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1. ABSTRACT

Vitamin D3 is a key regulator of vertebrates
homeostasis. It is synthesized from the precursor 7-
dehydrocholesterol upon UVB exposure in the skin and
then hydrolyzed in the liver in position 25, to be finally
converted into its active form, 1,25-dihydroxyvitamin D
(1,25(OH)2D or calcitriol), in the kidneys. The biological
activity of this molecule depends on its binding to the
nuclear receptor VDR, which binds VDRE once complexed
with RXR-alpha. Despite being present in different types of
food, the best way to assume it at physiological levels
remains the exposure to UVB radiation at certain hours of
the day and at particular angles of the Earth's crust. There is
plenty of evidence that altered levels of vitamin D3 are
associated with pathological conditions, such as
osteoporosis, cancer, immunological and infectious
diseases. In this review, we discuss vitamin D3
metabolism, its role in several diseases and the link
between vitamin D3 and immune cells.

2.  INTRODUCTION

Vitamin D3 is a phylogenetically old compound,
whose functions can be already found in the first terrestrial
organisms. Early in evolution, organisms captured solar
energy in the form of carbohydrates through the process of
photosynthesis. Cellular mechanisms became increasingly
linked to calcium for signal transduction and metabolic
functions. Terrestrial animals developed an exoskeleton
and an endoskeleton that subsequently allowed them to
grow and developed a smaller footprint. Vertebrates left the
waters and headed toward land. They needed a mechanism
that would allow them to use calcium in biochemical
processes. The solution was found using solar energy to
increase the intestinal absorption of calcium through
vitamin D3 (1). Some ancestral algae, such as diatoms
(Emiliania uxlei) and phytoplankton, first used calcium for
the formation of their support structures, producing
ergosterol (provitamin D2). Ergosterol has a great capacity
to absorb ultraviolet (UV) radiation, so the first organisms
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used it to protect themselves from the UV damage to DNA,
RNA and proteins (1). Nowadays, we know that vitamin
D3 is a key molecule for human beings.

3. VITAMIN D3 AND UV RADIATION

Part of vitamin D3 is synthesized in the skin
during exposure to UV rays, especially to UV having a
length of less than 320 nm. UV light is divided into UVC,
UVB and UVA. UVC is the most energetic and shortest of
the UV bands and causes skin burns and DNA damage.
UVA, known as the "tanning ray", is primarily responsible
for darkening skin pigmentation. Most tanning beds have a
high-performance UVA, with a small percentage of UVB.
UVA is less energetic than UVB, so exposure to UVA will
not result in a burn. UVA penetrates more deeply into the
skin as compared to UVB, due to its wavelength (2).

Vitamin D3 is produced under exposure to UVB
radiation. It is sometimes called the "burning ray" because
it is the primary cause of sunburn (erythema). Although
UVB causes sunburn, it also induces special skin cells
called melanocytes to produce melanin, which is protective
against UV rays. The effects of UV rays on skin colour are
due to different mechanisms. The main role of melanic
pigmentation is to protect from ultraviolet radiation. After a
few minutes of sun exposure, an ephemeral skin tanning is
the result of photo-oxidation of existing melanin. In two to
three days, UVB rays induce an increase in the number of
melanosomes in melanocytes, in the rate of melanin
synthesis and transfer of melanin to keratinocytes. Upon
UVB stimulation, keratinocytes stimulate melanogenesis,
proliferation of melanocytes and formation of tyrosinase
(3). UVB rays are not always available throughout the day:
UVB are present only during midday hours at higher
latitudes and only with considerable intensity in temperate
latitudes and the tropics. Sun exposure before 10:00 am and
after 2:00 pm has no effect on the production of vitamin
D3.This means that sunning must occur between the hours
we were told to avoid. Only sunning from 10:00 to 02:00
during the summer (or winter months in southern latitudes)
for 20 to 120 minutes, depending on skin type and colour,
is indeed effective for vitamin D formation, before burning
occurs (4). After UVB stimulation, it takes about 24 hours
for vitamin D to reach the maximum levels in the blood.
Immediately after sun exposure, 30-60 minutes are required
before vitamin D3 enters the bloodstream (5). Exposing
hands, face and arms to the sun for 10-20 minutes, three
times a week, leads to the production of only 200-400 IU
(International Unit) vitamin D each time, an average of
100-200 IU per day, during the summer months. In order to
achieve optimal levels of vitamin D, 85% of the body
surface needs to be exposed to the midday sun (about 100-
200 IU vitamin D is produced for every 5% of body surface
exposed). Light-skinned people need 10-20 minutes of
exposure, while dark-skinned people need 90-120 minutes
(6). Latitude and altitude determine the intensity of UV
light, in fact UVB is stronger at high altitude. Latitudes
above 30 degrees (north and south) have insufficient
sunlight for 2 to 6 months of the year, even at midday (7).
Latitudes above 40 degrees have sufficient sunlight to reach
optimal levels of vitamin D for 6 to 8 months of the year. In

