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1. ABSTRACT

Hospital infections associated with surgical 
procedures and implants still present a severe problem 
in modern societies. Therefore, new strategies to combat 
bacterial infections mainly caused by microorganisms 
resistant to conventional antibiotics are necessary. In this 
context, antimicrobial peptides have gained prominence 
due to their biocompatibility, low toxicity and effectiveness. 
The immobilization of antimicrobial peptides (AMPs) 
onto biomaterial surfaces is an excellent alternative for 
the development of new biodevices with microbicidal 
properties. Herein, we describe reports related to 
physical-chemical characterization, in vitro/in vivo studies 
and the clinical applicability of such active surfaces. In 
this review, we focused on the mechanisms of action, 
different peptide immobilization strategies on solid 
surfaces and the microbicidal effectiveness of AMPs.

2. INTRODUCTION

Bacterial resistance is still one of the major 
problems facing public health in modern societies (1). 
This can occur due to the indiscriminate use of antibiotics, 
which induces the formation of new species that are 
resistant to conventional antibiotics (2). A major problem 
facing modern societies is the health risks stemming from 
the transmission of new infections that are difficult to treat. 
In addition, the transmission routes (e.g. airborne or direct 
contact) can lead to epidemic episodes (3). Thus, many 
studies have aimed to minimize microbial contamination 
by developing new drugs. Although there are thousands 
of new compounds synthesized per year, the difficult 
process of validation and clinical phase studies decrease 
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the possibility of new drug manufacturing. In this context, 
the discovery of antimicrobial peptides (AMPs) has 
shown promise as a way to eradicate some resistant 
bacterial strains (4).

AMPs are small amino acid sequences obtained 
by their extraction from many types of organisms (plants, 
insects and animals) and play an important role in 
inhibiting the growth of multiple microorganisms (5, 6). 
Currently, the database that contains detailed information 
on these peptides (antimicrobial peptides database, APD) 
contains 2495 types with different functions: antibacterial, 
antifungal, antiparasitic, anti-cancer, antioxidant, 
etc. (7). Chemically modified AMPs are obtained from 
the modifications of natural ones derived from magainin 
and histidine (8, 9) or through new synthetic forms 
(e.g. E14LKK, RK1, RK2), aiming to improve microbicidal 
effectiveness (10, 11).

Some hospital infections come from the 
adherence of microbes, especially bacterial species on 
the surfaces of medical devices and implants (e.g. dental 
or orthopedic) or during surgical procedures due to the 
lack of adequate hygienization (12, 13). The massive 
bacterial colonization on solid surfaces could contribute to 
biofilm formation (14). This process involves the transport 
of bacterial cells and further attachment commonly 
mediated by van der Waals and electrostatic charges. 
The adhesion of proteins and extracellular polymeric 
substances (EPS) can reinforce bacterial adhesion (15). 
Once implanted, these microorganisms can maturate 
and differentiate, forming microcolonies and propagating 
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infections with detached cells (16). As a result, infections 
associated with bacteria are difficult to treat, and the 
removal or replacement of infected medical implants or 
devices reflects considerable costs for the healthcare 
system, which leads to patient suffering, prolonged 
hospitalization and eventually death (17).

In this scenario, the development of new 
biomaterials to prevent adhesion and microbial infection 
in hospital equipment and implants are of increased 
interest. The use of AMPs in adsorption processes, 
functionalization and immobilization of organic coatings 
onto substrate surfaces (titanium or silicone) has 
demonstrated good activity with clinical potential, 
summarized in Table 1.

Therefore, this review addresses three 
important aspects for the use of AMPs in antimicrobial 
coatings: basic concepts and mechanisms of action of 
peptides against microorganisms (with the emphasis 
on bacteria), chemical immobilization strategies for the 
inclusion of peptides associated to solid substrates and 
the effectiveness of these models in antimicrobial testing.

2.1. Antimicrobial peptides
AMPs are important components of the innate 

immune systems of living organisms and contribute 
effectively against exogenous pathogens (18). After 
a microbial infection, most of these peptides act to 
neutralize a wide range of microorganisms. In addition, 
AMPs are efficient at low concentrations, are less likely 
to promote bacterial resistance and have antitumor 
properties. Therefore, AMPs are promising candidates for 
their use as novel therapeutic drugs (4). They comprise 
a chemically and structurally heterogeneous family yet 
share molecular masses lower than 5  kDa, aside from 
having cationic and amphipathic properties (19, 20).

