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1. ABSTRACT

The release of a mature healthy egg for fertilization is
the center of the entire reproductive process. From the time
of embryonic development till fertilization, the oocyte
undergoes several stop-and-go periods. In most animals,
oocytes are held in meiotic arrest in prophase I prior to
ovulation. The ovulatory luteinizing hormone (LH) surge
promotes the resumption of meiosis of the arrested oocytes
and their progression through the second meiotic cycle,
only to be arrested again at metaphase II until fertilization.
This review addresses the underlying mechanisms involved
in maintaining the oocyte in meiotic arrest as well as the
signaling pathways responsible for releasing it from the
arrested phase just prior to ovulation until the completion
of meiosis at the time of fertilization.

2. INTRODUCTION

Mammalian oocytes undergo first meiotic progression
during embryonic development, and at the time of birth,
they become arrested in the diplotene stage of prophase I.
This meiotic arrest of oocytes is maintained until shortly
before ovulation. During each reproductive cycle, the pre-
ovulatory LH surge triggers the resumption of meiosis and
its progression to metaphase II (MII), a process commonly
termed oocyte maturation. Following resumption of
meiosis I, there is organized disassembly of the nuclear
envelope (germinal vesicle, GV) referred to as germinal
vesicle breakdown (GVBD), followed by chromosome
condensation, spindle formation and extrusion of the first
polar body. Thereafter, the oocyte enters meiosis II and
again gets arrested at metaphase II stage until fertilization.
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Figure 1. Stages of meiosis during oocyte maturation.
Meiosis I is subdivided into Interphase (IN), Prophase (P),
Metaphase (M), Anaphase and Telophase (A-T). The
immature oocyte enters the first meiotic cycle during
embryonic development where it passes through different
stages of the cell cycle (G1-S-G2) in the Interphase (INI) and
then gets arrested at the diplotene stage (Dip) of prophase I
(PI). LH serves as a stimulus to induce completion of
meiosis I, formation of first polar body followed by germinal
vesicle breakdown (GVBD). The mature oocyte is now
referred as germinal vesicle (GV) occyte. At metaphase II
(MII) the oocyte is arrested again for the second time until
fertilization. Fertilization reactivates meiosis II and
completes maturation to start embryonic development.

Upon fertilization, the oocyte resumes meiosis II and
extrudes the second polar body, thereby completing
maturation (1, 2) (Figure 1). Oocyte maturation is one of
the major steps for the oocyte to attain competence for
successful fertilization and subsequent embryonic
development. Acquisition of this developmental
competence of the oocyte involves multiple factors
regulated by different signaling pathways at various stages
prior to fertilization (3, 4). In humans, failure of or
incomplete oocyte maturation results in infertility that is
attributed to a poorly-defined phenomenon known as
“oocyte factor”(5-8). This article reviews recent progress in
understanding the various signaling pathways and
underlying intracellular mechanisms involved in
maintaining the meiotic arrest and regulation of oocyte
maturation that is essential for mammalian oocyte
competence.

3. REGULATION OF MEIOTIC ARREST OF
OOCYTES AT PROPHASE I STAGE

The segregation of the germ cell lineage from the
somatic lineage is an event occurring very early during
development of both invertebrates and vertebrates
(reviewed by A. McLaren (9)). In mouse, primordial germ
cells (PGC) are derived from the embryonic ectoderm
during gastrulation that migrates to the genital ridges,
where sex determination occurs through a retinoic acid
(RA) dependent mechanism. In the embryonic ovaries,
retinoic acid induces the progression of PGCs through

meiosis by an undefined mechanism. In contrast, in the
fetal testis, P450 cytochrome enzyme CYP26B1 degrades
RA, retarding the onset of meiosis until after birth; as a
consequence, oogenesis is prevented in favor of
spermatogenesis (10, 11). Once the PGC has committed to
oogenesis and enters meiosis, it progresses through the
diplotene stage of prophase I, where the first meiotic cycle
is arrested through mechanisms described below.

In the mammalian ovary, oocytes within the
primordial or primary follicles are meiotically incompetent
and will not mature if isolated from the follicle (12-16).
This is largely due to lack of or low concentration of cell
cycle proteins that are essential for oocyte maturation (14,
16-18).  In contrast, the oocytes arrested in the diplotene
stage of prophase I of antral follicles are fully competent to
complete meiosis when taken out of the follicular
environment (3, 19-22) and produce an egg that is perfectly
capable of fertilization and can undergo embryonic
development (1, 23-25). This spontaneous resumption of
meiosis in oocytes is not observed in all species. For
example, Xenopus oocytes do not undergo spontaneous
resumption of meiosis upon removal from their follicular
environment (26). During follicular development, oocytes
grow in size and acquire competence for maturation by
expressing cell cycle proteins that remain in an inhibited
state at prophase I, resulting in the arrest of the oocyte (7,
12, 17, 27). In mammals, for in vitro maturation, oocyte
size [ 3mm diameter in pig (25, 28), 75m diameter in
mouse (17, 21, 29) and 100m in human (3) ] is an
important factor for resumption of meiosis. Oocytes that do
not attain the appropriate size may remain arrested at
prophase I stage, or if cultured in vitro, may only mature to
metaphase I stage (6, 12, 13).  In fact, in cat (30), pig and
cattle (12), oocyte competence for in vitro maturation
depends on the follicular size from which the oocyte is
isolated. However, oocyte size is not the sole factor that
determines oocyte competence, and even fully grown
oocytes can fail to resume meiosis when cultured in vitro
and remain arrested in  prophase I or in metaphase II (5,
31). There are reported cases in humans of oocytes being
developmentally immature even when isolated from
follicles of desired size. This incompetence of fully-grown
oocytes to undergo oocyte maturation has been proposed to
be due to defects in the molecular mechanisms responsible
for regulation of oocyte maturation (31-33).

3.1. High cAMP levels are essential for meiotic arrest:
role of G-protein coupled receptors and gap junctions

In mammalian oocytes, meiotic arrest is regulated
by high intracellular cAMP levels (1, 3, 34) (Figure 2). In
oocytes isolated from the antral follicles, a steady decrease
in cAMP levels occur in parallel with meiotic resumption
(35) and this spontaneous oocyte maturation can be
prevented by cAMP analogues or cAMP phosphodiesterase
(PDE) inhibitors (36-41). Furthermore, in culture, where
cumulus-oocyte complexes (COCs) are maintained in
meiotic-arrest, resumption of meiosis can be triggered by
treatment with a cAMP antagonist like mycophenolic acid
(42). Evidence supports two hypotheses to explain how
elevated cAMP levels are maintained in oocytes. First is
that the granulosa cells surrounding the oocyte produce
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Figure 2. Meiotic arrest in mammals. High level of cAMP, required for oocyte arrest at prophase I, is maintained by synthesis and
diffusion of cAMP in the oocyte via GPCRs and gap junctions, respectively. High cAMP levels activate PKA and the spatial and
temporal localization of the later is regulated by AKAPs. PKA in turn regulates the kinase activity of the downstream maturation
promoting factor (MPF) inhibitory proteins like Wee1/Myt1 that phosphorylates cdc2 thereby maintaining MPF in its inactive
state resulting in meiotic arrest. Additionally, PKA (as well as other unknown factors) phosphorylates cdc25 phosphatase
preventing it from localizing in the nucleus and activating the MPF.

high levels of cAMP that diffuses into the oocyte through
gap junctions (2, 43, 44). A volume of recent studies in
mouse oocytes support a second hypothesis that proposes
that the cAMP that maintains meiotic arrest is generated at
least in part within the oocyte (3, 34, 45). In fact, all
components essential for cAMP production like G-proteins
and adenylyl cyclase (AC) are present in mouse oocytes
(46-49).