most northern or southern latitudes (45 degrees and above),
even the summer sun is too weak to provide optimal levels
of vitamin D (8, 9).

4. VITAMIN D SYNTHESIS

There are various forms of vitamin D. The two
major forms are vitamin D2, commonly known as
ergocalciferol, and vitamin D3, also known as
cholecalciferol (or calcitriol) (10).

Vitamin D2 is synthesized by plants and fungi,
but not by vertebrates, and it probably plays a protective
role against ultraviolet radiation.

Vitamin D3 is synthesized from 7-
dehydrocholesterol in relatively large quantities in the skin
of most vertebrate animals, including humans (11). Once
produced by the skin (or ingested as food), it is hydrolyzed
in the liver in position 25, by the mitochondrial enzyme 25-
hydroxylase, forming 25-hydroxycholecalciferol (25OHD
or calcidiol) (12, 13). Calcidiol is then transported through
the bloodstream to the proximal tubule of the kidney, where
1-alpha-hydroxylase is responsible for calcitriol (1,25-
dihydroxycholecalciferol or 1,25OH)2D) synthesis (Figure
1). 1-alpha-hydroxylase levels are increased by parathyroid
hormone (PTH), secreted by parathyroid gland. Thereafter,
the so-formed calcitriol is released into the blood stream.
Its ability to bind to a transporter protein, vitamin d binding
protein (VDBP), enables it to reach other target districts
(14). The biological action of vitamin D3 is due to its
binding to vitamin D3 receptor (VDR) and retinoid X
receptor alpha (RXR-alpha) in the nucleus of many cells of
the body, including brain, gonads, skin, prostate and breast
(14).

The complex VDR-RXR-vitamin D3 targets the
DNA sequence VDRE (VDR responsive element).
Furthermore, the VDR nuclear receptor is involved in many
processes, such as proliferation and differentiation (16). Its
presence was seen in many cells of the immune system,
including monocytes, macrophages and activated T and B
cells (16).

5. VITAMIN D3 PATHWAYS

The action of vitamin D3 is carried out through
its receptor VDR in many different cells. VDR is a nuclear
receptor and ligand-activated transcription factor (17, 18),
composed of a highly conserved DNA binding domain and
an alpha-helical ligand binding domain (19). The ligand-
bound VDR activates transcription by heterodimerization
with retinoid X receptor (RXR), which is essential for high-
affinity DNA binding to cognate vitamin D response
elements (VDREs) located in the regulatory regions of
1,25(OH)2D target genes (17, 18, 20, 21, 22). VDRE motifs
can also function as response elements for the VDR and
related RXRs (23), thus partially integrating 1,25(OH)2D
and retinoid signalling. DNA-bound VDR/RXR
heterodimers recruit numerous co-regulatory proteins,
which control histone modifications, chromatin
remodelling, RNA polymerase II binding and
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Figure 1. Megalin role in renal uptake and activation of 25OHD3. Filtered 25OHD3–VDBP complexes are endocytosed by the
proximal tubular epithelium and delivered to lysosomes, where VDBP is degraded and 25OHD3 is released to the cytosol;
25OHD3 is either secreted or hydroxylated in the mitochondria to 1,25(OH)2D3 before release into the interstitial fluid and
complex formation with VDBP.

transcriptional initiation (24, 25, 26, 27, 28). The ligand-bound
VDR can also repress transcription. For example, the presence
of 1,25(OH)2D VDR/RXR heterodimers can displace DNA-
bound nuclear factors of activated T cells, thus repressing
cytokine gene expression (29, 30). While numerous VDREs
have been identified in relatively promoter-proximal locations,
a recent work has provided evidence that the DNA-bound
VDR can function at distances as great as 75 kb to regulate
adjacent target gene transcription (31).