Due to the enormous variety of amino acid 
sequences and structural features, the exact action 
mechanism of AMPs is still a controversial issue. However, 
there is a consensus about the mechanism of positively 
charged peptides. The cationic charges on the peptide 
surface favor the electrostatic interaction of negatively 
charged microbial membranes through bivalent cation 
exchange (20). In addition, AMPs assume an amphipathic 
structure after interacting with the bacterial membrane, 
resulting in a lethal permeabilization (20, 21).

The antimicrobial activity of AMPs is based on 
four model mechanisms named barrel, carpet, toroidal 
and detergent. In the barrel model, the hydrophobic 
part of AMPs interacts with the lipid hydrocarbon chains 
of membranes, and their hydrophilic part exposes the 
lumen as a result of transmembrane aqueous channel 
formation. The carpet model occurs due to the saturation 
of the bacterial membrane by AMP molecules, resulting 
in its permeabilization (21, 22). In the toroidal model, 

the peptides are interspersed with phospholipids, and 
the polar groups of both molecules interact with each 
other, resulting in pore formation in the lipid membrane, 
where peptides are assumed to adopt a transmembrane 
orientation (23). Finally, the detergent-like model can occur 
as a consequence of the carpet model. Once attached to 
membrane surface by electrostatic interactions, AMPs 
interleave the lipid bilayer until reaching a saturation 
point with subsequent micelle formation and bacterial 
membrane destruction (24).

The systemic use of AMPs is restricted, mainly 
due to their toxicity when used at high concentrations, as 
well as by its relatively short half-life and susceptibility to 
proteases (10). The interaction of peptides with bacteria 
is initially driven by weak attraction forces (van der 
Waals and electrostatic interactions), which are further 
enhanced by specific interactions involving peptides and 
biofilm formation (25). Therefore, the most feasible way 
to use peptides is through their immobilization onto solid 
surfaces with the aim of developing new antimicrobial 
structures. In general, the use of intermediary linkers 
between solid surfaces and AMPs is required to obtain 
better microbicidal activity (25).

Bacterial infections associated with implanted 
devices still present a significant threat to patients and are 
a serious challenge for physicians. High rates of infection 
are observed for orthopedic implants, dental devices, 
vascular grafts, urinary and venous catheters, which 
results in low performance of these devices in terms of 
safety and longevity (26, 27). Central venous catheters, 
commonly used in clinical cases (e.g.  chemotherapy, 
prolonged parenteral nutrition and hemodialysis), 
contain silicone or polyurethane in their constitution. In 
addition, catheters are useful for peptide immobilization 
and, therefore, acquire the potential to be used against 
biofilms involved in hospital infections post-surgery (28). 
Furthermore, limitations of biomolecular immobilization 
could spur the development of new antimicrobial surfaces 
capable of preventing initial bacterial colonizations or 
at least reduce active bacterial titles. Thus, modified 
surfaces could directly affect patient health and reduce 
costs in public health, making the use of AMPs an 
excellent alternative to remedy these issues.

3. PHYSICAL METHODS FOR 
IMMOBILIZATION OF AMPS

Recently, several studies have demonstrated 
AMP coupling with different substrates and their 
effectiveness against biofilm formation (29-33). AMPs 
have unique bioactive properties capable of overcoming 
limitations of other antibacterial coatings, such as the risk of 
developing bacterial resistance, short-term antimicrobial 
protection, limited antimicrobial spectrum and high 
cytotoxicity (34-37). Therefore, AMP immobilization onto 
diverse medical devices, including implants, urinary 
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and intravenous catheters, has an undeniable potential 
for clinical use (38-41). However, new immobilization 
strategies are required to ensure the applicability of 
AMPs on solid surfaces, improving the effectiveness and 
functionality of modified biodevices (35, 42).