In a study by Mehlmann et. al., microinjection of
an antibody directed against Gs  into follicle-enclosed
mouse oocytes resulted in resumption of meiosis, indicating
the role of the Gs activity in meiotic arrest (50).
Furthermore, in the rodent oocyte two Gs-coupled
receptors, GPR3 (49, 50) and GPR12 (46) have been
identified as important regulators of meiotic arrest. GPR3 is
an orphan G-protein coupled receptor (51, 52) that was
shown to be highly expressed in the mouse oocyte using a
mouse oocyte cDNA library search (50). GPR3
constitutively activates Gs protein within the oocyte
resulting in elevated cAMP levels (49, 50, 53, 54). Whether
this constitutive activation of Gs protein by GPR3 occurs in
a ligand-dependent or independent fashion is still unclear
(3, 48, 52, 54). GPR3 knockout (KO) female mice are sub-
fertile and the majority of antral follicle oocytes undergo
spontaneous resumption of meiosis that can be reversed by
GPR3 RNA injection (49, 50, 55). Also, GPR3 KO mice
show premature ovarian aging and may prove to be an

important model system for studying ovarian aging in
humans (55). The GPR3-Gs protein dependent mechanism
for maintaining meiotic arrest is only required in antral
follicles (50). In GPR3 KO mice, oocytes in preantral
follicles remain arrested in the prophase I stage but undergo
spontaneous resumption of meiosis upon antrum formation
(48, 50). How the oocytes in primordial or primary follicles
remain arrested is poorly understood but is attributed to low
concentration of downstream cell cycle proteins (discussed
later) that are essential for meiosis.

GPR12 is another Gs-coupled receptor that is
highly expressed in rat oocytes and is involved in increased
production of cAMP (46). Even though both GPR3 and
GPR12 are expressed in rat and mouse oocytes, GPR3 is
the predominant receptor in mouse while GPR12 is
expressed at higher levels in the rat (46). Also, the
spontaneous oocyte meiotic maturation phenotype seen in
GPR3 KO mice is not observed in GPR12 KO mice (46,
50). Recently GPR3 has also been cloned in the Xenopus
and was demonstrated to be associated with meiotic arrest
(56, 57). Furthermore, a study in human oocytes
demonstrated that GPR3 (but not GPR12) is expressed at
least at the RNA level and might be responsible for meiotic
arrest, suggesting the intriguing hypothesis that human
oocytes could maintain meiotic arrest prior to the LH surge
using a signaling pathway similar to that of rodent oocytes
(58).
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In addition to different G-protein coupled receptors,
different isoforms of AC have been demonstrated to be
expressed in rodent oocytes (34, 47). Adenylyl cyclase 3 is
predominantly expressed in rat oocytes while AC 1, 9 and 3
are expressed in mouse oocytes (47). Also, AC isoforms 1,
3, 4, 6 and 9 have been identified in bovine cumulus cells
and have been shown to be highly regulated at different
stages of oocyte development (59).

The significance of GPR3 as the sole inhibitor of
meiosis is debatable. The argument against GPR3 is that
since oocytes from wild-type animals expressing GPR3
undergo spontaneous maturation when removed from
follicular environment, the self-generation of cAMP (via
GPR3) by the oocyte is insufficient to maintain meiotic
arrest (44, 60). Moreover, GPR3 KO mice are sub-fertile,
but not infertile and. two preliminary studies in Premature
Ovarian Failure (POF) patients from China and North
America have found no perturbations in the GPR3 coding
region, suggesting that mutations of GPR3 are likely not
linked specifically to POF (61, 62). Thus, it is proposed
that cAMP produced in the surrounding cumulus granulosa
cells diffuses into the oocyte through gap junctions
resulting in maintenance of meiotic arrest (44). In support
of the above hypothesis, in vitro and in vivo studies in rat
oocytes have demonstrated that disruption and/or blocking
of the gap junction results in resumption of meiotic
maturation that is accompanied by a decrease in cAMP
levels (63-65). A more detailed discussion of the role of
gap junction disruption and the underlying mechanisms
involved in meiotic maturation has been reviewed in the
next section. However, recent genetic evidence using a
PDE3A and GPR3 double knockout mouse model
demonstrates that both GPR3 and PDE3A are primary
factors involved in maintaining meiotic arrest in mouse
oocytes (45). In this study GPR3 down regulation and/or
inactivation resulted in oocyte maturation in the PDE3A-
null mouse that is known to be infertile due to lack of
cAMP hydrolysis and significant accumulation of cAMP in
the oocyte. In contrast, in the PDE3A and GPR3 double
knockout mouse in which gap junctions and other receptors
like GPR12 are unaffected, oocyte maturation was restored
(45). Based on these results it has been suggested that gap
junctions and/or other receptors are unable to sustain high
cAMP levels to maintain oocyte meiotic arrests (45).
However, it is not implausible that the high levels of cAMP
required to arrest oocytes at prophase I is dependent on
both the synthesis of cAMP within the oocyte as well as on
diffusion of cAMP from cumulus cells through gap
junctions into the oocyte.

3.2. Role of cell cycle proteins (Maturation Promoting
Factors-MPF) in maintaining oocyte meiotic arrest

The intra-cellular mechanism by which high
levels of cAMP prevent meiotic maturation is poorly
understood (Figure 2). As mentioned previously, for
oocytes to be competent to undergo meiotic maturation,
expression of cell cycle proteins like cdc2/cyclin B
complex commonly called maturation promoting factor
(MPF) is absolutely essential (4). In rodents (66, 67),
bovine (68-71) and pig (72-74), inhibition of MPF
activation prevents GVBD. Similarly, when oocytes from

MI or MII phase (containing very high MPF levels) are
fused with germinal vesicle stage oocytes, GVBD is
instantly induced (75-77). MPF is a heterodimer consisting
of a catalytic CDK1 (cdc2) and a regulatory subunit (cyclin
B). The activity of MPF is highly regulated by different
proteins and depends on its state of phosphorylation (4).
During oocyte meiotic arrest at the prophase 1 stage, MPF
is phosphorylated by inhibitory proteins, like Wee1/Myt1
kinases at two highly conserved residues, Thr14 and Tyr15
of CDK1 that keep the heterodimer in an inactive pre-MPF
state (1, 4, 78). In contrast, at the time of oocyte
maturation, a dual-specific phosphatase, cdc25
dephosphorylates the CDK1 at the same sites thereby
releasing it from its inhibitory state (4, 79). There are three
isoforms of cdc25 (A, B and C), all of which are expressed
in the mouse oocyte (80, 81) but cdc25B is indispensable
for resumption of meiosis (82, 83). In cdc25B KO mice, the
oocytes are arrested in the prophase I stage and fail to
resume meiosis. This phenotype can be reversed by
injection of cdc25B mRNA (82).

Also, the inactive pre-MPF is spatially localized to
the cytoplasm and upon activation is translocated into the
nucleus resulting in GVBD (84). In mouse (17, 84) and pig
(16) the concentrations of CDK1 and cyclin B increase
with oocyte growth and it is speculated that meiotic
competence of oocytes may be dependent on a threshold of
these proteins. In mouse, both competent and incompetent
oocytes have higher concentrations of cyclin B1, cdc25 and
Wee1 proteins than CDK1 and an increase in CDK1
amounts during oocyte growth is rate-limiting for
acquirement of meiotic competence (17, 84). However,
supplemention of CDK1 to growing incompetent oocytes
fail to make them meiotically competent (85) and thus it
has been proposed that a balance between the
phosphorylated and unphosphorylated states of MPF as
well as its spatial localization within the oocyte may
underlie the event of oocyte competence. In addition to
suppression of MPF activation, high cAMP levels also
inhibit the expression of cyclin B thereby decreasing the
availability of pre-MPF (86).

3.3. Role of cAMP-activated PKA in regulating MPF
activity during oocyte arrest

As mentioned, Wee1 and Myt1 are the major
downstream substrates of PKA involved in maintaining
meiotic arrest (78, 79). During oocyte meiotic arrest, the
high cAMP levels activate PKA which in turn regulates the
kinase activity of the downstream MPF inhibitory proteins
like Wee1/Myt1 thereby maintaining MPF in its inactive
state (78, 79, 87) (Figure 2). There are differences in the
expression patterns and isoforms of Wee1 among species.
For example, Wee1A and 1B are expressed in Xenopus
oocytes while only Wee1B is expressed in mouse oocytes
(79, 84). Also, in Xenopus, Wee1A mRNA is present in GV
oocytes but the protein is expressed only at MII stage. By
early embryonic stage the Wee1A protein is degraded and
Wee1B is expressed (88). In contrast, in mouse Wee1B
protein is expressed in GV oocytes and plays an important
role in maintaining the meiotic arrest (78, 79). In fact,
ablation of Wee1B mRNA by RNAi results in meiotic
maturation in mouse. PKA phosphorylates a Ser15 residue
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of Wee1B in mouse thereby activating the latter to
phosphorylate cdc2 of the MPF in order to maintain it in an
inactive state for meiotic arrest (78). In Xenopus (89) and
Bufo (90), PKA also phosphorylates cdc25 which results in
the sequestration of cdc25 by 14-3-3 protein in the
cytoplasm, thus preventing the cdc25-induced MPF
activation (89), and exerting a fine-tune spatial control
contributing to the maintenance of meiotic arrest. The same
mechanism has also been reported in mouse oocytes (91).

