‑�↑ cell adhesion over hyaluronic acid hydrogel alone
‑�↑ bone formation in vivo than hyaluronic acid hydrogel alone

(286)

VEGF‑A 
(20 ng/mL)

In vitro
(HUVEC)

‑�↑ in amounts of alpha5 and beta1 integrin subunits (2‑4 h)
‑�↑ in COX‑2 mRNA induced by VEGF‑A

(232)

IGF‑2 In vitro
(hMSCs)

‑�Silencing alpha5 and beta1 integrin subunits ↓ IGF‑2 synthesis
‑�Alpha5 beta1↑IGF‑2 signaling via FAK and PI3K pathways

(287)

Alphav Beta3 VEGF In vitro
(HUVEC)

‑�↑ beta3 integrin phosphorylation in the presence of VEGF
‑�Used antibodies blocking alphav and beta3 integrin subunits to 
inhibit VEGFR‑2 phosphorylation

(288)

FGF‑1 In vitro
(NIH3T3)

‑FGF‑1 bound directly to alphav beta3 (289)

FGF‑1 In vitro
(NIH3T3,
HUVEC)

‑�FGF‑1 formed ternary complex with the integrin alphav beta3 
and the FGFR needed to maintain Erk1/2 phosphorylation

(290)

IGF‑1 
(200 ng/mL)

In vitro
(OSE‑3T3)

‑�IGF‑1 promoted Cbfa1 activity using the PI3K pathway
‑�Used an inhibitor of alphav beta3 occupancy to inhibit Cbfa1 
activity induced by IGF‑1

(291)

BMP‑2 In vitro
(MC3T3‑E1)

‑�rCYR61 influenced the differentiation of MC3T3‑E1 
preosteoblasts by BMP‑2 via the alphav beta3 integrin

‑↑ in rCYR61 induced an↑in BMP‑2 synthesis

(292)

pBMP‑9 
(400 ng/mL)

In vitro
(MC3T3‑E1)

‑�pBMP‑9 induced↑in alphav integrin subunit in cell membrane
‑�pBMP‑9 induced more↑in ALP activity after 24 h than in 
unstimulated cells

(233)

RGD+pBMP‑2 In vitro
(hMSCs)

‑�↑ mineralization of hBMSCs after 14 days more than pBMP‑2 
or RGD alone

(279)

pBMP‑2: peptide‑derived from BMP‑2
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than did peptides grafted alone (27). These same 
two peptides have been used to functionalize self-
assembled monolayers using click chemistry, to create 
a concentration gradient (279). The combination of 
equal amount of GRGDS and P4 (65 pmol/cm2 of each 
peptide) synergistically up-regulated the number of BSP 
transcripts in human bone marrow stromal cells and 
mineralization of their matrix without any osteogenic 
supplements (279). Peptides derived from the knuckle 
epitope of BMP-2 (KIPKACCVPTELSAISMLYL), 
BMP-7 (TVPKPSSAPTQLNAISTLYF) and BMP-9 
(KVGKASSVPTKLSPISILYK) and adhesive peptide 
(GRGDSPC) have been grafted onto the surface of 
polyethylene terephthalate (PET) to investigate the 
differentiation of mouse MC3T3-E1 preosteoblasts (280). 
These modified PET increased the cell contents of Runx2 
transcripts and the production of ECM. A  recent study 
that evaluated the synergistic effect of a peptide derived 
from BMP-7 (GQGFSYPYKAVFSTQ) and a cyclic RGD 
peptide grafted to a quartz substrate on the behavior of 
MSCs found that these two peptides increased the ALP 
activity and the matrix mineralization (281).

Another recently developed strategy uses self-
assembled peptides that mimic the matrix (for review 
see (282)). These peptides can have a beta sheet motif 
and even a coiled-coil motif to assemble alpha helices 
into ordered structures. The osteoblastic differentiation of 
C2C12 cells can be increased by peptides amphiphiles 
TSPHVPYGGGS that bind with high affinity to 
BMP-2 (283).

We therefore should investigate combinations 
of several BMPs and growth factors with adhesive 
peptides so as to develop osteoinductive biomimetic 
materials that act in synergy to favor bone healing. This 
will be challenging because growth factors can trigger 
antagonistic intracellular signaling (8). BMP-2, BMP-7 
and BMP-9 are not members of the same BMP subfamily 
and they interact with different type  I receptors. They 
therefore activate different non-canonical pathways. 
Our research group has recently demonstrated that 
BMP-2 and BMP-9 did not act synergistically when 
used to treat MC3T3-E1 preosteoblasts seeded on PCL 
films functionalized with a peptide derived from BSP 
due to different level of activation of the canonical Wnt 
pathway (21).

7. CONCLUSION

Bone healing process involves complex 
interactions between several cell types and signaling 
molecules. Autografts, the current gold standard 
for repairing bone defects, have several limitations. 
Therefore, biomaterials functionalized with adhesive 
peptides that favor bone cell attachment have been 
combined with growth factors, especially BMPs and 
their derived peptides, in order to optimize bone healing. 

However, it is essential to understand the crosstalk 
between the integrins, which interact with these adhesive 
peptides, and growth factors so as to understand the 
signaling that will direct cell behavior such as the ability of 
stem cells to differentiate into mature osteoblasts. While 
it is true that using combinations of adhesive peptides 
and BMPs or their derived peptides to create biomimetic 
materials has given promising results, challenges remain, 
especially questions of peptide density, conformation, 
graft stability and sterilization methods.

8. PERSPECTIVES

We still face numerous challenges as we strive 
to create osteoinductive biomimetic materials in 3D 
using bioactive molecules since most current studies are 
performed in 2D cultures. Moreover, most studies have 
focused on the impact of BMPs on bone cell responses 
despite the fact that many other growth factors, such as 
FGF and VEGF, are involved in bone healing. We need 
a combination of several growth factors that together 
optimize the action of bone substitutes. Finding such 
a combination will not be easy, but will promise great 
benefits for the patients.
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