AMPs can be immobilized onto solid surfaces 
through physical methods such as adsorption, self-
assembled monolayers (SAM) or through chemical 
methods via selective or non-selective covalent 

bonding (35, 42, 43). Physical methods are based 
on hydrogen bonds, permanent or induced dipole 
interactions (van der Waals’ force or London dispersion 
force), and hydrophobic or ionic interactions between 
AMPs and surfaces (44-47). Some substrates have 
been used for AMP anchoring such as gold (32), 
titanium (31, 34, 40, 48), titanium dioxide (49), silicon (50), 
silicone (11, 41), polymeric brushes and resins (8, 51-54). 
Of note, immobilization onto substrate surfaces can 
be performed without any shape restriction, such as 

Table 1. AMP covalent immobilization on solid surfaces and their antimicrobial activity against bacteria, 
fungi and yeasts

Substratum AMP Chemistry Immobilization Strategy Evaluated microorganisms References

Polyamide resin (pepsynK) Novel synthetic 
peptides and 
Magainin 2

Grafting of C‑terminus to the polymer support 
during solid‑phase peptide synthesis

E. coli, K. pneumoniae, S. aureus, 
B. subtilis, C. albicans

10

PEG1‑Polystyrene 
(PEG‑PS) resin beads

6K8L Peptide synthesized by solid‑phase peptide 
synthesis on a PEG‑PS resin using Fmoc2 
chemistry

B. subtilis, E. coli. Kluyveromyces 
marxianus, L.monocytogenes, 
P. fluorescens, S. typhimurium, 
Serratia liquefaciens, S. aureus

53

PEGylated resin beads 
(TentaGel S NH2, HypoGel 
400 NH2 and HypoGel 
200 NH2)

KLAL and 
Magainin‑derived 
peptide (MK5E)

C‑terminal immobilization by standard solid‑phase 
peptide synthesis and Fmoc chemistry; N‑terminal 
and side‑chain immobilization by thioalkylation 
and oxime formation

E. coli, B. subtilis 8

PEGylated resin beads 
(TentaGel S NH2 resin 
beads)

Melittin, Buforin 2 
and Tritrpticin

Thetered modified beads by oxime‑forming 
ligation strategy

E. coli, B. subtilis 90

PEG‑Polystyrene 
(PEG‑PS) resin beads

amphipathic 
β‑sheet peptides

Covalent binding by Fmoc chemistry on PEG‑PS 
beads

S. aureus, Micrococcus luteus, 
P. aeruginosa, E. coli.

51

Glass coverslips Melimine Grafting via ABA3 and FNA4 linkers P. aeruginosa, S. aureus 72

Indium‑tin‑oxide glass Polymixin B Silane containing epoxy rings to couple peptides 
by catalyst

E. coli. NCTC 8007 94

Polydimethylsiloxane 
(PDMS)

CW11 Cross‑Linking of peptides to allylglycidil ether 
modified PDMS surface (PDMS‑AGE5‑PEG) via 
Sulfhydryl Chemistry

E. coli, S. aureus, P. aeruginosa 100

Silicone Urinary Catheter 
and Polydimethylsiloxane 
(PDMS)

RK1 and RK2 Cross‑linking of peptides to allylglycidil ether 
modified PDMS surface (PDMS‑AGE‑PEG) via 
Sulfhydryl Chemistry

E. coli, S. aureus, C. albicans 11

Pretreated Ti with amino 
silane and epoxy silane

LL‑37 Site‑specific conjugation through amine 
reactive NHS‑group and the Thiol‑reactive 
maleimide‑moiety

E. coli 105

Pretreated Tisilanization 
with CPTES or APTES

hLF6‑11 Peptide physical adsorption and covalent 
binding with CPTES7 or APTES8

S. sanguinis, L. salivarius 31

‑ Nisin, Trp‑11, 
4K‑C16

Covalent immobilization via reaction between 
amine groups on the peptides and surface 
epoxy groups on the plasma polymer interlayer

E. coli, B. subtilis 85

‑ Nisin, Magainin I. Covalent immobilization through grafting of 
chitosan, cross‑linking agents and peptides

L. ivanovii 111

1PEG: Polyethylene glycol, 2Fmoc: 9‑fluorenylmethyloxycarbonyl, 3ABA: 4‑azidobenzoic acid, 4FNA: 4‑fluoro‑3‑nitrophenyl azide, 5AGE: allylglycidyl 
ether, 6hLf: human lactoferrin, 7CPTES: chloropropyltriethoxysilane, 8APTES: 3‑aminopropyltriethoxysilane
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planar, spherical or curved geometries (55). However, 
specific surface properties (nature, composition, charge, 
hydrophilic or hydrophobic character, topography and 
roughness) and AMP characteristics (type, charge, 
molecular size and conformational stability) interfere in 
the immobilization process (46). In addition, experimental 
conditions such as time, peptide concentration, pH and 
temperature should be also considered (46, 53).

