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1. ABSTRACT

Brain metastases occur in 20-40% of patients 
with advanced malignancies. A better understanding of 
the mechanism of this disease will help us to identify 
novel therapeutic strategies. In this review, we will discuss 
the systems biology approaches used in this area, 
including bioinformatics and mathematical modeling. 
Bioinformatics has been used for identifying the molecular 
mechanisms driving brain metastasis and mathematical 
modeling methods for analyzing dynamics of a system 
and predicting optimal therapeutic strategies. We will 
illustrate the strategies, procedures, and computational 
techniques used for studying systems biology in cancer 
brain metastases. We will give examples on how to 
use a systems biology approach to analyze a complex 
disease. Some of the approaches used to identify 
relevant networks, pathways, and possibly biomarkers in 
metastasis will be reviewed into details. Finally, certain 
challenges and possible future directions in this area will 
also be discussed.

2. INTRODUCTION

Systems biology is computational and 
mathematical modeling of a complex biological 
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system (1), which requires an integration of experimental 
and computational research (2). Computational systems 
biology, through pragmatic modeling and theoretical 
exploration, provides a powerful foundation for 
addressing critical scientific questions fundamental to our 
understanding of life and leads to practical innovations in 
medicine, drug discovery and engineering.

Traditional systems biology approaches used 
for studying biology rely mainly on linear verbal logic 
and illustrative descriptions without mathematical 
explanations (3). These approaches are only satisfactory 
for addressing mechanisms that are involved in a 
small number of elements or short chains of causality. 
Therefore, these approaches are unable to capture and 
unravel the elaborate webs of molecular interactions. 
Most diseases, including cancer, involve a large number 
and variety of elements that interact via complex 
networks and, consequently, display highly nonlinear 
dynamics. Therefore, simply knocking out one target 
molecule in a biochemical pathway is not sufficient for 
treating a disease like cancer, because the cells often find 
alternative molecular routes to escape from the blockage 
of one pathway. This is one key reason why current drug 
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design strategies often fail. It is increasingly believed 
that a systems perspective, rather than the current gene-
centric view, could solve these problems and open up 
entirely new options for cancer treatment.

The systems approach used for biological 
studies combines empirical, mathematical, and 
computational techniques to gain an understanding 
of complex biological and physiological process. For 
example, hundreds of proteins may participate in the 
signaling network to ensure proper functioning of a 
cell. If such a network is disturbed or altered, a cancer 
phenotype could be induced. Systems biology helps to 
shed light on these complex processes by generating 
detailed route maps of various cellular networks and 
developing sophisticated mathematical, statistical, and 
computational methods and tools to analyze these 
networks. Understanding the complex systems involved 
in cancer development will make it possible to develop 
smarter therapeutic strategies. For example, two or 
three key intersections in a biochemical network can 
be disrupted at the same time. The new applications 
could lead to significant advances in the treatment of 
cancer and transform the traditional reductionism-based 
methods into unbiased systems-level approaches for 
drug discovery.

The birth and development of systems biology 
have been driven by the innovation of high-throughput 
techniques applied to life science research. Over the 
past few years, high-throughput techniques, such as 
next generation sequencing, RNA-seq, chip-on-chip, 
chip-seq, microarrays, and others, have been developed 
for genome analysis, gene expression profiling, protein-
DNA interaction, transcription factor binding. These 
technologies have triggered a dramatic change in the 
style of biological studies from a “one gene model” 
(i.e. focusing on the identification of individual genes and 
proteins and pinpointing their roles in the cell) to a “multiple 
gene model” (i.e.  based on the belief that molecules 
never act alone and biological entities are systems, 
collections of interacting parts). These technologies have 
generated many “large-scale biology projects”. As these 
technologies become more affordable and accessible, 
the implementation of large-scale biological projects is 
more popular. These projects have generated a large 
amount of data and the only effective way to analyze 
such data is through mathematical representation and 
computation. Systems biology can be used to deal with 
these challenges by integrating many types of -omic data 
and developing effective computational tools to decipher 
the complex systems.

Metastasis is a complex process and remains 
the main cause for cancer-related deaths in the 
United States. The progression of a primary tumor to 
metastastic disease is a multiple step process and 
involves detachment of primary tumor, local invasion, 

intravasation, transport, extravasation, and colonization 
at the secondary site, especially in the brain which is the 
most complex biological system in human. Because the 
metastatic cascade involves many complex steps, it is 
generally considered to be an inefficient process. When 
metastasis does occur, it is almost always fatal to the 
patients. For these reasons, increased understanding 
of each step in the metastatic cascade will be important 
for the development of better therapeutic interventions. 
Research in the field of metastasis has been ongoing 
for decades and various mechanisms of metastasis 
have been suggested, all of which have added another 
layer of complexity to the metastatic cascade. Recent 
technological advances such as high throughput genomic, 
proteomic, and metabolomics analyses have provided 
better platforms for studying this complex disease at a 
system level. The incorporation of multiple systems or 
data types will promote new biomarker discoveries for 
metastatic diseases and demonstrate more suitable and 
individualized targeted therapy.

A recent review paper pointed out the systems 
biology approach can be used to understand and study 
the mechanisms of cancer metastasis (4). Technological 
advances for high-throughput screening of cells such 
as expression profiling, next generation sequencing, as 
well as global network analyses have further advanced 
the studies of these mechanisms. Combined with new 
insights into the various mechanisms of metastasis, a 
systems biology approach has shown to be useful in 
identifying metastasis-specific gene signatures as well 
as predicting disease outcome, leading to identification 
of biomarkers for metastatic diseases.

The related biological mechanisms of cancer 
brain metastasis have been intensively reviewed in 
the literature previously regarding different types of 
cancers such as melanoma (5) and lung cancer (6, 7). 
In this review, we will focus on illustrating strategies, 
procedures, and computational techniques for the study 
of systems biology in cancer brain metastases (Figure 1). 
We will give examples on how to use a systems biology 
approach for analyzing this complex disease. We will 
highlight some of the approaches used for identifying 
relevant networks, pathways, and possibly biomarkers in 
brain metastasis. Finally, certain challenges and possible 
future directions in this area will also be discussed.