The activity of PKA in oocytes is dependent
primarily on two factors: (1) cAMP sensitivity and (2) sub-
cellular localization. A recent study in rat oocytes has
demonstrated the expression of two regulatory subunits (R1
and R2) of PKA that vary in cAMP responsiveness and
subcellular localization (87).  While PKA R1 subunit is
highly sensitive to cAMP levels and is expressed
predominantly in growing oocytes, PKA R2 subunit is
expressed at higher levels in fully-grown oocytes and is
less sensitive to cAMP levels (87). This study further
suggested that a high basal activity of PKA in growing
oocytes may be maintained due to relatively high
abundance of PKA R1, which is more sensitive to low
cAMP levels and/or its subcellular compartmentalization in
close proximity of both its downstream and upstream
effectors. The spatial and temporal localization of PKA to
its site of action plays a crucial role in both meiotic arrest
and maturation and is regulated by a set of proteins called
A Kinase Anchoring Protein (AKAP). It is proposed that
during meiotic arrest, binding of PKA in the cytoplasm to
an isoform of AKAP results in trans-localization of PKA
subunits to its site of action (near Wee1B and cdc25),
thereby increasing the efficiency of meiotic arrest. While,
during resumption of meiosis and GVBD, PKA binds to
another isoform of AKAP, AKAP1 and is re-localized to
the mitochondria away from its site of action by
mechanisms that are yet to be identified (92). In rat oocytes
a splice variant of AKAP 1 called AKAP140, has been
identified in the mitochondria (93-95). Thus, AKAPs are
involved in both meiotic arrest and maturation by
regulating the spatial and temporal localization of PKA to
its site of action. Moreover, the AKAP1 KO mouse is sub-
fertile and more sensitive to cAMP levels. In AKAP1 KO
mice, PKA does not get re-localized to the mitochondria
and thus oocyte maturation process is defective (92).

Thus, the spatial and temporal localizations of factors
regulating cAMP levels, like PDEs, (discussed later) and
compartmentalization of kinases and phosphatases that
regulate MPF is also critical for the control of meiotic
arrest in addition to cell cycle re-entry in the mouse oocyte,
as demonstrated by experiments with Wee1B and cdc25B
mutants (96). The two proteins shuttle in and out of the
nucleus during maturation by means of different
mechanisms and different temporal patterns. The correct
nuclear relocation of cdc25B, which is dependent on PKA
inactivation, and cytoplasmic relocation of Wee1B
following active NES-dependent nuclear export are
essential for the activation of nuclear MPF and the
subsequent onset of GVBD (96). The majority of the
above-described mechanisms of MPF regulation involved
in maintaining meiotic arrest at the prophase 1 stage have

been identified in the rodent model, where as the
expression and role of Wee1/Myt1 in other mammalian
species is yet to be demonstrated. Even though there is
some evidence for the requirement of CDK1
phosphorylation during meiotic arrest in porcine oocytes (7,
97), further comprehensive studies are required to extend
the above observations to other species. The role of cAMP
and downstream-activated signaling pathways in
maintaining oocyte arrest as discussed above are
summarized in figure 2.

Of note, the meiotic-arrested oocytes are
vulnerable to DNA damage and therefore detection of DNA
damage is essential to oocyte competence and fertility. A
homologue of the tumor suppressor gene p53, known as
p63 has been identified to be constitutively expressed in
arrested oocytes and is proposed to be essential in the
mechanism of DNA damage-induced oocyte death (98).
Furthermore, it is interesting to note that some of the
mechanisms controlling meiotic arrest at prophase I and
resumption of meiosis I during maturation share common
features with DNA damage-induced mitotic G2-checkpoint
arrest and checkpoint recovery, respectively, including (but
not limited to) cdc25B-dependent cell cycle resumption
(99).

4. OOCYTE MATURATION

In mammals, the LH surge induces oocyte
maturation by decreasing cAMP levels in oocytes (3, 100,
101) as depicted in figure 3 and 4. However, the
mechanism by which LH stimulation initiates meiotic
maturation is very complex and poorly understood. In
humans (5, 6), failure to resume meiosis in vivo is believed
to be due to: 1) absence of or incomplete LH effect, 2)
defective signaling from the surrounding cumulus cells and
3) intrinsic oocyte factors. In order to understand the
underlying mechanisms of oocyte maturation we have
identified two major areas and tried to review them with
respect to the latest findings.

4.1. LH-induced resumption of meiosis in oocytes
4.1.1. Role of epidermal growth factor (EGF)-related
proteins

In granulosa cells, LH via a cAMP-dependent
pathway induces the expression of different epidermal
growth factors (EGF) like proteins (101) (Figure 3).
Expression of EGF related proteins such as amphiregulin
(AREG), epiregulin (EREG) and beta-cellulin (BTC) have
been demonstrated in rodents (101-104), humans (105,
106), non-human primates (107), bovine (108) and porcine
(109, 110) granulosa cells. These EGF-like proteins act on
mural and cumulus granulosa cells in an autocrine and
paracrine manner through EGF-receptors (EGFRs),
respectively (102-104, 110, 111), as outlined in figure 3. In
fact, it is thought that these EGF-like proteins are cleaved
and released by matrix metalloproteinases (MMPs) in
response to LH (112), as EGF activity can be detected in
the follicular fluid of human (106, 113, 114) and porcine
(115) ovaries and are implicated in fertilization competence
and oocyte quality. Furthermore, in vitro studies have
shown EGFR to be important for resumption of meiosis
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Figure 3. Different signaling pathway activated in mural versus cumulus granulosa cells. In Luteinizing hormone receptor (LHR)
expressing mural granulosa cells, LH via a cAMP-dependent pathway activates the release of membrane-bound Epidermal Growth
Factor (EGF) ligands. These ligands act in autocrine and paracrine fashion on the cumulus granulosa cells via EGFR to activate
downstream signaling pathways including MAPK, promoting oocyte maturation

and increasing the efficiency of in vitro oocyte maturation
(101, 104). Studies involving AREG, EREG and EGFR
inhibitors and KO mouse model have established that EGF-
like growth factors acting via EGFR are the mediators of
LH action involved in oocyte maturation (102-104, 111).
Ablation of the AREG and / or EGFR in mouse either
delays or blocks LH-induced oocyte maturation, cumulus
expansion and ovulation (111). Even though expression of
EGFR as well as direct effects of EGF on oocytes has been
reported (104, 116-119), whether the action of these
proteins in meiotic maturation is direct or indirect (through
cumulus cells) is still not clear.  However, a functional bi-
directional communication between the oocyte and
granulosa cells is essential for maturation, and it has been
recently demonstrated that the oocyte can influence
expression of EGFR in cumulus cells via the paracrine
action of oocyte-derived growth factors GDF9 and BMP15
(120). Given the importance of EGF-like proteins in oocyte
maturation, it is thought that these proteins may be likely
targets for the improvement of in vitro oocyte culture and
fertility in humans. This hypothesis is further supported by
reports of positive effects of EGF addition in culture
medium on in vitro maturation (IVM) and in vitro
fertilization (IVF) in goat, pig, dog and non-human
primates (121-124). Recently, the expression of the type III
neuregulin NRG1 has been reported in mouse granulosa
cells during ovulation, suggesting an involvement of other
EGFR-family receptors (like HER2-HER3) in maturation-
inducing signaling. NRG1 enhances AREG-induced
ERK1/2 phosphorylation in both granulosa cells and
cumulus cells, as well as increasing progesterone

production and enhancing developmental competence of
COC (120).