The self-assembly technique is one of the main 
strategies used for physical AMP immobilization (56, 57). 
This approach is based on the alternating deposition of 
anionic and cationic layers on a solid substrate (58-60), 
enabling the obtainment of functionalized films through 
the insertion of AMPs between polyelectrolytes layers (55) 
and the control of film thickness and adsorbed biomolecule 
amounts (56). Moreover, self-assembly is an effective 
procedure since it does not cause chemical changes in 
the functional peptide and maintains its conformational 
stability by retaining water molecules between the 
matrices (57, 61). One of the main features that make 
SAM films promising for biotechnological applications is 
the possibility of temporal control over incorporated AMP 
release in hydrolytically degradable polymers through 
surface erosion (57, 62-64).

Several studies have demonstrated good 
prospects for AMP application in polymeric films. However, 
some disadvantages could be associated with the self-
assembly technique, limiting its application for obtaining 
implants coated by biomaterials and medical devices (55). 
An important disadvantage comprises AMP incorporation 
into the lower layers of the film, which restricts their direct 
contact with the surrounding bulk (31). AMP bioactivity 
is dependent on the diffusion process at the interface, 
being influenced by the tortuosity of the diffusion (64) 
via film thickness (65) and intermolecular interactions 
between the polymer and peptide (66). A  relatively fast 
peptide release from the polymeric films results in a 
decreased amount of anchored AMPs, interfering in 
the minimum AMP concentration required to inhibit the 
growth of microorganisms and increase the number of 
biomolecules in the bulk (55). In addition, a fast release 
can provide conditions for the development of bacterial 
resistance, local toxicity and hemolytic activity (45,55). 
Therefore, the limitations of the self-assembly technique 
should be considered prior to its use as a strategy for 
obtaining more effective antimicrobial coatings.

The achievement of antimicrobial coatings with 
adequate properties results from the improvement of 
immobilization techniques (16, 39). The development of 
appropriate methodologies for coating surfaces ensures 
biological peptide properties including mechanism of 
action, wide spectrum bioactivity, stability in adverse 
conditions and low propensity for the development of 
bacterial resistance (3, 40-42). However, this requires 
some factors that influence the performance of these 

biomolecules, such as peptide orientation, surface 
concentration of bounded AMPs, and spacer length 
and flexibility, which determine the lateral mobility of 
AMPs (5, 7). Under these conditions, the use of chemical 
methods for the immobilization of AMPs onto solid 
surfaces has increased (27).

4. CHEMICAL APPROACHES FOR 
COVALENT IMMOBILIZATION OF AMPS 
ONTO SURFACES

The chemical immobilization of AMPs is an 
alternative strategy for coating surfaces and improving 
peptide stability. Consequently, the duration of the 
antimicrobial efficacy is increased and is further associated 
with a reduction in the toxicological risks for patients by 
reducing the leaching of peptides (8, 37, 65, 66). Besides 
these advantages, adequate AMP orientation on the 
substrate can provide greater bioactivity (20, 67). For 
these reasons, covalent bonds have been extensively 
studied as a tool to overcome the  limitations of the 
physical anchoring methods (20, 54, 68). However, it is 
important to emphasize that chemical immobilization can 
alter the conformational structure of the molecule, restrict 
its mobility and interfere in the mechanism of action (46). 
Therefore, molecular coupling mechanisms should be 
thoroughly evaluated for the maintenance of bioactive 
AMP properties (52).