1-alpha-hydroxylase (or CYP27B1) is important
for vitamin D3 immunological actions. Activated
macrophages and dendritic cells (DCs) express CYP27B1
(16, 32, 33, 34, 35), which, unlike the renal enzyme, is not
regulated by Ca2+ homeostatic signals but is primarily
regulated by immune inputs, mainly gamma interferon and
agonists of the Toll-like receptor (TLR) pattern recognition
receptors. Microarrays studies have shown that human
macrophages, stimulated by bacterial lipopeptides, signal
through TLR1-TLR2 and induce the expression of both
CYP27B1 and VDR (36). Further studies showed a
correlation between lipopolysaccharide (LPS) stimulation

and expression of CYP27B1 via TLR4-CD14 (37, 38).
Furthermore, CYP24-SV transcripts (a splice variant of the
enzyme that starts the catabolism of 1,25(OH)2D) is also
capable of hydrolyzing 25OHD at 1-alpha-position,
forming 1,25(OH)2D (39). This observation suggests that,
in macrophages, robust 1,25(OH)2D signalling is
maintained over an extended period of time, which would
be advantageous for combating intracellular pathogens
(Figure 2).

6. VITAMIN D3 AND FOOD

Very few foods in nature contain vitamin D: fish
flesh (such as salmon, tuna, and mackerel flesh) and fish
liver oils are among the best sources (40, 41)). Small
amounts of vitamin D are found in beef liver, cheese and
egg yolks. Some mushrooms provide vitamin D2
(ergocalciferol) in variable amounts (42-43). Mushrooms
with enhanced levels of vitamin D2 from being exposed to
ultraviolet light under controlled conditions are also
available. Several food sources of vitamin D are listed in
Figure 3.
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Figure 2. Vitamin D3 pathways. The biological action of vitamin D3 is performed by binding its receptor, called VDR (vitamin
D3 receptor) and RXR-alpha (retinoid X receptor alpha) in the nucleus of several cell types. The VDR-RXR-vitamin D3 complex
targets the DNA sequence VDRE (VDR responsive element) in many targets genes, modulating their upregulation or
downregulation.

The adequate dietary intake of vitamin D has been
established by the Food and Nutrition Board at the Institute
of Medicine of The National Academies (formerly National
Academy of Sciences). The intake levels are based on age
(Figure 4).

7. VITAMIN D3 DEFICIENCY

The association between low levels of vitamin D3
and susceptibility to infections was revealed in childhood
rickets, where a correlation between calcium metabolism
dysfunction and lung infections has been found (44). Of
note, before the introduction of antimicrobial drugs in
1950, vitamin D3, which is present in the cod liver oil, was
used in the treatment of tuberculosis (TB) (45). More
recently, epidemiologic studies demonstrated a strong
association between seasonal variations in vitamin D levels
and the incidence of several infectious diseases, including
septic shock (46), respiratory infections (47) and influenza
(47, 48).

25OHD levels below 20 ng/mL (50 nmol/liter)
define vitamin D3 deficiency (49, 50). 25OHD levels
inversely correlated with those of PTH, which induces
CYP27B1 to convert 25OHD to 1,25(OH)2D, until 25OHD

concentration reaches 30 to 40 ng/mL: at this point, PTH
levels decrease (49, 50, 51). Higher 25OHD levels (21)
correlated with increased calcium absorption in the gut up
to 65% (52). On the basis of these data, a level of 25OHD
ranging between 21 and 29 ng/ml may be indicative of a
relative vitamin D insufficiency, while a level of 30 ng/mL
or higher may be considered as an indicator of sufficient
vitamin D (53). Levels of 25OHD greater than 150 ng/ml
cause vitamin D3 intoxication.