4.1.2. Role of steroids in oocyte maturation
In fish (125) and amphibians (126),

gonadotropin-induced steroids act as mediators in
stimulation of meiosis (127, 128). Prior to this finding, it
was believed that steroids had little or no role in resumption
of meiosis in mammalian oocytes (3). However, this
hypothesis is now being challenged. In fact several recent
studies have shown that the oocyte maturation process is
highly conserved from fish to Xenopus to mammals as
androgens, estrogens and progestins trigger oocyte
maturation both in vitro (129) and in vivo (130). Studies in
mouse have demonstrated that EGF-EGFR in cumulus
granulosa cells can stimulate steroidogenesis via the
regulation of steroidogenic acute regulatory protein (StAR)
activity. The steroids, produced, in turn trigger oocyte
maturation that appears to be mediated by classical steroid
receptors (131). Also, studies involving in vitro oocyte
maturation have demonstrated that like Xenopus, in mouse,
androgen (especially testosterone) treatment, via a non-
genomic pathway, can decrease cAMP levels as well as
activate MAPK and CDK1 signaling thereby stimulating
oocyte maturation (129). Inhibition of androgen receptor
(AR) or KO of ARs in mouse oocytes significantly
compromises oocyte maturation, suggesting a role for
androgens in oocyte maturation and follicle development
(129, 132, 133). Recently, it has been shown that
testosterone can also trigger oocyte maturation in porcine
oocytes (134). A positive role of progesterone in induction
of GVBD via breakdown of gap junctions has also been
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demonstrated in porcine oocytes (135, 136). In mouse,
progesterone can completely rescue AG-1478 and Galardin
mediated inhibition of EGF and LH-induced maturation
(130) while in non-human primates progesterone and/or
androgens can trigger oocyte maturation in vivo (137). Our
group has shown that both progesterone and testosterone
can attenuate constitutive G protein activity and induce
maturation in Xenopus oocytes acting via either PR or AR
(138). Both steroids also induce maturation in a mouse
model of follicle-enclosed oocytes (130). In fact, oocytes
express the cytochrome P450 enzyme CYP17 that converts
progesterone to its androgen metabolite androstenedione
(139, 140). Consequently, incubation of oocytes with
progesterone in vitro is equivalent to adding two different
ligands, and discerning their separate individual actions is
no easy task. The thought is that progesterone may be the
physiologic mediator of maturation, while testosterone may
only be important in diseases of androgen excess. Also,
many different groups have shown (141-143) that
inhibition of steroidogenesis in follicles does not prevent
LH-induced maturation, although two other papers reported
evidence for the opposite effect (144, 145).

It has also been shown in mouse that FSH via a
PKA-CREB dependent pathway induces the expression of
AR and Cytochrome P450 lanosterol 14-demethylase
(CYP51), a key enzyme in the biosynthesis of sterols and
steroids that are involved in oocyte maturation (146).  All
the above experiments support the physiological
significance of steroids in the mammalian oocyte
maturation process. However, earlier studies demonstrated
that inhibition of steroidogenesis did not completely
suppress the gonadotropin-induced oocyte maturation
thereby suggesting the existence of other mechanisms (131,
142, 147, 148), although two different studies demonstrated
the opposite (136, 149). The differences between these
studies may be due to variable culture conditions that can
affect steroid-triggered maturation. However, many
different recent reports from various groups have provided
compelling evidence (both in vitro and in vivo) that steroids
contribute to promoting oocyte maturation (129, 131, 134,
137, 146). Other mechanisms, including disruption of gap
junctions and/or attenuation of G-protein mediated
signaling responsible for meiotic arrest may also play a
major role in other aspects of oocyte maturation (130).

4.2. Underlying mechanisms of LH-induced signals
involved in decrease of cAMP levels in the oocyte

4.2.1. Role of gap junctions in oocyte maturation
The role of gap junctions in maintaining

high cAMP levels during meiotic arrest has been discussed
previously (44). Gap junctions are composed of proteins
from the connexin (Cx) family and Cx43 is the most
abundant Cx in the ovarian follicles. According to the
model depicting the role of gap junctions in meiotic arrest
and oocyte maturation, LH induces the inhibition of Cx43
translation thereby causing breakdown of gap junctions
between cumulus and oocytes that prevents diffusion of
cAMP into the oocyte, lowers cAMP levels and triggers
initiation of oocyte maturation (44, 63-65). Studies in
rodents have demonstrated that LH via the

cAMP/PKA/MAPK pathway rapidly phosphorylates Cx43,
which in turn causes breakdown of the gap-junctional
communication. In addition, with time LH also inhibits
Cx43 translation, ultimately leading to elimination of gap
junctions (44, 64, 65, 150). During in vitro maturation of
mouse COCs, Cx43 clusters to lipid rafts contributing to
the early stage of gap junction breakdown through a
functional inactivation followed by the removal of Cx43
from the cell surface (151). Studies in pig COCs have
shown that the breakdown of gap junctions is dependent
on phosphorylation of Cx43 by PKC and PI-3K, but is
independent of MAPK (152, 153). In bovine, Cx43
mRNA has been proposed as a marker of oocyte
developmental competence, because Cx43 mRNA levels
are significantly lower in poor quality COCs when
compared to good quality COCs (154). Other types of
connexins have also been implicated in oocyte
maturation in different species: Cx37 and Cx26 are
expressed in mouse and they may be responsible for
impaired maturation and poor pregnancy outcomes
associated with diabetes (155), while Cx45 and Cx60
are the main connexins expressed in porcine oocytes
during folliculogenesis, (156). Thus the diversity in
connexin genes expressed in mammalian oocytes could
account for differential roles of gap junction
communication during oocyte maturation in different
species. Different connexins also play different roles in
the same species: in the mouse follicle, Cx37 is the
predominant connexin expressed at gap junctions
between the oocyte and granulosa cells, while Cx43 is
mainly expressed in gap junctions between granulosa
cells. Furthermore, oogenesis can be rescued in Cx37-null
mutant mice (which are sterile) by oocyte-specific
replacement with Cx43 (157), suggesting that both
connexins may be involved in important maturation-
promoting gap junctional communication, independent of
their spatial localization in the follicle.

Pharmacological closure of gap junctions by
carbenoxolone (CBX) mimics LH–induced oocyte
maturation in a LH-MAPK independent manner,
strengthening the fact that breakdown of cell-cell
communication is one of the factors involved in resumption
of meiosis (65). The precise cascade of events following
LH surge that leads to oocyte maturation is still unclear and
needs further investigation. However, there still exists the
controversy of whether the inhibition of intra-oocyte cAMP
production or the prevention of granulosa cell-derived
cAMP diffusion into oocytes is responsible for resumption
of meiosis in oocytes. It is likely that both of these
possibilities are not mutually exclusive, as LH-induced
signals like EGF, AREG, EREG and BTC may act on
cumulus cells to cause cumulus expansion, gap junction
breakdown and trigger an active signal, all of which
together decrease cAMP levels resulting in resumption of
meiosis.  There is evidence that EGF-EGFR signaling
induces several genes like Cox-2, hyaluron synthase 2
(HAS-2) and tumor necrosis factors--induced protein 6
(TSG-6) that are known to play important roles in cumulus
expansion and ovulation (111). Nevertheless, the precise
mechanism of the above proposed model remains to be
established.
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4.2.2. Role of G-proteins in decreasing cAMP levels in
the oocyte for resumption of meiosis

Following LH surge, the events that lead to a
decrease in cAMP level in the oocyte are poorly understood
(3). This decrease in cAMP can be due to the disruption of
gap junctions (as discussed above) or by inhibition of the
G-protein coupled receptor-AC pathway that is responsible
for intra-oocyte cAMP synthesis or by an increase in
expression and / or activity of cAMP PDE. In other cell
types, both Gi proteins and elevated Ca2+ levels are known
to be induced by LH and can decrease cAMP levels by
inhibiting AC expression and / or activity (100). Thus, the
role of Gi proteins and elevated Ca2+ levels in LH-induced
mouse oocyte maturation have been investigated lately by
injecting pertusis toxin (PTX), a potent inhibitor of Gi

proteins or treatment with Ca2+ chelators like EGTA (100).
Both PTX and EGTA have been reported to have no effect
on LH-induced meiotic resumption, thereby suggesting that
neither of these well-established cAMP-regulating
pathways is involved in LH-induced meiotic resumption in
mouse oocyte. This study further hypothesized that LH
may activate PDEs by lowering cGMP or by
phosphorylating PDEs in the oocyte thereby decreasing
cAMP levels (100). A more recent study, also in mouse
oocyte, has reported that unlike Xenopus, the G-signaling
decreases cAMP levels and can induce meiosis (158). The
G-induced decrease in cAMP levels does not involve a
constitutive G-signaling but rather is mediated by
partially inhibiting the Gs-stimulated rise in cAMP levels.
Moreover, possibility of additional G-induced
mechanisms like inactivation of adenyl cyclase and /or
activation of PDE have also been proposed (158).
However, further studies are still needed to identify the
physiological factors responsible for activation of this G-
signaling pathway.