Chemical immobilization involves the 
formation of at least one covalent bond between the 
surface and the responsible biomolecule to provide 
stability to antimicrobial film (20). Stability is obtained 
through the strength of covalent bonds, which prevents 
spontaneous peptide uncoupling (8,10,69). Covalent 
bonds are classified as selective or non-selective (70). 
A selective bond between AMPs and substrates can be 
obtained through the insertion of a specific functional 
group in the molecular structure of the peptide via 
chemical synthesis (35). In addition, is possible 
control the route of reaction and orientation of the 
biomolecule (8, 48, 71). On the other hand, non-selective 
immobilization occurs naturally without requiring 
additional chemical modifications in the peptides. In this 
case, covalent binding uses the intrinsic functional groups 
(e.g.  carboxylic acid, amino, sulfhydryl and hydroxyl 
groups) of the peptide sequence to react chemically 
with activated surfaces. Non-selective immobilization 
can result in more than one type of covalent bonding 
with different orientations of the biomolecule (42, 72). 
However, for non-reactive surfaces, the functional groups 
should be inserted through spacers to obtain a covalent 
bond between AMPs and surfaces (73). Substrate 
modification can be performed using SAM composed by 
chemically-reactive organic molecules as a simple and 
effective strategy (35, 74-76). The spacer length can be 
varied from one to several carbon atoms with a direct 
influence on AMP bioactivity (35).
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Another strategy to covalently immobilize 
AMPs involves the use of functionalized polymer 
resins such as polyethylene glycol (PEG) or other 
‘brushes’ that bear reactive groups suitable for coupling 
peptides (8, 10, 51, 53). PEG is one of the main spacers 
used in the activation of surfaces by presenting the anti-
adhesive property that prevents or minimizes bacterial 
colonization (77-79). In addition, PEG is an amphiphilic 
and flexible polymer that allows for a greater lateral 
mobility of the AMPs and retention of water molecules in 
its interior. PEG is capable of maintaining the bactericidal 
activity of peptides after immobilization onto solid 
supports (25). However, a disadvantage of the use of 
polymers as spacers consists in the possibility of polymer 
chain degradation and premature AMP release (53).

A wide variety of chemical coupling methods 
for the immobilization of AMPs onto surfaces are shown 
in Figure 1. Carboxylic acid-functionalized surfaces can 
react with primary amines, leading to the formation of 
peptide bonds (amide bonds) (73). However, the reactive 
chemical groups on the surface should be initially activated 
with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 
hydrochloride (EDC) and N-hydroxysuccinimide (NHS) 
(Figure  1a) (35, 73). On the other hand, the AMP 
immobilization onto amino-functionalized surfaces is 
similarly obtained, as explained previously, for carboxylic 
acid-functionalized surfaces. In this case, the accessible 
carboxylic groups of the peptide should be activated 
with the EDC:NHS coupling method before being added 
to the functionalized surface (Figure  1b) (35). The 
carboxyl-amine conjugation reactions based on the use 
of EDC and NHS occur in two sequential steps. EDC first 
reacts with a carboxyl group, forming an amine-reactive 
O-acylisourea intermediate. This unstable intermediate 
is susceptible to hydrolysis and stabilized through the 
addition of NHS by converting it to a semistable amine-
reactive NHS ester (Figure 1a). After the addition of NHS, 
it is possible to obtain a stable amide bond with a 10-20 
fold increase in coupling efficiency. Carbodiimide cross 
linker chemistry is widely used for the immobilization of 
peptides on modified surfaces with carboxyl (Figure 1a) 
or amino groups (Figure 1b) (80-82). Another strategy for 
biomolecule immobilization is based on aldehyde groups 
displayed on functionalized surfaces. This approach can 
be used to covalently bind AMPs  from primary amines, 
resulting in the formation of imine bonds. However, since 
the imine bonds are unstable, they should be converted 
to amine bonds through reducing agents, as sodium 
cyanoborohydride (NaBH3CN), for the stabilization of 
anchored peptides (Figure 1c) (71, 83).