In older people it is very common to find a lack
of vitamin D3. Individuals who live at the equator usually
have levels of 25OHD higher than 30 ng/ml (or 30% above
normal levels) (54, 55). In Europe, where very few foods
are fortified with vitamin D, children and adults could be at
higher risk of vitamin D3 insufficiency (49, 56, 57, 58, 59).
In countries where, either for environmental and religious
reasons, the body is fully covered, and, as such, not
exposed to the sun, vitamin D3 plasma levels are lower, at
around 20 ng /ml (60, 61).

The interaction between 1,25(OH)2D and VDR
increases the efficiency of intestinal calcium absorption up
to 30-40% and phosphorus absorption up to approximately
80% (37, 62). When 25OHD levels are less than 30 ng/ml,
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Figure 3. Foods high in vitamin D. Very few foods naturally contain vitamin D. The optimal way to intake vitamin D3 is
exposure to UVB radiation. 90% of available vitamin D3 is absorbed indeed through UVB radiation and the remaining 10%
comes up from dietary sources.

there is a significant reduction in intestinal calcium
absorption, with an increase of PTH. PTH stimulates the
kidneys to produce 1,25(OH)2D, thus leading to an increase
in calcium serum levels. PTH also activates osteoblasts,
stimulating the transformation of preosteoclasts to mature
osteoclasts. Osteoclasts dissolve the mineralized matrix of
bone collagen, resulting in osteopenia and osteoporosis and
therefore increasing the risk of fractures (63, 64). Whereas
osteoporosis is not associated with bone pain, osteomalacia
has been associated with isolated or generalized bone pain
(65, 66). The cause is thought to be hydration of the
demineralised gelatin matrix beneath the periosteum; the
hydrated matrix pushes outward on the periosteum, causing
throbbing and aching pain (49). A proper intake of vitamin
D3, either through sun exposure or through nutritional
supplements, appears essential for well-being.

8. VITAMIN D3 AND DISEASE

Several diseases have been related to low vitamin
D3 levels (< 30ng/ml), like cardiovascular disease,
osteoporosis, fractures, bacterial infections, cancer and
autoimmune diseases (67). Immune system dysregulation is
thought to be involved in the development of many
pathologic processes. Considering vitamin D3 key-role in
immune modulation, it is not surprising to find a large
number of studies focusing on the relationship between
vitamin D3 and morbidities.

8.1. Osteoporosis
Although osteoporosis is a multifactorial disease,

vitamin D deficiency can be an important contributing
factor. Without sufficient vitamin D levels, calcium
absorption cannot be maximized and the resulting elevation
in PTH secretion by the parathyroid glands results in
increased bone reabsorption, which may lead to
osteoporotic fracture. The results of most clinical trials
suggest that vitamin D supplementation can slow bone
density loss or decrease the risk of osteoporotic fractures in
men and women who are unlikely to assume enough
vitamin D (68). Approximately 33% of women aged 60-70
years and 66% of those aged 80 years or older have
osteoporosis (68, 69). Since bone loss occurs without
symptoms, osteoporosis is often considered a ‘silent
disease’. Continuous bone reabsorption alters and weakens
the bone structure, so that relatively minor injuries or falls
can cause fractures or vertebral collapse. The resulting
fracture may lead to loss of mobility and independence,
with 25% of individuals requiring long term care (70).
Currently, there are a number of pharmacologic treatments
for osteoporosis which provide improvements in bone mass
and reduction in fracture risk, mainly based on calcium and
vitamin D supplementation. Menopause often leads to
increased bone loss, with the most rapid rates of bone loss
occurring during the first five years after menopause (71).
A drop in estrogen production after menopause results in
increased bone reabsorption and decreased calcium
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Figure 4. Recommended vitamin D Intake. The optimal vitamin D intake is linked to the age.  In the first year, children needs
400 IU per day, people aged 1-50 years need 200 IU per day, people aged 51-70 years need 400 IU per day, people over the age
of 70 need up to 600 IU per day.

absorption (72). A decrease in bone mass of 3%–5% per
year is often seen during the years immediately following
menopause; a less severe decrease in bone mass usually
occurs after 65 (73). Post-menopausal hormone therapy can
decrease the incidence of osteoporosis and reduce fracture
risk. However, since many women have to discontinue or
avoid hormone therapy after menopause, it is imperative
for health care providers to actively identify those women
who are at risk for bone thinning and fractures. In fact,
counselling regarding weight bearing, exercise and
calcium/vitamin D intake is particularly important during
the perimenopause.