4.2.3. Role of phosphodiesterase (PDE) in oocyte
maturation

It has been known for long that PDE inhibitors like
IBMX can prevent spontaneous meiotic maturation, but the
identity of the PDE isoforms or the underlying
mechanism(s) involved in stimulating the PDEs were
unclear (34). Studies with PDE3A specific inhibitors
(cilostamide, milrinone) in different species [rodents (159,
160), bovine (161, 162), porcine (163, 164), macaque (165)
and humans (166)] have established the importance of this
PDE isoform in the process of oocyte maturation. The
effects of cAMP in the follicle are somewhat contradictory.
For example, it is well established that in granulosa cells
LH-induced effects are mediated via an increase in cAMP
while in the oocyte, LH surge triggers a decrease in cAMP
levels. It is hypothesized that cAMP levels and its actions
are highly compartmentalized within the two separate cells
types, the oocyte and the granulosa cells, and may also be
differentially regulated (34, 167, 168). In mouse (34, 160),
porcine (169) and bovine (162), two different PDE
isoforms, PDE3A and PDE4 are expressed exclusively in
the oocyte and granulosa cells, respectively. Also,
inhibition of PDE4 in granulosa cells induces resumption of
oocyte meiosis (162) while inhibition of PDE3A blocks
meiotic maturation in bovine(162), mouse (170) and non-
human primates(171), supporting different roles for cAMP

to promote or repress meiosis resumption in granulosa cells
or oocytes (respectively). COCs retrieved from
unstimulated human ovaries and cultured with a specific
PDE3 inhibitor and forskolin displayed a delayed
spontaneous meiotic progression, reduced GVBD and
increased oocyte developmental competence (172).
Moreover, recent work has shown that PDE3 is
transcriptionally up-regulated via a cAMP-dependent
mechanism in cumulus follicular cells (173), further
demonstrating how increased cAMP in the follicle can
contribute to decrease cAMP levels in the occyte to
promote resumption of meiosis.  PDE3A KO mouse has
normal folliculogenesis and ovulation but is infertile (167).
The knockout study has revealed that PDE3A is
indispensable for resumption of meiosis and its activity is
not compensated by other PDE isoforms like PDE3B. Also,
in the PDE3A KO mouse, oocyte maturation can be
restored by inhibiting PKA or increasing the expression of
cdc25, suggesting that in this KO mouse ablation of
PDE3A results in elevated cAMP-PKA activity that in turn
inhibits the MPF/MAPK pathway involved in resumption
of meiosis (167).

It has been proposed that the decrease in cAMP
levels is the primary signal for resumption of meiosis. The
decrease in cAMP level lowers the concentration of active
PKA that in turn releases the inhibitory effects of
Wee1B/Myt kinase on CDK1, while cdc25B
dephosphorylates and subsequently activates MPF (78, 79).
In Xenopus, PKA directly phosphorylates cdc25 and
sequesters it via 14-3-3 protein and inactivation of PKA
activates cdc25 (89), a mechanism that has also been
described in mammals (90, 91, 99). In addition, Akt/PKB
by an unknown mechanism activates PDE3, which further
lowers cAMP levels enabling the oocyte to resume meiosis.

Another mechanism contributing to decreasing
cAMP levels in the oocyte, and also involving
communication between cumulus cells and the oocyte, is
mediated by guanine 3’, 5’ monophosphate. cGMP
produced in the follicle passes through gap junctions into
the oocyte, where it inhibits hydrolysis of cAMP by
PDE3A (174). This inhibition contributes to the high
concentrations of intra-oocyte cAMP to maintain the
oocyte in the prohpase I stage. LH reverses the inhibitory
signal by lowering cGMP levels in the follicle and by
closing gap junctions between the cumulus cells,
consequently contributing to the decrease in oocyte cAMP,
leading to meiosis resumption (174, 175). However, it is
still not completely clear how cGMP contributes to the
onset of maturation, since gonadotropins are able to induce
the expression and activity of both cGMP-specific PDEs
and guanylate cyclase-A (176, 177). Consequently, the
effect of the LH surge on cGMP needs further clarification.

4.3. Signaling pathways involved in resumption of
meiosis and GVBD
4.3.1. MAP Kinase pathway

In the Xenopus, steroid-stimulated MAPK
signaling is essential for activation of MPF and resumption
of meiosis (139, 178-180). The MAPK pathway is activated
before GVBD through an upstream serine/thronine oocyte
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specific protein kinase called c-mos that in turn activates
other downstream MAPK proteins, MEK and Erk2 (34,
180). The latter in turn through a positive feedback loop
activates mos via paxillin thus amplifying the kinase
signaling cascade (181). Ribosomal S6 protein kinase
p90rsk is a major substrate for Erk2 and activated p90rsk
inactivates Myt1 kinase (182) thereby inducing MPF
activation and entry into meiosis I (126, 178, 179). On the
contrary, other studies have shown a reverse hierarchy,
where MPF activates MAPK pathway and in turn is itself
activated by MAPK-independent mechanisms (183-186).
Recently, the RSK2 protein kinase has been identified as
another key player involved in MPF activation via direct
phosphorylation of cdc25C independently of MAPK. In
fact, while p42 MAPK phosphorylates cdc25C at the N-
terminus, RSK2 acts on three C-terminally located
serine/threonine residues of cdc25C (187). The authors of
this study further suggest that additional biochemical
events may be required to fully activate cdc25C, implying
the action of one (or possibly more) kinases other than
MAPK and RSK2 (187).

In mammals, while it is widely accepted that the
MAPK pathway is essential for oocyte maturation, the
chronology of MAPK activation and GVBD is still unclear.
There are reports suggesting that in mammals c-mos
activated MAPK pathway may not be involved in GVBD
(179, 188). In rodents, some studies show that MAPK
activation occurs after GVBD (179) and experiments
involving MAPK inhibitors (189-191) and a mos KO
mouse model (192, 193) demonstrate that resumption of
meiosis and extrusion of first polar body can take place in
absence of the MAPK pathway yet the ability of these
oocytes to become arrested at MII stage is impaired (194,
195). In goat (196) MAPK exists in an inactive form in the
GV stage and is activated after GVBD, while in bovine
(197, 198) and equine (199) oocytes, MAPK is activated
before GVBD. However, inhibition of MAPK activity by
injection of a dual specific phosphatase (MKP1) mRNA
into GV stage bovine oocytes did not have any effect on the
resumption or progression of meiosis but prevented MII
arrest (200). Thus, at least in farm animals, it is believed
that MAPK activation may not be necessary for resumption
of meiosis (200), but necessary for MII arrest. However,
the exact timing of MAPK activation in relation to GVBD
might not be precisely measurable because the techniques
used to visualize GVBD and to quantify MAPK
phosphorylation have different sensitivities. Thus, the
observation of GVBD before Erk phosphorylation might be
more a function of sensitivity than chronology. In the pig
(7, 97, 197, 201-203) MAPK activation has been shown to
occur around GVBD but inhibition of c-mos by siRNA
(204) or MAPK inhibitors (205-208) does not have any
effect on GVBD in denuded oocytes but prevented GVBD
in cumulus-enclosed oocytes. These studies suggested that
in the pig, MAPK activation may not be important for
spontaneous MAPK activation of denuded oocyte but may
be essential for gonadotropin-induced meiotic maturation
of cumulus-enclosed oocytes (205). However a very recent
study shows that in pig oocytes testosterone-induced
MAPK activation occurs before GVBD (134).
Testosterone-induced GVBD was mediated via the AR that

in turn activated MAPK signaling by interacting with the
Src family tyrosine kinases, and notably U0126, a well-
established MAPK inhibitor blocked testosterone-induced
GVBD. Also, other studies have shown that artificial
activation of MAPK pathway is sufficient to induce
GVBD, and that injection of active MAPK into GV
accelerates GVBD in pig oocytes (209). In rodents and pig
there are reports of partial activation of p90rsk before
GVBD in a MAPK independent fashion followed by a
MAPK dependent pathway after GVBD for full activation
of p90rsk (205, 210, 211). However, both MAPK and
p90rsk are not essential factors for meiotic resumption of
oocytes (97, 205). Thus, whether MAPK activation is
required for initiation or progression of meiotic resumption
is still unclear, but it is believed that in mammals other
signaling pathways may also be involved in this process.