The surface coupling strategy also uses 
isothiocyanate for the attachment of peptides via primary 
amine groups (Figure 1d) (35). Disulfide bonds can also 
be used to immobilize many peptides and proteins. 
Surfaces modified with thiol groups can covalently 
immobilize AMPs through disulfide bonds established 

Figure  1. Examples of chemical strategies for controlled covalent 
attachment of AMPs on surfaces functionalized with different reactive 
groups. a) Surfaces functionalized with carboxylic acid groups can be used to 
covalently bind AMPs via coupling agents 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) that 
activate the chemical groups on the surface. b) AMPs can be attached to 
amino-functionalized surfaces through activation of their carboxylic groups 
with EDC and NHS before incubating on the surface. c) Aldehyde groups 
present on functionalized surfaces can chemically react with amine groups 
of AMPs and establish stable covalent bonds through reducing agents, 
such as sodium cyanoborohydride (NaBH3CN). AMPs can be immobilized 
on solid supports functionalized with d) isothiocyanate, e) thiol, f) maleimide 
and g) epoxide groups. Except for anchoring of AMPs on isothiocyanate 
modified-surfaces, the use of thiol-bearing peptides is verified for covalent 
immobilization of AMPs on surfaces functionalized with thiol, maleimide and 
epoxide groups. In all cases, the chemical coupling occurs in a single step 
and without the need for additional reagents. h) Surfaces functionalized 
with alcohol can anchor AMPs via two reaction mechanisms. In the first 
mechanism, hydroxyl groups of spacers are derivatized with an amino 
alcohol, such as ethanolamine, and the carboxylic acid groups of AMPs 
are activated with EDC and NHS for the attachment of the peptides on 
the surface. In the second mechanism, hydroxyl groups of spacers are 
derivatized with an aldehyde (e.g.  glutaraldehyde), subsequently, the 
immobilization of AMPs proceeds similarly to the anchoring of peptides on 
aldehyde-modified surfaces.
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between the surface and cysteine residues of the 
peptide (Figure  1e) (70,84). AMPs can be attached to 
maleimide-functionalized surfaces through covalent 
bonds established between the thiol group of the peptide 
and the α,β-unsaturated carboxyl of the maleimide 
(Figure 1f) (25,52). AMPs containing thiol or primary amino 
group derivatives (e.g. amino acids cysteine and lysine, 
respectively) can be easily immobilized onto epoxide-
functionalized surfaces through a nucleophilic ring 
opening in a spontaneous reaction (Figure 1g) (83,85).

There are currently two reaction mechanisms 
for AMP immobilization onto alcohol-functionalized 
surfaces (Figure 1h). In the first mechanism, the spacers 
containing hydroxyl groups are derivatized with an 
amino alcohol such as ethanolamine. Subsequently, the 
peptides whose carboxylic acid groups were previously 
activated with the EDC: NHS solution are added to the 
modified surface, resulting in a covalent bond (35). 
In the second mechanism, the spacers presenting 
the alcohol function are derivatized with an aldehyde 
(e.g.  glutaraldehyde). Therefore, the immobilization of 
AMPs on aldehyde-modified surfaces occurs similarly, 
as has been shown previously (35). As explained before, 
diverse methodologies for AMP immobilization onto 
solid surfaces are available. However, the advantages 
and disadvantages of each technique should be 
evaluated for obtaining effective antibacterial films(46). 
Therefore, the molecular coupling process should be 
rigorously controlled for the maintenance of the bioactive 
properties of the peptides and the functionality of the final 
product (42,43).

5. EFFECTIVENESS OF AMPS IMMOBILIZED 
ONTO A BIOMATERIAL SURFACE

Antimicrobial peptides have a well-defined 
mechanism of action described by interaction models 
that evaluate the association between the sequence 
of peptides and the bacterial cell wall (86-88). The 
search for improving the efficiency of AMP-bacteria 
interaction also leads to the development of artificial 
peptides and the discovery of novel, natural peptides 
extracted from various living organisms. In recent years, 
there has been increased interest in developing new 
antimicrobial biomaterials in pre/post-surgery processes 
to avoid nosocomial infections (25). The applications 
of immobilized AMPs are an excellent alternative for 
use against nosocomial infections caused by common 
pathogens and antibiotic-resistant microorganisms (8, 42). 
AMPs have been tested on diverse solid surfaces such 
as resins, glass, silicone, titanium and stainless steel for 
clinical use (43,89).