3. PROCESS OF CANCER BRAIN 
METASTASIS

Cancer metastasis to the distant organs involves 
various steps. Chaffer et al has described six distinct 
steps that are crucial for cancer cells to metastasize (8). 
The initial step in the acquisition of metastatic phenotype 
involves invasion of the primary tumor to the surrounding 
stroma. Cancer cells gain invasive property by the virtue 
of the phenomenon known as Epithelial to Mesenchymal 
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transition (EMT) during which cells change its morphology 
from epithelial to mesenchymal shape. EMT enhances 
motility of cancer cells during invasion. In addition, 
cancer cell also secrete molecules that degrades the 
extracellular matrix and modulates environment of the 
primary tumor. These changes lead to invasion of local 
stroma followed by extravasation of cancer cells into 
the nearby blood vessels. Cancer cells in the circulatory 
system, also known as Circulating Tumor Cells (CTCs), 
have to survive Anoikis before its successful colonization 
into the distant organ. CTCs are known to survive in 
the circulation by activating survival pathway such as 
PI3-AKT-mTOR pathway (9). These surviving CTCs 
then reach the capillary of the distant organ before 
extravasating into the foreign tissue. Cells have to acquire 
specific properties to extravasate from the circulation 
system depending on the site of extravasation. Cancer 
cells generally mimic leukocyte by expressing secreted 
molecules (chemokines and cytokines) that allows 
permeability into the blood vessels. For special organ 
such as brain that is protected by blood brain barrier, 
extravasation is quite challenging. One recent study has 
shown that breast cancer cells secrete MMP1 to degrade 

the tight junction proteins in the endothelial cells of the 
blood brain barrier to extravasate into the brain (10). 
Another mechanism known for CTCs extravasation is 
the growth of cancer cells within the microvessels. The 
increasize in the size of tumor ultimately leads to the 
breakage of the endothelial wall leading to colonization 
at the distant site (11). However, survival at the distant 
organ is still challenging as various foreign tissue 
factors leads to apoptosis of the cancer cells. Only 
cells that can better accommodate in the foreign tissue 
environment can survive and grow as secondary tumor. 
The surviving cells must be capable of interacting with 
the microenvironment to induce its own survival. This 
phenomenon of survival of some but not all cells can be 
explained by “seed and soil” theory (12). Cancer cells 
surviving in the foreign tissue are the genetically distinct 
seeds that have acquired appropriate properties to grow 
in the foreign soil. Furthermore, this theory also explains 
why some seeds preferentially metastasize to particular 
soil. For example, it is known that bone one of the major 
site of metastasis for breast and prostate cancer (13, 14). 
Similarly, liver, lung and brain are other preferred site 
for metastasis of breast cancer (14), indicating that 

Figure 1. Diagram of computational systems biology of cancer brain metastasis (breast cancer as an example). Indicated numbers are the indexes of 
sections organized in this review.
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microenvironment at the distant site plays a significant 
role in metastasis of cancer cells.

4. SYSTEMS BIOLOGY ON METASTATIC 
DRIVERS IN PRIMARY TUMOR

Studies have demonstrated that systems biology 
approaches are powerful in identifying metastasis-
specific gene signatures as well as predicting disease 
outcome. In this section, we review the systems biology 
approaches used in studying metastatic drivers in the 
primary tumors. We will first introduce how bioinformatics 
approaches can be applied to identify key signatures of 
brain metastasis by analysis of various types of genomic 
data and then present the computational models used 
to deal with other issues like metastasis patterns by 
analyzing clinical and other data.

4.1. Bioinformatics approaches for mechanism 
identification

Mechanisms identification of cancer metastasis 
is largely dependent on the available data. Bioinformatics 
approaches are powerful in analyzing data and elucidate 
the mechanisms of cancer metastasis. Here we focus on 
reviewing the application of bioinformatics approaches in 
analysis of mircoRNA (miRNA) profiling, gene expression 
profiling, signaling transduction network and sequencing 
data.

4.1.1. miRNA profiling analysis
miRNAs have been known to drive cancer 

metastasis via regulation of pro-metastatic genes and the 
regulatory genes for optimizing tumor microenvironment. 
Profiling miRNA expression can be used to screen 
relevant miRNAs for tumor metastasis and identify 
gene signatures. The gene signatures can be used 
for classifying cancer subtypes as well as predicting 
metastasis-free survival outcome. For example, 
Lerebours et al. (15) profiled miRNA expression in 
patient samples and identified a miRNA signature, which 
could predict disease phenotype in inflammatory breast 
cancer (IBC). To identify the potential factors governing 
this disease, the authors performed a global expression 
profiling of miRNAs. Thirteen out of 804 miRNAs were 
differentially expressed in the IBC, when compared with 
the non-IBC tumors. Among 13 of them, a signature set 
with 5 miRNAs was found highly predictive of IBC. Baffa 
et al. (16) compared miRNA expression profiles between 
primary tumors and their matched metastases to identify 
miRNA signatures involved in the metastatic progression 
and organotropism. Several miRNAs were identified in 
that study and some of them have already been known 
to play a role in specific cancers, suggesting that miRNA 
expression profiling could be useful in determining cancer 
origin based on expression pattern analysis across 
different organs of origin because miRNA signatures 
were markedly tissue-specific, especially in the cases 
for which the origin of primary tumor is unknown. Brain 

metastasis is a major cause of mortality among melanoma 
patients. A  molecular prognostic analysis can be used 
to evaluate the risk of developing brain metastasis. 
Hanniford et al. (17) performed a retrospective, cohort-
based study to analyze genome-wide miRNA expression 
profiling for primary melanoma tumors from three patient 
groups with extensive clinical follow up. They used 
Cox regression analysis to establish miRNA-based 
signatures. Combination of prognostic analysis of miRNA 
expression signatures with the currently used staging 
criteria may improve the diagnostic accuracy of primary 
melanoma and predictive ability for development of brain 
metastasis. It will aid clinical management of patients, 
including selection for adjuvant treatment or clinical trials 
of adjuvant therapies. miRNAs have a diverse range 
of biological functions, such as temporal regulation of 
development, cell death and proliferation, hematopoiesis 
and tumourigenesis. miRNAs regulate molecular 
pathways in cancer by targeting various oncogenes 
and tumour suppressors. Generally, one miRNA can 
regulate hundreds of target genes as predicted (18). As 
a result, miRNAs can be used as a better classifier than 
messenger RNA. In the study by Nasser et al. (19), the 
authors combined validated miRNA expression values 
with imaging features to classify NSCLC brain metastasis 
from primary tumors and identify possible biomarkers of 
brain metastasis. This study involved comprehensive 
profiling miRNA expression, evaluation of normalisation 
techniques and imaging feature extraction of FDG-
PET/CT and CT scan. The biomarkers were validated 
using an independent data set to predict potential brain 
metastasis.