4.3.2.Other signaling pathways
In pig COCs, PI3K-PKC activation in cumulus cells

disrupts gap junctions leading to a decrease in oocyte
cAMP level (153, 207, 212) as well as activation of MAPK
and MPF activity in the oocytes, but how this signal is
transmitted from the cumulus cells to the oocyte is poorly
understood (153, 207).  Whether the activation of MAPK
and MPF in porcine oocytes is dependent or independent of
each other is not known. In rodents, it has been
demonstrated that MPF is upstream of MAPK pathway (95,
213). Inhibition of MPF by an inhibitor of MPF activation,
roscovitine (189) as well as ablation of cdc2 by siRNA
techniques prevents MAPK activation via inhibition of mos
mRNA polyadenylation (214). Since cAMP inhibits MPF,
there is a linear relationship between cAMP levels, MPF
and MAPK activation (95, 213).

In vitro experiments in bovine oocytes with
roscovitine have also revealed the involvement of other
signaling pathways like EGF-EGFR, JNK, PI3K/Akt and
Aurora-A in regulation of oocyte maturation in cattle (119).
This study has shown that EGF-EGFR induced meiotic
maturation involving activation of Aurora-A and JNK
proteins is MPF-independent while the activation of PI3K-
Akt pathway is MPF-dependent (119). Thus, the Akt/PKB
activation may be a secondary effect of decreased cAMP
levels and MPF activation. Furthermore, in vitro maturation
studies in bovine have shown that recombinant human FSH
via PKA and PKC pathways significantly increases oocyte
competence and thus has been proposed to have significant
clinical relevance given the wide use of r-hFSH in assisted
reproduction protocols (215). More comprehensive studies
are required to understand the hierarchy of events and
cross-talk between different signaling pathways that lead to
resumption of meiosis and GVBD.

4.3.3. Regulation of MPF complex for resumption of
meiosis and GVBD- Species difference

Although all species have MPF complex there
exists some basic difference in its regulation. Resumption
of meiosis and GVBD in rodents can take place without de
novo protein synthesis (79). In contrast, in Xenopus and
farm animals protein synthesis is indispensable during
resumption of meiosis. In Xenopus, the major isoform of
cdc25 regulating MPF is cdc25C, while in mammals it is
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Figure 4. Signaling pathways involved in GVBD in mammals. In mammals, resumption of meiosis and germinal vesicle
breakdown (GVBD) is a complex process involving cross talk between different signaling pathways. Luteinizing hormone (LH-)
stimulated Epidermal Growth Factor (EGF) proteins in the cumulus cells induces various signaling pathways that lead to
disruption of gap junctions as well as steroidogenesis. The steroids in a transcription-independent manner decrease cAMP levels
and activate MAPK and CDK1 signaling. Also activation of PDE3A by Akt/PKB or by some unknown factors and/or inhibition
of the Gs-induced pathway by a mechanism yet to be identified, decrease cAMP levels in oocytes. This decrease in cAMP and
regulation of PKA localization by AKAPs lower the level of activated PKA that inhibits the phosphorylation of cdc2 by
Wee1/Myt1. At the same time cdc25 dephosphorylates cdc2 thereby causing activation of maturation promoting factor (MPF)
and GVBD. The components and interactions represented with a “?” are either controversial or remain to be discovered.

cdc25B (79). However recently in mouse oocytes, it was
reported that cdc25A also plays a major role in meiotic
resumption, MI spindle formation as well as in MI-MII
transition (216). Also, in Xenopus, the steroid-mos-MAPK-
p90rsk inactivates Myt1 resulting in MPF activation (34,
178, 179), while in mammals, the underlying mechanism
involved in MPF activation is more complex and may
involve various signaling pathways. In mammals, the
activation of MPF may involve a decrease in cAMP (3, 44),
regulation of PKA localization by AKAPs (92, 95),
activation of PDE3A by Akt/PKB (168, 217) or by some
unknown factors along with steroid-triggered MAPK
activation (129, 130, 134), as outlined in figure 4. Further
studies are required in mammals to understand the various
gaps in the mechanism of meiotic resumption and GVBD.

4.4. Meiosis I and transition from Meiosis I to
Metaphase II stage

Following GVBD, MPF activation and resumption
of meiosis, there is meiotic spindle formation and extrusion
of the first polar body. During MI metaphase, the
homologous chromosomes arrange at the spindle equator
and after recombination, the homologous pairs are pulled
apart by microtubules that are attached to the centrosomal
chromatins via the kinetochore (4). Completion of the first
meiotic division is marked by the segregation of the

homologous chromosomes between the oocyte and the first
polar body while the sister chromatids remain attached (4,
218). Thereafter, the ooctye undergoes immediate transition
into MII, where it remains arrested until fertilization (219,
220). The progression of oocytes through meiosis I and the
transition to metaphase II stage involve the activity of
different proteins. In mammals [rodents (4, 189), pig (7,
97) and bovine (221)] the action of MPF occurs in an
oscillatory pattern where MPF activity increases at the time
of GVBD, declines at the time of MI completion and again
reaches a high level of activity at MII and continues to
remain elevated until fertilization (219) (Figure 5).

4.4.1. Meiosis I (MI) completion: Mechanism of MPF
decline by proteosomal degradation

The decline of MPF during MI completion is not
due to re-phosphorylation of CDK1 but rather proteosomal
degradation of cyclin B1 (4, 95, 213). In rat oocytes, use of
proteosomal inhibitor and/or microinjection of methylated
ubiquitin that impairs the proteosomal degradation process,
prevent the transition from MI to MII, thus demonstrating
the importance of the proteosomal degradation of cyclin B1
for completion of MI (222). The polyubiquitination of
cyclin B1 for proteosomal degradation is caused by a multi-
subunit E3 ligase complex called anaphase-promoting
complex/cyclosome (APC/C) (219). APC targets mitotic
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Figure 5. Intra-cellular mechanisms involved in MI, MI-MII transition and MII arrest in mammals. Following GVBD, activated
MPF induces translation and activation of the mos-MAPK pathway. During MI completion there is a decline in MPF activity by
proteosomal degradation of cyclin B1 regulated by APC/C via MAD/BUB proteins. Also, Akt/PKB regulates protein translation
at MI-MII transition. During transition of MI-MII and at MII arrest, MPF activity is reestablished by mos-MAPK-p90rsk-Emi
pathway that inhibits APC activity thereby preventing cyclin B degradation and stabilizing MPF resulting in MII arrest. Two
more proteins, MISS and DOC1R are substrates for the MAPK pathway and are involved in spindle stability during the MII
arrest. The components and interactions represented with a “?” are either controversial or remain to be discovered.

regulators for degradation and is activated by
phosphorylation and association with APC/C activators like
CDC20 and FZR1. These activators bind to specific
sequences including the destruction box (D-box) for
CDC20 and D-box, KEN-box and CRY-box for FZR1
found on target proteins thereby labeling them for
degradation (223-225).

APC/C activators - CDC20 and FRZ1: Both
CDC20 and FRZ1 have been reported to be expressed in
mouse and porcine oocytes. FZR1 is shown to be involved
in meiotic arrest in GV oocytes by maintaining low levels
of cyclin B1 thereby preventing MPF activation (226, 227).
Levels of CDC20 are also regulated by ADC (FZR1).
During M-phase, activated MPF inhibits FZR1 by
phosphorylation (228) to increas cyclin B levels and further
promote MPF activation.  After meiotic resumption, as the
oocytes progress through MI, CDC20 accumulates while
MPF phosphorylates and activates APC to bind to CDC20
and form an APC (CDC20) complex (229-231). The latter
then degrades cyclin B and inactivates MPF, resulting in
progression of oocytes from MI to first meiotic anaphase
(231).