8.2. Cardiovascular disease
Vitamin D deficiency has been associated with

congestive heart failure (74) and with high blood levels of
several inflammatory factors, including C-reactive protein
(CRP) and interleukin-10 (75, 78). Of note, living at higher
latitudes increases the risk of hypertension and
cardiovascular disease (75, 76). In a study of patients with
hypertension who were exposed to UVB radiation three
times a week for 3 months, 25OHD levels increased by
approximately 180% and blood pressure became normal
(both systolic and diastolic blood pressure reduced by 6
mmHg) (77).

The two most important arterial complications
leading to cardiovascular events are intima and media
calcification. Arterial intima calcification is associated with
atherosclerosis and leads to plaque formation and rupture
with subsequent blood vessel occlusion. Arterial media
calcification is associated with proliferation of vascular
smooth muscle cells and leads to calcification and
stiffening of the vessel wall (79). Vitamin D can inhibit
various aspects of inflammation related with intimal and
medial calcification. We will explain how further on.

8.3. Cancer
People living at higher latitudes are at increased

risk for Hodgkin’s lymphoma as well as colon, pancreatic,
prostate, ovarian, breast cancer and are more likely to die
from cancer, as compared with people living at lower
latitudes (80, 81). The sunlight hypothesis (assuming that
sunlight is a surrogate for vitamin D circulating levels) has
been proposed to explain the higher risk for several types of
cancer (82, 83) including colorectal cancer (CRC) (84),
prostate cancer (PCa) (85, 86) and breast cancer (BCa)
(87). The evidence is stronger for CRC: circulating 25OHD
levels and vitamin D intake are indeed inversely associated
with CRC incidence and recurrence (88, 89). In addition,
higher pre-diagnosis plasma 25OHD levels were associated



Vitamin D3: an ever green molecule

253

with a significant improvement in overall survival in CRC
patients (90).

Calcitriol exerts antiproliferative and
prodifferentiating effects; in vivo studies in animal
models of cancer demonstrated that calcitriol retards
tumor growth (91, 92, 93). Calcitriol inhibits the
proliferation of many malignant cells by inducing cell cycle
arrest and the accumulation of cells in the G0/G1 phase of the
cell cycle (92, 94). In many neoplastic cells calcitriol also
induces differentiation, resulting in the generation of cells
expressing a more mature and less malignant phenotype. These
mechanisms are specific to each cell type and include the
regulation of signaling pathways involving beta-catenin, Jun-
N-terminal kinase (JNK), phosphatidyl-inositol 3-kinase,
nuclear factor-kappaB (NF-kappaB) as well as the regulation
of the activity of several transcription factors, such as the
activator protein-1 (AP-1) complex and CCAAT/enhancer-
binding protein (C/EBP) (91,95).

Calcitriol induces apoptosis in several cancer
cells, although this effect is not uniformly seen in all
malignant cells. These effects are related to the
inhibition of antiapoptotic proteins, such as Bcl2 (96,
97) and the enhanced expression of proapoptotic
proteins, such as Bax and Bad (98). Calcitriol reduces
the invasive and metastatic potential of many malignant
cells, by blocking angiogenesis and regulating the
expression of key molecules involved in invasion and
metastasis (99). Calcitriol directly modulates basal and
cytokine-induced NF-kappaB activity in many cells,
including human lymphocytes (100), fibroblasts (101) and
peripheral blood monocytes (102). The addition of a VDR
antagonist to colon cancer cells up-regulates NF-kappaB
activity by decreasing the levels of IkB, thus suggesting
that VDR ligands are able to suppress NF-kappaB
activation (103).