4.1.2. Gene expression profiling analysis
Gene expression profiling analysis has been 

widely applied in the detection and quantification of 
key driver genes in order to understand the complex 
phenomenon of cancer brain metastasis (20). The 
molecular basis for breast cancer metastasis to the 
brain is largely unknown. Brain relapse typically occurs 
years after the removal of a breast tumor, suggesting 
that disseminated cancer cells must acquire specialized 
functions to take over the distant organ. Massagué 
et al. (21) showed that breast cancer metastasis to 
the brain involves mediators of extravasation through 
non-fenestrated capillaries, complemented by specific 
enhancers of blood-brain barrier crossing and brain 
colonization. They isolated cells that preferentially 
infiltrate the brain from patients with advanced disease. 
Through gene expression analysis of these cells and 
clinical samples, the authors identified several genes as 
mediators of cancer cell passing through the blood-brain 
barrier. Metastatic colonization in different target organs 
is a highly selective process that depends on specialized 
properties of tumor cells. Recent research has highlighted 
this process. Massagué and colleagues built on their 
earlier success in functional genomic analysis of breast 
cancer metastasis to bone and lung and reported the 
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identification of breast cancer brain metastasis genes, 
highlighting the importance of the stromal environment 
in the development of organ-specific metastasis (22). 
Breast cancer can spread to many different organs, 
with the most common sites being bone, regional lymph 
nodes, lung, liver, and brain. The detailed mechanism 
of organ specific metastasis is poorly understood. Klein 
et al. (23) looked into the genes associated with brain or 
bone metastasis of primary human breast cancer. They 
generated gene expression profiles of 18 brain and eight 
bone metastases derived from primary breast tumors 
and found that 73 genes were differentially expressed 
between brain and bone metastases. Visualization of the 
differential gene expression profiles by correspondence 
and cluster analyses showed that the metastases clearly 
separate into two distinct groups as an exact reflection 
of their site of metastasis. Moreover, the analysis of this 
gene set in primary breast tumors relapsing to either 
bone or brain allowed accurate categorization of the 
tumors according to their metastatic site. The identified 
genes may prove to be excellent markers in predicting 
metastatic site in breast cancer patients and lead to 
tailor-made therapy to an individual patient. Metastasis 
remains the most common cause of death in most 
cancers and limited therapies can be used for combating 
these disseminated disease. Microenvironment is an 
important regulator of cancer progression. It is less well 
understood how different tissue environments affect 
primary tumor metastasis. Cancer cells survival and 
colonization are influenced by non-cancerous stromal 
cells in the local microenvironment. Sevenich et al. (24) 
analyzed tumor-stroma interactions that modulate organ 
tropism of brain, bone and lung metastasis in xenograft 
models. They identified a number of potential modulators 
of site-specific metastasis and found that cathepsin S was 
a regulator of breast-to-brain metastasis. Organ-specific 
homing of malignant cells involves cell-cell interactions 
mediated through cell adhesion molecules and their 
receptors on the cell surface. Identification of gene 
markers that mimic these receptor-ligand interactions is 
critical for analyzing the functional role of these proteins 
and is therapeutically significant for targeting or blocking 
organ-specific homing of tumor cells. Sadanandam 
et al. (25) conducted three cycles of in vivo biopanning 
of a phage display peptide library in mice and identified 
11 unique gene markers that were specific for homing to 
lung, liver, bone marrow, or brain. Bioinformatics analysis 
of the identified organ-specific gene markers indicated 
that cell adhesion molecules (26) were critical in tumor 
cell migration, invasion, and metastasis.

4.1.3. Network analysis
Network analysis is often used for studying the 

interactions of genes or proteins and is a powerful tool 
for demonstrate how the signaling network involves/
drives in a specific disease. Hu et al. (27) analyzed 
two independent human breast cancer datasets and 
three different mouse populations and showed that 