The major difference between mouse and porcine
oocytes is that in pigs FZR1 regulates CDC20 levels during
prophase 1 arrest while in mouse it is after GVBD (227,

231). CDC20 hypomorphism in vivo results in chromosome
missegregation and formation of aneuploid gametes. As a
consequence, mice expressing low CDC20 are healthy and
have normal folliculogenesis as well as standard
fertilization rates, but produce little or no offspring (232).
The timing and spatial organization of cyclin B1
degradation is very important and is regulated by a number
of different proteins. For example, based on the observation
that APC expression and activity is predominantly nuclear
in mouse oocytes, Holt et al. proposed a spatial model of
G2 arrest in which nuclear APC-mediated proteasomal
activity guards against any cyclin B1 accumulation
mediated by nuclear import, while still maintaining extra-
nuclear cyclin B necessary for subsequent progression
through the cell cycle (233).

Spindle assembly checkpoint proteins (SAC): In
Xenopus, a group of proteins called SAC proteins (spindle
assembly checkpoint proteins) regulate the timing of cyclin
B1 degradation by inhibiting premature APC/C activation
thus preventing mis-segregation during MI. The main SAC
proteins are mitotic arrest deficient (MAD) and budding
inhibited by benzimidazole (BUB) (4, 218, 219, 234).
While the expression and functions of these cell-cycle
checkpoint proteins during somatic cell-cycle is well-
studied in yeast (235), Xenopus (236), mouse as well as
humans (237), their roles during oogenesis in mammals
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remain elusive (218). In Xenopus, SAC proteins have been
implicated to act downstream of mos-MAPK-p90rsk
pathway (180, 220, 238), but in mammals the precise
mechanism of how these SAC proteins are activated is
unclear. Recent studies in mouse oocytes have identified
the expression and involvement of SAC proteins during MI
(239-241). Studies involving inhibition and knockdown of
SAC proteins in mouse oocytes have shown the importance
of these proteins in regulating cell-cycle progression and
maintaining fidelity of chromosome segregation during MI
(240, 241). The role of SAC proteins during MI of oocytes
in other mammalian species is also unknown. However, in
humans, low expressions of MAD and BUB have been
proposed to be associated with oocyte aging and
hypothesized to be a factor for aneuploidy in older women
(242).

Aurora kinase A (AURKA): Another protein
called Aurora Kinase A (AURKA), a centrosome-localized
serine/threonine kinase, has been reported to be expressed in
Xenopus (243), mouse (244), porcine (245) and bovine (246)
oocytes. In Xenopus oocytes, Eg2 (the Xenopus homolog of
AURKA) is phosphorylated soon after progesterone
stimulation and is directly involved in activation of MAPK and
MPF to promote GVBD. Activated Eg2 binds to CPEB and
promotes polyadenylation and translation of mos mRNA (247,
248). Eg2 is activated following a biphasic pattern that mirrors
that of MPF activation. In fact, dephosphorylation of Eg2 after
GVBD is essential for degradation of cyclin B and progression
through meiosis I: oocytes injected with a constitutively active
form of AURKA remain arrested in meiosis I with high levels
of activated MPF and highly condensed metaphase-like
chromosomes, but lack organized microtubule spindles (249).
Experiments with both over-activation (249) or inhibition of
AURKA confirmed that the protein kinase is involved in the
progression from MI to MII (250). In mouse oocytes (251)
AURKA is expressed throughout the GV-stage but is activated
only after GVBD and is localized to microtubule organizing
centers. Recently it was reported that in mouse oocytes
AURKA may be involved in regulation of microtubule
organizing centers, resumption of meiosis, spindle microtubule
dynamics and organization of the metaphase spindle (244,
251). It has also been suggested that AURKA may regulate or
interact with SAC proteins (251), a hypothesis which was
recently confirmed with the use of a specific AURKA
inhibitor, which is able to rescue SAC arrest, as well as
rescue cyclin B1 degradation induced by nocodazole (252).
Unlike Xenopus, the activation of AURKA in mouse
oocytes is PI3K-Akt and CDK1 independent (251) but the
signaling pathways regulating AURKA activity is still
unknown.

4.4.2. Meiosis I to metaphase II transition
Reactivation of MPF is absolutely necessary for

the transition of MI-MII and this process takes place in a
MAPK-independent manner in rats (95, 189). Many studies
have been conducted in understanding the interplay
between MPF and MAPK pathway during oocyte
maturation. In rodents it has been demonstrated that MPF
activates mos, the upstream protein kinase responsible for
activation of the MAPK pathway (95, 189, 214, 253). In
addition to directly phosphorylating and activating

downstream MEK1, mos also inactivates Ser/Thr
phosphatases like PP2A, thereby inhibiting the
dephosphorylation of MAPK proteins (254). Studies in
mouse reveal that the mos-MAPK pathway regulates the
migration of the spindle to the cortex and chromatin
condensation during the MI-MII transition (255). However,
since in the mos-KO mouse oocytes reach the metaphase II
stage, it has been suggested that the asymmetric division
during MI-MII transition takes place in a mos-dependent as
well as independent manner in the mouse (192-195, 255).

In farm animals, MAPK pathway is inactive at
GV but gets activated around GVBD (depending on
species) and its activity steadily increases, reaching its
maximum at MII (7, 97, 256). In mammals, MAPK
pathway is known to be involved in spindle formation
(188). Phosphorylated MAPK and p90rsk are associated
with microtubule assembly at different stages of oocyte
maturation (188, 201). In porcine occytes, inhibition of
MAPK at the time of MI-MII transition prevents
chromosome condensation, first polar body extrusion and
MII spindle formation (201). It is hypothesized that the
actions of MAPK during the above-mentioned events take
place via p90rsk (201). Moreover, studies in bovine oocytes
using the Akt inhibitor SH6, have proposed a role for
Akt/PKB in MI-MII transition and hypothesized that Akt
may regulate protein translation during oocyte maturation
(257). Further studies are needed to elucidate the
physiological role of different signaling pathways and their
differences among various species during MI and during
MI-MII transition.

5. METAPHASE II STAGE ARREST

After completion of MI, the oocytes enter MII
and become arrested until fertilization due to the activity of
the cytostatic factor (CSF) (4, 218-220). The underlying
mechanism of MII arrest involves the ability of the oocyte
to maintain high MPF levels/activity by inhibiting APC/C
activity thereby preventing the proteasomal degradation of
cyclin B (220) (Figure 5). The CSF activity can occur by
different pathways: 1) by increasing MPF synthesis or 2)
by directly inhibiting APC/C activity via activating SAC
proteins or by activating Emi, a protein that inhibits the
ability of CDC20 to activate APC/C through mos-MAPK
pathway or 3) by regulation of proteasomal activity that
prevents the degradation of cyclin B (219). In mouse,
though increase in cyclin B1 levels has been demonstrated
during meiotic maturation (258), it is believed that this
process is unimportant for MII arrest (259, 260). Unlike
Xenopus (220), where the mos-MAPK-p90rsk activated
SAC proteins inhibit APC/C in MII arrest (261), it is
proposed that SAC proteins do not play any role in MII
arrest in the mouse (262, 263). Microinjections of dominant
negative BUB and MAD into mouse eggs has no effect on
MII arrest but accelerates MI (263). These experiments
demonstrate that SAC proteins may play a role in MI (239)
but not in MII arrest.