Resins are solid polymers obtained from 
plants or chemical synthesis. Some resins are 
chemically modified and useful as a substrate for AMP 
immobilization due to their high molecular weight and 

amide/amine moieties in its molecular chain (10,90) 
(Table  1). However, physicochemical characteristics 
of resins do not contribute to clinical applications. Of 
note, these materials are important to obtain a better 
understanding of the mechanisms of action of surface-
active peptides (8,53).

Haynie et al. studied the bactericidal 
effects of magainin 2 and various synthetic peptides 
mainly containing lysine, leucine and glycine in their 
compositions, utilizing an ethylenediamine-modified 
polyamide resin (Pepsin K). Altogether, 70% of the tested 
peptides, which included magainin2, showed bactericidal 
activity against fungi and Gram-positive and Gram—
negative strains. Among them, E14LKK showed the 
highest antibacterial activity, except for P. aeruginosa and 
A. niger. Other studies also used E14LKK immobilized 
onto polyethylene film containing PEG as the intermediate 
binder. The peptide remained active and reduced E. coli 
strains up to 3 log (54).

The covalent immobilization of AMPs at different 
binding sites and with different length spacers also 
influences biocidal and hemolytic activities. Two α-helical 
cationic AMPs, MK5E and KLAL, were immobilized on 
polystyrene resin beads (Table  1). MK5E is an AMP 
derived from magainin2 having only microbicidal activity 
while KLAL has both biocidal and hemolytic activities. 
Bagheri et al. used resin beads with different sizes 
(TentaGel S NH2, HypoGel 200, and 400 NH2) with 
covalently-linked peptides via N and C terminal chains. 
They demonstrated that the antibacterial activity of 
cationic AMPs was influenced by spacer length. AMP 
biocidal activity is directly dependent on the spacer 
length, providing more flexibility and capacity to interact 
with microorganism surfaces (8).

Bioactive glasses also provide an advantage 
in forming an interface between implant and organism 
without inducing immune responses. This type of 
glass has potential applications in dentistry (91), 
ophthalmology (92) and orthopedics (93). However, 
there are still few studies on the immobilization of AMPs 
onto glass (72,94). These materials have been used 
for the immobilization of melamine, a cationic peptide 
modified by covalent bonding. In addition, ligands 
such as 4-azidobenzoic acid or 4-fluoro-3-nitrophenyl 
azide are used to modify glass substrate surfaces (72) 
(Table  1). Glass coated by indium-tin-oxide was also 
functionalized with silane coatings containing epoxy rings 
(3-glycidyloxypropyl-trimethoxysilane (94).

Silicone is a synthetic polymer obtained from 
fluid resin or elastomer forms. Silicone is one of the 
most cited materials for peptide immobilization and is 
extensively used in the medical and pharmaceutical 
fields due to its biocompatibility and wide range of 
physical forms. In addition, this polymer is applied 
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in manufacturing prostheses and medical devices 
(e.g.,  catheters and stents) (95,96). New approaches 
have been developed to prevent biofilm formation on pre/
post-surgical procedures aiming to decrease mortality 
rates and costs to public health (97-99).

Some peptides have been immobilized on venous 
catheters composed of silicone for the development of 
bactericidal surfaces against bacterial strains (38). The 
understanding of the interactions between AMPs and 
bacteria has led to the development of novel synthetic 
peptides (e.g.  CW11, RK1 and RK2) (11,100). CW11, 
a synthetic peptide, was chemically immobilized on a 
polydimethylsiloxane (PDMS) surface maintaining an 
in vitro bactericidal effect (Table  1). CW11 is mainly 
composed of tryptophan and arginine, which contribute 
to a better adhesion process on bacterial surfaces even 
under saline conditions. CW11 has low cytotoxicity and 
excellent antibiotic activity against E. coli, P. aeruginosa 
and S. aureus as compared to conventional antibiotics. 
Thus, the CW11 peptide is an alternative for modifying 
medical devices based on silicone as a substrate (100).

In addition, other peptides such as RK1 and 
RK2 (both derived from the human beta-defensin-28 
variant) showed a broad antimicrobial spectrum, 
tolerance to saline conditions and use for the modification 
of silicone surfaces (101) (Table  1). These peptides 
are rich in arginine, lysine and tryptophan residues, 
showing antimicrobial activity against E. coli, S. aureus 
and C. albicans in phosphate buffered solutions and 
urine samples. Cultures of smooth muscle cells showed 
no signs of toxicity, demonstrating biocompatibility for 
use in urinary catheters. Therefore, the development 
of new peptides is an alternative for covering catheters 
and preventing urinary tract infections (11). In addition, 
new, natural and/or synthetic peptides have been 
used to modify metal surfaces such as titanium, and 
have been applied in clinical and preclinical research 
studies (9, 31, 40, 102).