gene networks could predict metastasis-free survival in 
human breast cancer cohorts. Interestingly, the data in 
this study suggest that different gene networks could 
predict the outcome for the different subsets of breast 
cancer. Specifically, it was shown that Estrogen receptor-
positive breast cancers rely on tumor autonomous 
factors while Estrogen receptor-negative breast cancers 
were influenced by host-derived stroma. Identifying the 
genes within these networks will not only allow for further 
analysis on how they contribute to the metastatic process 
but it also indicated the complex interplay of various cell 
types. Zhao et al. (28) developed a computational model 
to derive specific downstream signaling pathways that 
reveal previously unknown target-disease connections 
and new mechanisms for specific cancer subtypes. The 
model enables us to reposition drugs based on available 
patient gene expression data. The authors applied this 
model to repurpose known or shelved drugs for brain, 
lung, and bone metastases of breast cancer based on 
their specific signaling mechanisms. The brain offers a 
unique microenvironment that plays an important role 
in the establishment and progression of metastasis. 
However, the molecular determinants that promote 
development of melanoma brain metastases are largely 
unknown. Nygaard et al. (29) analyzed cultivated 
metastatic tissues and their corresponding host tissues 
collected from melanoma metastatic mouse models and 
identified molecular events associated with melanoma 
brain metastases. Analysis of the host tissue uncovered 
a cooperative inflammatory microenvironment formed 
by activated host cells that permitted melanoma growth 
at the host organism. Importantly, the identification of 
essential molecular networks that operate to promote the 
brain-adaptive phenotype is of clinical relevance, as they 
can lead to the identification of novel therapeutic targets. 
From a genomic point, breast cancer can be divided into 
several subtypes. Few studies have described patterns 
of metastasis according to the major breast cancer 
intrinsic biologic subtypes. The subtypes of breast cancer 
may involve activation of a host organ-specific signaling 
network in metastatic cells. To test this possibility, 
Burnett et al. (30) measured gene expression patterns in 
MDA-MB-231 cells and its mammary fat pad tumor, lung-
metastasis, bone-metastasis, adrenal-metastasis and 
brain metastasis variants. Pathway-analyses revealed 
that activation of specific signaling networks would enable 
cancer cells to adapt to organs of metastasis such as 
drug detoxification/oxidative stress response/semaphorin 
neuronal pathway in brain metastasis. Biological and 
clinical outcomes are not based on a single protein, but 
modules of proteins embedded in the protein networks. 
A fundamental question is how the proteins within each 
module contribute to the overall module activity. In the 
study led by Dutkowski and Ideker (31), the authors 
studied the modules underlying three representative 
biological programs related to tissue development, breast 
cancer metastasis, and progression of brain cancer, 
respectively. A  new method called Network-Guided 
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Forests was applied for identifying predictive modules 
together with logic functions which tie the activity of 
each module to the activity of its component genes. 
The resulting modules implement a diverse repertoire of 
decision logic which cannot be captured using the simple 
approximations. Protein interactions and the structure 
of interacting surfaces (interfaces) have an important 
role in predicting the genotype-phenotype relationship. 
In the study by Engin et al. (32), the authors have built 
the phenotype specific sub-networks of protein-protein 
interactions (PPIs) involving in the relevant genes 
responsible for lung and brain metastasis from primary 
breast cancer. Functional analyses performed on these 
sub-networks revealed the potential relationship between 
immune system-infectious diseases and lung metastasis 
progression, but this connection was not observed 
significantly in the brain metastasis. Brain metastases are 
the most common fatal complication of systemic cancer, 
especially of lung (40-50%) and breast (20-30%) cancers. 
In this era of personalized therapy, there is a critical need 
to uncover the signaling architecture of brain metastases; 
however, little is known about what signaling pathways are 
activated in the context of the brain microenvironment. In 
the study by Improta et al. (33), using a unique study set 
of 42 brain metastases from patients with breast or non-
small cell lung cancer (NSCLC), the phosphorylation/
activation states of 128 key signaling proteins involved 
in cancer signaling were measured in laser capture 
microdissected tumor epithelium using reverse phase 
protein microarray technology. Protein pathway activation 
mapping revealed heterogeneity of signaling networks in 
brain metastases that would require a prior stratification 
to targeted therapies, as well as the requirement of direct 
analysis of the metastatic lesion.

4.1.4. Sequencing analysis
Gene mutation has been widely considered 

as an important driving factor in cancer cell metastasis. 
New generation technology in genomic research like 
whole-genome, whole-exome and deep sequencing 
technology has allowed cancer researchers to check the 
copy number alteration, chromosome rearrangement 
and peptide point mutations simultaneously in order to 
explore the global genome alteration profiles responsible 
for cancer brain metastasis. For example, to understand 
clonal selection, Ding et al (34) used second generation 
sequencing to analyze a single patient’s peripheral blood, 
primary basal-like breast tumor, and matched brain 
metastasis. The authors found a wide range of mutations 
in the primary tumors supporting genetic heterogeneity 
within a sample. Subsequent analysis of the metastasis 
showed an enrichment of a subset of mutations, 
suggesting this particular cell population within the 
primary tumor metastasized to the brain. The xenograft 
derived from patient’s primary tumor had a mutational 
profile that overlapped with the metastasis, which 
further supported the notion that a minority population of 
cells arose within the primary tumor with an enhanced 

metastatic capability. In another example very recently 
published, using whole-genome sequencing Gundem 
et al (26) sought definitive evidence for the existence of 
polyclonal seeding in human malignancy and to establish 
the clonal relationship among different metastases in 
the context of androgen-deprived metastatic prostate 
cancer. Integrated analyses of subclonal architecture, by 
characterizing multiple metastases arising from prostate 
tumors in multiple patients, revealed the patterns of 
metastatic spread in unprecedented detail, which 
elucidated in detail the complex patterns of metastatic 
spread and further our understanding of the development 
of resistance to androgen-deprivation therapy in prostate 
cancer. This work is the seminal work that documents the 
branched evolution of metastases using sequencing of 
primary and metastases.

4.2. Computational models of metastasis
Besides the signature identification by 

bioinformatics approaches based on genetic or genomic 
data discussed above, there are other two important topics 
regarding the mechanistic understanding of metastasis 
from primary site to metastasis site: emergence and 
spread pattern of metastasis. Clinical data could be very 
helpful to the study on these two topics. We here review 
computational models in which the clinical data were 
utilized to reach the purpose in the context of the above 
two topics.

4.2.1. Emergence of metastasis
The emergence of metastatic disease has 

largely been attributed to cells gaining functions 
specific to intravasation. This gain of function has 
been linked to genetic mutation, with large numbers 
of specific genes being implicated. To this end, a 
number of statistical models proposed by Michor and 
her colleagues (35-40) have employed a stochastic 
description called the Moran process (41) to study the 
genetic landscape of a tumor’s cellular population over 
time. To study the dynamics of the emergence of the 
metastatic phenotype, Michor et al. (36) proposed a 
model of tumor growth, based on the Moran process, 
which took into account of mutation to a metastatic 
phenotype. The authors modeled a heterogeneous 
tumor made up initially of cells without the ability to 
metastasize (called type-0 cell, with fitness r0). At each 
discrete time step, a cell is randomly chosen to divide 
(biased by fitness) at which time the type-0 cell has a 
probability u of producing mutated offspring that has the 
ability of metastasis (called type-1 cell) with fitness r1 
(where a fitness of 1 is neutral). This mutated offspring 
also now has a probability q of being ‘exported’ from the 
population to initiate a metastatic tumor of their own. The 
model predicted that metastatic clones are most likely 
the result of advantageous mutations that will occupy 
the majority of the primary tumor. Of importance, through 
this model the dynamics of metastases arising from a 
primary tumor of constant size could be investigated and 
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the expected number of metastatic cancer cells over time 
could be calculated. This model was based on a basic 
hypothesis in which a single mutation is necessary to 
confer metastatic abilities to a cancer cell, as proposed 
in another study (35). To further investigate an alternative 
hypothesis in which two mutations are necessary to 
confer metastatic abilities to a cancer cell (37), Michor 
et al. proposed an alternative model by adding a new 
type-2 (with fitness r2) representing the cancer cells with 
twice mutations (mutated from type-1). In this alternative 
model, only type-2 cell has the ability to metastasize. 
Subsequently, Michor and her colleagues (38) examined 
a branching process model of tumor metastases which 
was updated from the previous model proposed in (36) 
and investigated the effect of the export of metastatic 
cells from the primary site on the growth of the primary 
tumor. These models (36-38) did not allow an expanding 
of the cancer cell population. To further extend the model 
to a more clinically grounded context, in a following 
study (39), a stochastic mathematical model was 
designed and used to simulate the evolution of tumor 
metastases in an expanding cancer cell population. 
The probability of metastasis, the total number of 
cancer and metastasized cells at a particular time 
during tumorigenesis were calculated. Furthermore, 
they investigated the effect of drug administration and 
tumor resection on these quantities and predict the 
survival time of cancer patients. The model presented 
in that study can be used to determine the probability 
and number of metastases at diagnosis and identify the 
optimum treatment strategy to maximally prolong survival 
in cancer patients. Most recently, these authors applied 
their model proposed in (39) to the case of pancreatic 
cancer (40) for analyzing a large number of clinical data, 
i.e. image data of metastasis. In the study, they analyzed 
the effects of different treatment modalities and explored 
which therapies could efficiently reduce the growth rate 
of cells earlier in the course of treatment appear to be 
superior to upfront tumor resection. These predictions 
can be validated in the clinic. The authors pointed out 
that their interdisciplinary approach could provide insights 
into the dynamics of pancreatic cancer metastasis and 
identify optimum therapeutic interventions.