It is proposed that a protein called Emi1 may be
the likely downstream substrate for the mos-MAPK-p90rsk
pathway to promote MII arrest (4, 219). However, in
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mouse, the role of p90rsk-Emi1 in MII arrest is controversial.
Similar to Xenopus (220), a study using mouse oocytes
demonstrated that p90rsk, the downstream mediator of mos-
MAPK pathway, directly phosphorylates Emi1 to inhibit
CDC20 activation of APC/C and establishes CSF activity
(264). In contrast, another study with mouse oocyte showed
that p90rsk does not interact with Emi1 and is not involved in
CSF activity (262). This study proposed that even though the
upstream mos-MAPK pathway is similar between Xenopus
and mouse for MII arrest, the signaling pathway diverges at the
level of p90rsk in these species (262). Thus, though the mos-
MAPK pathway plays an essential role in MII arrest in
Xenopus and mammals (7, 218, 220), how the mos-MAPK
pathway causes MII arrest in mammals is still unclear.
Interestingly, injection or removal of mos from Xenopus (265-
267) and mouse (268) eggs cause induction or inhibition of
MII arrest, respectively. Furthermore, studies involving mos
KO mice and mos siRNA have demonstrated that MII arrest is
impaired in these eggs (192, 193, 269). In pig and bovine
oocytes, similar experiments with MEK inhibitor and mos-
siRNA techniques have also established the essential role of
mos-MAPK pathway in MII arrest in these species (204, 205,
270). However, understanding of how the mos-MAPK
pathway mediates the MII arrest in mammals remains
inadequate and is controversial.

Two additional proteins, MISS (MAPK-interacting
and spindle stabilizing protein) and DOC1R are substrates for
the MAPK pathway and have been demonstrated to be
involved in spindle stability during the MII arrest (271, 272).
MISS is stable only in MII-arrested oocytes while expression
of DOCR1 occurs at the time of meiotic maturation and
depletion of either of these two proteins result in spindle
defects. Interestingly, a similar signaling pathway involving
mos, MAPK and Emi2, is also present in male gametes where
it plays a role in late spermatogenesis (273).

Prolonged arrest at MII stage results in deterioration
of oocyte quality, a phenomenon termed “oocyte aging” that
can significantly impact fertility (274).  In farm animals, aged
oocytes have a higher tendency for spontaneous activation
(275), decreased ability to fertilize and develop (276), high
rate of fragmentation and low MPF activity (275). The aged
oocyes have a high level of inactive pre-MPF that is
proposed to be caused by an imbalance between kinase and
phosphatase activities (277). Studies with porcine oocyte
using caffeine and vanadate to artificially induce MPF
activity by manipulating Wee 1/Myt 1 and cdc25, have
demonstrated that a decrease in active MPF levels may be
one of the major causes of oocyte aging (274). In humans
too, degradation of cell cycle checkpoint proteins has been
proposed to be a possible cause of oocyte aging (242). The
exact mechanism involved in oocyte aging in mammals is
yet to be elucidated and awaits further investigation.

6. CALCIUM (Ca2+) -INDUCED COMPLETION OF
MEIOSIS

Fertilization triggers an increase in intracellular
Ca2+ levels resulting in release of the oocyte from MII
arrest and progression through meiosis II (219). The
completion of meiosis is marked by the extrusion of the

second polar body (4, 219). The underlying mechanism of
sperm-induced Ca2+ signaling is poorly understood, but
recent evidence suggests that following sperm-oocyte
fusion, a soluble sperm factor is introduced into the oocyte
that activates the phosphoinositide (PI) pathway resulting
in Ca2+ efflux and egg activation (278, 279). There are
contradicting reports regarding the identity of the sperm
factor and the most likely candidates are Phospholipase C
(PLC) zeta or a truncated form of c-kit receptor that
activates the PLC pathway via fyn (a src-family kinase)
(280-284). Phospholipase C catalyses the hydrolysis of
phosphatidyl inositol 4,5-bisphosphate (PIP2) into inositol
3-phosphate (IP3) and diacyl glycerol (DAG). DAG is
localized to the membrane and is involved in PKC
activation while IP3 is released in the cytosol where it
binds to an IP3 receptor (IP3R) located on the membrane of
the endoplasmic reticulum (ER). The IP3R is a tetrameric
ligand gated Ca2+ -channel and binding of IP3 to IP3R
results in Ca2+ efflux (285). There are three isoforms of
IP3R expressed in mammalian eggs and ovarian cells with
IP3R1 being the most abundant isoform in mammalian
oocytes (286-289). During oocyte maturation, the oocyte
acquires enhanced IP3 sensitivity by increased IP3R1
expression and spatial redistribution of IP3R1 from
perinuclear region during the GV stage to the cortex at MII
arrest. This acquisition of activation-competence by the
oocyte enables higher Ca2+ release from the ER during
fertilization (290-292). Inhibition of IP3R1 by either
antibody or competitive IP3R antagonist (heparin) or
injection of non-hydrolyzable IP3 analogue (adenophostin)
in eggs significantly impairs Ca2+ release during
fertilization in mammals, suggesting the importance of
IP3R1 in fertilization (293-295). Lack or absence of IP3R
significantly compromises oocyte competence. In addition
to IP3R, another Ca2+ release channel receptor, called
ryanodine receptor (RyR) has been proposed to be involved
in Ca2+ release following fertilization in mammals (296-
298). The exact role of this receptor in oocytes is yet to be
established; however, its involvement in Ca2+ release
during fertilization has been recently addressed in the frog
Bufo arenarum. This study demonstrated that caffeine, a
well known specific RyR agonist, was able to trigger
oocyte activation in a dose-dependent manner, while
ruthenium red, a specific RyR blocker, was able to inhibit
oocyte activation induced either by sperm or caffeine (298).

In mammals, the Ca2+ signal is oscillatory and
lasts for several hours after fertilization (4, 219). This
prolonged oscillatory Ca2+ signal is necessary for ablation
of cyclin B1 levels as the oocyte has the ability to
continually synthesize new cyclin B1 (260). In aged
oocytes, that lack the ability to synthesize cyclin B1, a
single Ca2+ increase can be an effective parthenogenetic
stimulus (4). The downstream mediators of this Ca2+ signal
is not yet fully identified but studies have shown that Ca2+

activates CaMKII (299, 300) and PKC (301, 302).
Inhibition of both of these proteins significantly impairs
egg activation (303, 304). Studies in mouse egg have
reported that PKC may play a role in maintaining the
oscillatory Ca2+ signal while CaMKII is involved in
resumption of meiosis (305, 306). A recent study has
shown that the 3 isoform of CaMKII is expressed in
mouse oocytes and is necessary and sufficient to transduce
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the oscillatory Ca2+ signal into cell cycle resumption (307).
The substrates of CaMKII in mammals are still debatable,
but studies in mouse have shown that CaMKII may activate
APC/C thereby resulting in cyclin B1 destruction (219,
263) and releas of the oocyte from MII arrest. PKCs, which
are activated by concomitant action of Ca2+ and DAG, may
also play a pivotal role during fertilization through two
different mechanisms: first, they contribute to inhibition of
polyspermy by promoting actin de-polymerization and
cortical degranulation. Secondly, they allow the PKC
action to diffuse and act on specific intracellular
components of the oocyte through the cleavage and release
of the non-membrane-bound carboxy-terminal catalytic
subunit of PKC (named PKM), (308).  Further studies are
required to address the issues of how and where Ca2+ acts
in mammalian oocytes during fertilization.

7. CONCLUSIONS

In summary, oocyte maturation is a complex
process involving several “stop and go” steps which are
tightly regulated through out the reproductive cycle. Oocyte
maturation has been extensively studied in several model
organisms as diverse as starfish, frogs, cattle and mouse;
however our understanding of the various signaling
pathways, their cross talk and regulation, still remains
elusive and needs further investigation. While species-
specific differences exist, some crucial components of the
signaling pathways involved in oocyte maturation are
conserved from amphibians to mammals. The central
paradigm of meiotic maturation in vertebrate oocytes is the
fine-tuning of the spatial and temporal regulation of
intracellular cAMP to control the activation of the MPF.
Although the role of MPF is ubiquitous, different species-
specific pathways contribute to its inhibition and/or
activation, involving both intra-oocyte pathways and
paracrine signaling between the oocyte and the surrounding
granulosa and cumulus cells. Human oocyte contain the
same cell cycle regulatory proteins as mouse and other
species (309), and the few studies published so far suggest
that maturation of human oocytes might be regulated at
least in part by mechanisms similar to those of rodent
oocytes (310-312). Consequently, a further understanding
of how oocyte maturation is regulated in mouse and other
mammalian species could be crucial in understanding the
pathophysiology of disease states characterized by reduced
fertility, as well as aiding in the technical development of
in vitro maturation (IVM) of human oocyte.
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