8.4. Multiple sclerosis
Some studies have shown that the number of

patients with MS increases with distance from the equator
(104, 105). Patients with MS have relatively low serum
25OHD; furthermore, disease activity may increase when
UVB exposure is limited (106, 107). In mice with
autoimmune encephalitis (EAE), Cantorna et al observed
that vitamin D pre-induction treatment prevented disease
development, while post-induction treatment ameliorated
disease activity (108). Vitamin D has in vitro anti-
inflammatory actions, including enhanced Th2 and
decreased Th1 cytokine production and enhanced
macrophage phagocytosis (109). Several studies have
shown that MS patients positively respond to the
somministration of vitamin D3 or to sun exposure (105,
107, 110). During sun exposure, 25OHD levels in these
patients augmented up to 220 nmol/liter, without any
problem (111). Furthermore, patients with MS tolerated a
pilot dose-escalation trial up to 40,000 IU/day (112). In a
recent study, Burton et al have shown in a cohort of forty-
nine patients (25 under treatment and 24 controls) treated
with high doses of 25OHD (10,000 IU/day), that 25OHD
treatment was safe and able to play  immunomodulatory
effects (113).

9. VITAMIN D3 AND INFECTION

9.1. Vitamin D3 and bacterial infections
The anti-inflammatory role of vitamin D has been

documented in various diseases, such as multiple sclerosis,
diabetes mellitus, psoriasis, and prostate cancer (114). In
the 1980s, Rook et al (115) and Crowle et al (116)
demonstrated that vitamin D enhanced bactericidal activity
of human macrophages against Mycobacterium
tuberculosis, the causative agent of tuberculosis. This
discovery led to a new era of interest regarding the role of
vitamin D in determining the pathogenesis and the immune
response to bacterial pathogens. Liu et al demonstrated that
stimulation of macrophage TLR2/1 complex by
Mycobacterium tuberculosis-derived antigens upregulated
the expression of both VDR and CYP27B1 (117).
Moreover, intracellular 1,25(OH)2D led to the induction of
the antimicrobial peptide cathelicidin and to the
intracellular killing of Mycobacterium tuberculosis (117).
When vitamin D is deficient, infected macrophages are
unable to produce sufficient 1,25(OH)2D to upregulate
production of cathelicidin.

Vitamin D is also known to regulate the
expression of β-defensin (118), another antimicrobial
peptide with multiple effector functions within the immune
system. Endoscopic studies in humans have demonstrated
that β-defensin is secreted in the gastric mucosa after
infection by Helicobacter pylori (119) and may therefore
constitute a major aspect of immune defence against this
bacterial pathogen at the mucosal surface. Additional
studies also suggested that vitamin D may be responsible
for upregulation of the oxidative burst in activated
macrophages (120), thus further augmenting bacterial
killing. Studies on VDR polymorphisms in humans support
the hypothesis that variability in vitamin D status and host
genes encoding vitamin D-responsive elements affect the
immune response to bacterial pathogens other than
Mycobacterium tuberculosis (121, 122). Therefore, much
of what we have learnt from the interaction between host
vitamin D status and Mycobacterium tuberculosis infection
can enhance our understanding about the
immunomodulatory properties of vitamin D in other
bacterial diseases, although more studies are needed to
extend this observation to other clinical settings.

9.2. Vitamin D3 and viral infections
Vitamin D modulates cytokine profile in animal

models of autoimmune disease, limiting excessive
production of proinflammatory cytokines, such as tumor
necrosis factor (TNF)-α and interleukin-12 (123). The host
vitamin D status may contribute to immunoregulatory
functions in the setting of viral respiratory infections,
modulating the cytokine responses to various microbial
species (124).

Recent data on human immunodeficiency virus
(HIV) infection and vitamin D3 have demonstrated
increased prevalence of vitamin D deficiency in HIV-
infected patients in comparison with uninfected hosts (74,
125). Laboratory models of HIV infection have shown that
pre-treatment of human monocytes and macrophages with
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1,25(OH)2D prevents HIV infection in certain cell lines
(126), while increasing HIV replication in others (127).
Another recent study demonstrated that cathelicidin, an
antimicrobial peptide, whose expression is partly regulated
by vitamin D, may directly inhibit HIV replication (128).
Patients with AIDS with abnormally low 1,25(OH)2D
levels (< 20ng/ml) had shorter survival than controls (p
value less than 0.01). These results indicate that
1,25(OH)2D serum levels correlate with the degree of
immunodeficiency in HIV infection. Moreover, low
1,25(OH)2D is associated with increased incidence of
AIDS-events and reduced survival time (129).