4.2.2. Metastatic pattern of primary tumors
Understanding the patterns of spread of a 

particular primary tumor can help guide clinicians in their 
decision making for therapy and is also useful for follow 
up purposes to give special attention to the organs most 
likely at risk for early detection of recurrence. A  large 
number of statistical models have been proposed in the 
previous works for analyzing population level data of 
metastatic spread and predicting the most likely routes 
of spread, such as logistic regression model, Bayesian 
model, Markov model and so on. For example, in the 
study led by Hess et al. (42), the authors analyzed clinical 
data from a large number of patients with histologically 
confirmed, distant-stage adenocarcinoma to evaluate 

metastatic patterns. The primary and metastatic 
sites were cross-tabulated in various ways to identify 
patterns, and the authors developed algorithms by using 
multinomial logistic regression analysis to predict the 
locations of primary tumors based on the metastatic 
patterns. Cerebral metastases are the main determining 
factor in the failure of locally advanced NSCLC 
management. Wang et al. (43) assessed the risk factors 
of brain metastases in patients with postoperative, locally 
advanced NSCLC. Two hundred twenty-three patients 
treated with surgical resection for stage III-N2 NSCLC 
were retrospectively analyzed and a mathematical 
model based on multivariate logistic regression used for 
predicting brain metastases risk. The Bayesian network 
(BN) is a promising method for modeling cancer metastasis 
under uncertainty. BN is graphically represented using 
bioinformatics variables and can be used to support 
an informative medical decision/observation by using 
probabilistic reasoning. In the study by Wang et al. (44), 
the authors proposed a BN to describe and predict the 
occurrence of brain metastasis from lung cancer in which 
a nationwide database of clinical data in Taiwan was 
involved. Three statistical measures, including namely, 
the accuracy, sensitivity, and specificity, were applied to 
evaluate the performances of the proposed BN model. 
Comparing with the other three competitive approaches, 
including naive Bayes (NB), logistic regression (LR) and 
support vector machine (SVM), the proposed BN has 
advantages in interpreting how brain metastasis develops 
from lung cancer. This model is efficient in modeling non-
linear situations, capable of solving stochastic medical 
problems, and handling situations where in information 
are missing in the context of the occurrence of brain 
metastasis from lung cancer. Unique metastatic patterns 
cited in the literature often arise from anecdotal clinical 
observations and autopsy reports. In the studies by 
Newton et al. (45,46), a stochastic Markov chain model 
for metastatic progression of primary lung cancer was 
developed based on a network construction of metastatic 
sites with dynamics modeled as an ensemble of random 
walkers on the network. In the study led by (47), the 
authors used a large database of Medicare claims to 
study the large-scale clinical pattern of metastases. They 
introduced the concept of a cancer metastasis network, 
in which nodes represent the primary cancer site and 
the sites of subsequent metastases, connected by links 
that measure the strength of co-occurrence. The authors 
analyzed the data by calculating a time-dependent 
hazard as a function of the primary and metastatic site to 
observe how certain metastatic lesions developed over 
time for a given primary tumor in a certain location. The 
same group also formulated a statistical model to predict 
the location of the primary tumor given a sequence of 
metastatic sites, and reversely to predict the most 
typical sequence of metastatic sites given a certain 
primary cancer site. In a recent theoretical work (48), 
Anderson and his colleagues examined the self-seeding 
hypothesis and showed that direct self-seeding (i.e. the 
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primary tumor shedding cells that directly returned to the 
primary) was many orders of magnitude less likely than 
‘secondary seeding’, a process by which cells from the 
primary metastasize to a secondary location, grow and 
then re-shed progeny into the vasculature which then 
return to the primary. Although this distinction is difficult 
or currently impossible to measure in the clinic, it is of 
chief importance, as it suggests that there are levels of 
detail about extant disease that are not captured in the 
previous models.

5. SYSTEMS BIOLOGY ON METASTATIC 
GROWTH IN BRAIN

In the previous section, we have reviewed 
the systems biology approaches used to study the 
mechanisms driving primary cancer cells moving towards 
the brain. The brain is a common site of metastatic disease 
in cancer patients, which has few therapeutic options and 
commonly poor outcomes. The brain is generally a more 
complex system than tissues where the primary cancer 
arose. Once a metastasis is newly established in the 
brain, the specific niche or microenvironment will promote 
the tumor metastatic growth, and the tumor cell itself 
evolves and adapts to the new niche. The mechanism 
of metastasis is vital for drug design and therapeutic 
strategy selection. As a tool to deal with a complex system 
like the brain, systems biology is quite powerful. Here we 
review the application of systems biology approaches to 
deciphering the process of brain metastasis formation. 
First, we will review the bioinformatics approaches 
used to identify the molecular mechanisms that drive 
metastatic growth through mutual interactions between 
tumor and its surrounding microenvironment. Then, we 
will introduce the statistical models used to identify the 
prognostic factors for clinical use and further to predict the 
clinical outcome such as overall survival or therapeutic 
efficacy. Finally, we discuss the computational models 
used to simulate tumor metastatic growth in the brain.