Titanium (Ti) is another material used for implants 
in dental and orthopedic applications (12, 13). Likewise, 
the properties of biocompatibility, corrosion resistance 
and ability to bind to bone has induced new research 
studies (103). The use of AMPs and Ti is associated 
with the lack of toxicity and low immune response. The 
bactericidal effectiveness of LL-37 on Ti surfaces was 
evaluated (104, 105) (Table 1). LL-37 is a peptide derived 
from cathelicidin and extracted from epithelial cells and 
neutrophil granules. Zanetti et al. (104) performed the 
immobilization of LL37 by covalent bonding strategies 
using PEG as a spacer between solid surfaces and the 
peptide. In addition, LL-37 with cysteine (Cys-LL37) was 
used to assess binding to the spacer. The presence of 
cysteine ensured stable bonding with PEG and better 
mobility of LL-37, facilitating the interaction with the 
evaluated bacterial cell membrane. AMPs conjugated to 

spacers (copolymer “brushes”) with a low density provide 
a high number of peptide/polymer chains, which results 
in higher antimicrobial activity (48).

Besides LL-37, another example of AMPs 
extracted from humans are human lactoferrins (hLF). 
In addition, hLFs are involved in the activation and 
differentiation processes and immune responses against 
microorganisms (106-108). The peptide hLF1-11 is 
effective against strains of Streptococcus sanguinis and 
Lactobacillus salivarius, preventing the formation of 
biofilms at early stages. Recently, the antimicrobial effect 
of the hLF1-11 attached to Ti surfaces was demonstrated 
to be effective for dental applications (31).

On the other hand, stainless steel (SS) is a metal 
present in several areas where hygiene is essential, 
including the home, the food industry and the medical field. 
The presence of SS in hospital environments highlights 
its importance for developing antimicrobial surfaces in 
order to avoid pre/postoperative infections (109, 110). 
In this context, the functionalization of organic polymers 
deposited by plasma (glow discharge plasma) is essential 
to immobilize covalent peptides. The process occurred 
by binding the peptide amine groups and epoxy groups 
from polymerized interlayers deposited via plasma on SS 
surfaces. These systems reduced the growth of E. coli 
and B. subtilis ranging from 3 to 6 log10 in accordance 
with the tested peptide (85). In addition, chitosan polymer 
layers (1,4 linked N-acetyl glucosamine and glucosamine) 
were used on SS surfaces to immobilize the AMPs nisin 
and Magainin I. This strategy was possible due to the 
insertion of terephthalaldehyde cross linker (111). New 
studies, even at early stages, are essential to contribute 
to the development and improvement of biomaterials for 
clinical use and biodevice implantation.

6. CONCLUSION

Since bacterial resistance is still one of the 
major problems facing modern societies, new strategic 
therapies to combat microorganisms resistant to 
conventional antibiotics are required. In this context, 
antimicrobial peptides are promising due to their 
biocompatibility, low toxicity and high effectiveness. 
Synthetic forms of peptides also have increased their 
microbicidal activity. Currently, chemical methods for 
immobilization of AMPs on surfaces are considered 
valuable tools for the construction of modified biodevices. 
Chemical immobilization provides improvements in 
peptide stability and ensures an adequate orientation 
of the biomolecule. Covalent bonding overcomes 
limitations of the physical anchoring methods, creating 
films with greater antimicrobial efficacy. Chemical 
approaches to covalent immobilization of AMPs on 
solid surfaces, such as orthopedic implants and surgical 
instruments, represent an advance in the prevention of 
nosocomial infections. Although many studies are still 



Chemical immobilization of AMPs on biomaterial surfaces

	 136� © 1996-2016

in the initial phase, they represent the first step towards 
the development and improvement of new antimicrobial 
biomaterials with the capability of reducing infections in 
hospital environment and improving human health.
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