5.1. Bioinformatics approaches for mechanism 
identification

Due to the complexity of the brain, the 
mechanisms of formation and growth of brain metastases 
are poorly understood. There are few reports addressing 
the mechanism of metastatic growth in brain using 
bioinformatics approaches so far. One of the reasons 
might be due to the difficulty for sample collection of brain 
metastasis from patients. Secondly, it is impossible to do 
any in vivo experiments in humans to study the mutual 
interaction between cancer cells and other agents in 
brain microenvironment. Here we summarize our review 
in two aspects. One is the study on microenvironment 
and the other is the study on molecular events in tumor 
metastasis.

To study the microenvironment of brain 
metastases, in vivo animal model or in vitro cell co-culture 

experiments have often been used. Bioinformatics 
approaches have been widely employed for identifying 
the key molecular factors or pathways. In the brain 
microenvironment, an astrocyte is a star-shaped glial 
cell which has been one of the most intensively studied. 
Astrocytes are among the most important host cell types 
in the brain microenvironment, closely communicating 
with metastatic cancer cells and apparently promoting 
brain metastasis growth, as reported by both Fidler’s 
group (49, 50) and Watabe’s group (10, 51). Fidler et 
al. reported that co-culture of human breast cancer cells 
or lung cancer cells with murine astrocytes led to an 
increased expression of survival genes in the tumor cells, 
including GSTA5, BCL2L1, and TWIST1  (49). In this 
study, gene expression profiles were first used to identify 
genes in tumor whose expression patterns were altered 
on interaction with astrocytes, and then a few survival 
genes among the altered genes were validated by 
Western blot and other biological experiments. In another 
parallel study (50), Fidler et al. investigated the influence 
of brain microenvironment on human breast cancer cells 
by independently extracting the data of cancer and host 
cells when human cancer cells were xenografted into 
different organ sites of immune compromised mice. In 
this study, both gene expression profiles and methylation 
profiles were generated and used in the statistical 
analysis for comparison. The data showed that the brain 
microenvironment induced a complete reprogramming of 
metastasized cancer cells and highlighted the outstanding 
function of astrocytes upon cancer cells’ reprogramming. 
Dr. Watabe’s group (10, 51) used a co-culture system to 
explore the detailed molecular mechanism on interaction 
between astrocytes and human breast cancer cells. This 
studies were based on a stem cell hypothesis, i.e. cancer 
stem cells (CSCs) play a key role in the progression of 
cancer brain metastasis. They also validated their results 
using mouse model in their studies. The bioinformatics 
approach, such as metastasis-free Kaplan-Meier survival 
analysis, was employed to stratify patients by individual 
genes and select the molecular candidates associated 
with cell-cell interaction. Several detailed cell-cell 
interaction pathways among astrocytes and CSCs have 
been identified for their role in promoting CSCs self-
renewal and breast cancer metastatic growth in brain 
microenvironment. Their studies represented a novel 
paradigm for the understanding of how metastatic breast 
CSCs re-established their niche for their self-renewal in a 
brain microenvironment.

To study the molecular events or biomarkers 
of metastatic tumor in brain, the brain metastasis 
tissue samples from patients are vital. However, the 
acquisition of such samples is generally difficult. At this 
time, few have reported the use of human samples of 
brain metastases for identifying molecular markers. 
The successful use of such samples would employ a 
bioinformatics approach for comparative analysis. The 
first example showed how the gene expression profiles 
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of the brain metastasis samples can be used to identify 
the tissue origin of metastatic brain tumors (52). In 
this study, Wu et al. evaluated the performance of the 
Tissue of Origin Test in the diagnosis of primary sites for 
metastatic brain cancer patients. The Tissue of Origin 
Test (Pathwork Diagnostics, Redwood City, CA, USA) is a 
gene expression test to aid in the diagnosis of metastatic, 
poorly differentiated and undifferentiated tumors. In their 
study, gene expression profiles from 15 fresh-frozen 
metastatic brain tumor specimens of 9 known origins 
were processed using the Tissue of Origin Test. The 
comparison result demonstrated a high accuracy of the 
Tissue of Origin Test when applied to predict the tissue of 
origin of metastatic brain tumors, which suggests this test 
could be a very useful bioinformatics tool for classifying 
metastatic brain cancers based on gene expression 
profiles. The second example showed how multiple data 
types of the breast cancer brain metastasis samples can 
be integrated together to identify common and rare events 
that underlie breast cancer brain metastasis (53). In this 
study, Salhia et al. performed a deep genomic profiling, 
which integrated gene copy number, gene expression 
and DNA methylation datasets on a collection of breast 
brain metastases. Gene set enrichment analysis (GSEA) 
and hierarchical clustering were combined together with 
network analysis for the data analysis. The genomic and 
epigenomic profiling of breast brain metastases in this 
study provided insight into the somatic events underlying 
this disease, which have potential in forming the basis 
of future therapeutic strategies. A third example showed 
how immunohistochemistry (IHC) data combining with 
gene expression profiles of brain metastasis samples can 
be used as early stage prognostic gene markers and the 
related signaling pathways in cerebral metastases of lung 
adenocarcinomas (54). In this study, Bleckmann et al. first 
identified the specific biomarkers using IHC experiments, 
and analyzed a microarray dataset containing 19 
adenocarcinoma brain metastases of the lung using a 
bioinformatics approach. Pearson’s correlation test and 
hierarchical clustering and Cox proportional hazards 
regression model were used to establish novel gene 
signatures and the related pathways in their study.

5.2. Statistical models for clinical outcome 
prediction

As we have discussed in the section 5.1, the 
mechanisms associated with cancer metastatic growth 
in the brain environment have not been well studied 
systemically. However, integration of clinical data using 
statistical models can be applied for identification of key 
prognostic factors and predictions of clinical outcomes, 
particularly overall survival and the development of new 
brain metastases. The major statistical models used in 
the published studies are Cox regression-based models 
because of the ability to assess the time to an event 
such as death or new brain metastases. Because of 
the competing risk of death from brain metastases and 
extracranial disease, these models are often imperfect. 

Some studies also used other types of models such 
as Bayesian network model and General Linear Mixed 
model as so on.

Cox regression-based models are commonly 
applied for clinical prediction of treatment outcome or 
overall survival. Broadbent et al. reported the outcome 
of total 474 patients with brain metastases from multiple 
types of solid tumors treated with whole brain radiotherapy 
(WBRT) (55). In their study, survival was calculated using 
the Kaplan-Meier method and Cox regression modeling 
was used for multivariate analysis. Staudt et al. reported 
the survival of total 265 patients with brain metastases 
from cutaneous melanoma (56). In their study, Kaplan-
Meier analyses were performed to estimate and compare 
overall survival and Cox modeling was used to identify 
independent determinants of the overall survival, which 
were used in explorative classification and regression 
tree analysis to define meaningful prognostic groups. The 
independent prognostic factors for these patients were 
the level of serum lactate dehydrogenase, administered 
therapy, the number of brain metastases and presence 
of bone metastasis. Marko et al. reported the survival 
of total 261  female breast cancer patients with brain 
metastases (57). A Cox proportional hazards regression 
with a nomogram representation was proposed to predict 
the survival. Vern-Gross et al investigated the variance 
in patterns of failure after Gamma Knife radiosurgery for 
154 patients with brain metastases based on the subtype 
of the primary breast cancer (58). Kaplan-Meier method 
was used to estimate survival times and multivariable 
analysis was performed using Cox regression models. 
The results, through specifically analyzing breast cancer 
population, showed that Her2 status affects survival 
and development of new metastases. Ayala-Peacock 
et al. reported the outcome of total 464  patients with 
brain metastases from multiple tumors at our institute 
in recent ten years (59). The patients were treated 
with Gamma Knife stereotactic radiosurgery (SRS) 
for the brain metastases without whole brain radiation 
therapy. Kaplan-Meier method was used to estimate 
rate of distant brain failure and multivariate analysis was 
performed using Cox proportional hazard regression with 
a nomogram representation. Systemic disease, number 
of metastases, and histology were identified as key 
factors for prediction of distant failure rate after primary 
radiosurgical management of brain metastases. Most 
recently, Lucas at el described competing risk analysis 
of who actually dies of brain metastases (60). This 
analysis explores why brain metastasis survival analyses 
are difficult because patients do not always die of brain 
metastasis.

A few other models have also been used for 
demonstrating key prognostic factors and predicting 
clinical outcomes. Makond et al. reported the survival 
of total 438  patients with brain metastases from lung 
cancer (61). To predict substantially short survivability 
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in patients, Makond et al. proposed a probabilistic 
model using Bayesian network. The Bayesian network 
was constructed based on total seven clinical variables 
including age, gender, region, site, treatment, interval 
and survivability. They utilized synthetic minority over-
sampling technique to solve the imbalanced property 
embedded in the proposed network. Freedman et al. 
reported the outcome of over 600 female breast cancer 
patients with brain metastases treated with or without 
fulvestrant (62). In their study, General Linear Mixed 
modeling, which adjusts for clustering within individual 
cancer centers, was applied to identify the factors 
significantly associated with the usage of fulvestrant and 
to subsequently develop the prediction model to identify 
those patients who could potentially derive the most 
clinical benefit.

5.3. Computational models of brain metastatic 
growth

When  tumor cells metastasize, tumor cells 
need to gain access to the circulation first, survive during 
circulating, pass through the microvasculature of the 
adopted organs, extravasate into the organ parenchyma, 
and colonize at the secondary site. We have reviewed 
the bioinformatics approaches for exploring underlying 
molecular mechanisms of tumor progression and the 
mathematical modeling studies that focused on the early 
stages of metastasis, i.e. leaving the primary tumor, and 
circulating in the blood and lymphatic systems. In this 
section, we review the existing work related to the tumor 
growth at the metastatic sites.

The computational cancer models are a 
mathematical representation of the biological system 
(the tumor and its micro-environment) in question 
and often used for analyzing a class of subjects which 
share similar biophysical and biochemical properties. 
Brain metastatic tumor growth from particular origins 
has been experimentally studied using in vitro and 
in vivo models (63-67). In the experimental metastatic 
models, the tumor cells are directly inoculated into 
circulation and colonize into the brain, which only 
accounts for the late steps of metastasis: survival in the 
circulation, extravasation, and colonization in the target 
organs (68, 69). Despite useful for specific experimental 
conditions, an experimental model system does not allow 
animal-to-animal variability to be circumvented since 
identical initial configurations could not be used for a 
whole series of wet-lab experiments, which is exactly the 
strength of the computational models (70, 71).

However, there were scarce computational 
models applied for investigating metastatic tumor growth 
in other specific organs. Many efforts have been devoted 
to studying tumor metastatic growth for general cancers. 
These mathematical models, especially those developed 
for solid tumors which share similar biophysical 
environment with the brain, could be similarly applied 

to the case of brain metastasis. Generally, the existing 
models for tumor metastatic growth can be categorized 
into two classes, including stochastic dynamics models 
and determinative models. The stochastic dynamics 
models use agent-based discrete model configured with 
update rules and the determinative models leverage 
growth formulae or equations to describe the tumor 
expansion in question (72).

Michor et al. (40, 73-75) employed a stochastic 
model, called Moran process, to describe the dynamics 
of metastasis formation and expansion. The hypothesis 
is that the metastatic behavior of cancer cells is promoted 
by mutation in one or multiple genes, which confer a 
fitness advantage for the selected colony. In their models, 
the steps for a metastatic tumor formation are controlled 
by a series of probabilities which depend solely on 
the somatic mutation(s) of cells acquired at each time 
point. All of these stochastic events together predict the 
eventual metastasis number and size (40). Kimmel et al. 
applied statistical methods to study tumor size-metastasis 
relationship in solid cancers (76). The metastatic spread 
profiles can be inferred from the size of a primary tumor. 
Taylor et al. developed a two-state Markov Chain Monte 
Carlo model to simulate micro-metastatic proliferation 
and death based on stochastic survival probability (77). 
A  narrow survival probability window that allowed for 
dormancy across a range of starting cell numbers was 
identified through this simulation. Kansal et al. developed 
a versatile three-dimensional (3D) cellular automaton 
(agent-based) model of brain tumor growth, showing that 
macroscopic tumor behavior can be realistically modeled 
using a few microscopic parameters (78). Their model 
recapitulated the clinical outcomes related to the dynamic 
composition of the tumor.

On the other hand, the deterministic tumor 
growth models use population growth formulae or ordinary 
(partial) differential equations (ODEs/PDEs) to depict the 
growth dynamics of metastatic tumor. The Gompertz 
curve and logistic regression model have been widely 
used to deal with tumor (primary or metastatic) growth. 
Norton et al. built a Gompertz model to simulate the 
breast cancer growth and revealed a growth pattern with 
largest growth rate in the middle period and a flattened 
growth at the beginning and late stages (79). Bosl 
et al. developed logistic regression model of metastatic 
testicular cancer and predicted the prognoses of patients 
using several clinical traits (80). ODEs/PDEs are the most 
popular way to describe tumor growth in the deterministic 
models. Iwata et al. developed a dynamical model by 
PDEs to estimate the colony size of metastatic tumors 
and predict spreading of the colonies (81), and Barbolosi 
et al. conducted a thorough mathematical analysis of 
this model, including the numerical solution for further 
extension and refinement (82). Very recently, Hartung 
et al. adapted a top-down model to estimate the risk of 
metastasis when no clinical evidence is available (83). By 
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calibration and validation using experimental data, their 
model was proved to be powerful in predicting metastatic 
spreading during the early stage of cancer progression.

Hybrid models are also used for describing 
tumor growth by integrating the stochastic and 
deterministic properties. Anderson presented a hybrid 
mathematical model of tumor cell invasion in healthy 
tissue (84). This model considered the nutrition and a 
series of secreted protein diffusing and reacting within 
the local tumor micro-environment and modeled them by 
a system of PDEs. On the other hand, tumor cells are 
simulated by a cellular automaton which treats each cell 
as an individual. Based on this modeling framework, our 
group extended this model by introducing the cancer 
stem cell (CSC) concept, incorporating the angiogenesis 
and necrosis process, and visualizing the whole system 
in 3D space with specific cell composition and molecule 
distribution (85, 86). On our modeling platform, we were 
also able to simulate the tumor response to various drug 
treatment regimens and identify important mechanisms 
related to the cancer stem cell-initiated tumor progression. 
Since our model simulated the tumor growth dynamics 
after stem cell seeding, which mimics the event of cancer 
cell homing and establishment in remote sites, it is well 
applicable to the metastatic tumor growth scenarios.

6. DISCUSSIONS AND FUTURE DIRECTIONS

Although brain metastasis has been studied 
for decades, our understanding of metastatic process 
is still poor. Various potential mechanisms of metastasis 
have been suggested over the years, each of which 
provided experimental evidence for the possible 
signaling pathways. The birth of genomic technologies 
has allowed for a more global study of the genes and 
pathways involved. With the increased ability to observe 
tumor and metastatic cancer cells on a whole genome 
level, it has advanced our understanding of a disease 
that includes many different aspects such as tumor 
and population specificity. Systems biology can be 
used to study and understand the various mechanisms 
of cancer brain metastasis. The ability to perform 
high throughput sample analyses has provided many 
insights into the various mechanisms of metastasis. It 
is now clear that cancer brain metastasis is not only a 
consequence of somatic mutations, but it also involves in 
the interplay of cells within the tumor microenvironment 
in the brain. Furthermore, studies have demonstrated 
that an individual’s genetic make-up can also influence 
metastatic susceptibility. A  systems biology approach 
can also be employed for gene expression profiling as 
well as network analyses to identify gene signatures 
for diagnosis and outcome prediction. These studies 
can assist scientists to identify new biomarkers for 
metastatic disease. The remaining challenge in this area 
mainly lies in that how to link genetic data analysis with 
epigenetic data analysis to understand deeper regulatory 

mechanisms (87-90), and how to effectively integrate all 
the components associated with cancer brain metastasis 
together in order to consider this complex biological 
process in a complete system. Multi-scale modeling 
may be a potential solution for this kind of complicated 
and highly integrative research, which could make 
connections at multiple scales of biological system while 
reflecting valuable information of spatial and temporal 
scales (91-99). For example, Liotta and colleagues 
made the first attempt to model the whole metastatic 
process in a manner of multi-compartment and multi-
scale modeling (100). In their work, a mouse model was 
used to generate experimental data for the process of 
pulmonary metastases from thigh muscle in order to train 
a mathematical model, which was then used to predict 
the effect of perturbations to the metastatic process 
including tumor resection, vessel growth inhibition 
and so on. This type of modeling work has potential 
to give significant insight into the mechanisms driving 
the response to perturbations on metastatic process 
including brain metastasis. However, in vivo experimental 
data is usually difficult to be generated which is vital for 
model training and model validation and involves multiple 
biological scales and different organs as well as complex 
mechanisms. Another future direction lies on how system 
biology can be used to model or simulate the clinically 
relevant process of dormancy and recurrence in the 
distant microenvironment such as brain. As we know the 
mechanisms and timing of distant recurrence of cancers 
after treatment remain challenge for clinical study. 
Systems biology approaches may help for the study. For 
example, Taylor et al (77) developed a two state Markov 
Chain Monte Carlo model simulating dormancy of 
micrometastasis. Another promising model type is based 
on cancer stem cell hypothesis. For example, Enderling 
and colleagues (101) proposed a stochastic model 
of cellular hierarchy within a tumor to show that single 
cancer stem cell-driven solid microtumors may undergo 
long periods of dormancy in spite of complex cellular 
activity. However these models are still far away from the 
complete understanding of the mechanisms of dormancy 
and occurrence. In conclusion, scientists working alone 
are not able to make as much progress as when they 
work together in studying cancer brain metastasis. Going 
forward, scientists from disparate fields, including the 
mathematical/theoretical disciplines, must open and 
foster dialogues between one another and work together 
to understand and interrupt this complex and nonlinear 
process of cancer brain metastasis (102, 103).
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