10. VITAMIN D3 AND IMMUNE CELLS

VDR is present in most cells of the immune
system, including T lymphocytes, neutrophils and antigen-
presenting cells, such as macrophages and DCs (130, 131).
1,25(OH)2D inhibits DCs maturation and directly acts on T
lymphocytes to inhibit T-cell proliferation (132).
1,25(OH)2D signalling represses the transcription of genes
encoding key T helper 1 (Th1) cytokines, such as gamma
interferon and interleukin-2 (29, 132). The net effect of
1,25(OH)2D is to polarize T-helper responses toward a
more regulatory Th2 phenotype, which is considered a key
component of its ability to suppress Th1-driven
autoimmune responses (132) .

Activated macrophages and DCs express
CYP27B1 (32, 33, 34, 35), which, unlike the renal enzyme,
is not regulated by Ca2+ homeostatic signals but is
regulated primarily by immune inputs, mainly gamma
interferon and agonists of the TLR pattern recognition
receptors. Liu et al found in microarray studies that
signalling through human macrophage TLR1/2
heterodimers, stimulated with bacterial lipopeptides,
induced the expression of both CYP27B1 and VDR (36).
Most importantly, they showed that in TLR2/1-stimulated
human macrophages cultured in presence of human serum,
downstream VDR-driven responses were strongly
dependent on serum 25OHD concentrations. VDR-driven
responses were strongly attenuated or absent in serum from
vitamin D-deficient individuals, a defect that could be
overcome by 25OHD supplementation. Moreover,
consistent with previous findings (133, 134), 25OHD
serum levels from African-Americans were found to be
markedly lower than those of Caucasian Americans (135).
This study also provided a clear demonstration of the
dependence of immune responses on circulating 25OHD
levels. Similarly, stimulation of the TLR4-CD14 receptor
complex by LPS induced CYP27B1 expression (136), in
line with other studies (137, 138).

Remarkably, while expression of CYP24, the
mitochondrial enzyme that initiates 1,25(OH)2D
catabolism, is exquisitely sensitive to the presence of
1,25(OH)2D, the negative feedback loop appears to be
defective in macrophages. Ren et al have recently shown
that while expression of CYP24 transcripts is induced by
1,25(OH)2D in macrophages, as in other cells, the
corresponding enzymatic activity is virtually undetectable
(39). In macrophages, 1,25(OH)2D induces the expression

of a splice variant form (CYP24-SV) that encodes a
truncated enzyme, lacking of the critical amino-terminal
mitochondrial targeting sequence (39). Although the
substrate binding pocket of CYP24-SV is apparently
functional, the enzyme, trapped in the cytosol, appears to
be catalytically inactive. This suggests that, in
macrophages, robust 1,25(OH)2D signalling is maintained
over an extended period of time, which would be
advantageous for combating intracellular pathogens, such
as Micobacterium tuberculosis. It also provides at least part
of the molecular basis for the excessive production of
1,25(OH)2D by macrophages in granulomatous diseases,
such as sarcoidosis (139).

The expression of the co-receptor of TLR4,
CD14, is strongly induced by 1,25(OH)2D in human cells
(140). Vitamin D signalling enhances the expression of
TLR2 approximately twofold in human keratinocytes.
Given that TLR2 and TLR4 recruitment enhances vitamin
D signalling, by upregulating VDR and CYP27B1
expression, the effects of 1,25(OH)2D on TLR2 and CD14
in keratinocytes represent a positive feedback loop.
Treatment of human monocytes with 1,25(OH)2D
suppressed the expression of both TLR2 and TLR4 mRNA
and protein in a time- and dose-dependent manner (141).
The authors speculated that downregulation of pattern
recognition receptors by 1,25(OH)2D in antigen presenting
cells (APCs) may contribute to the capacity of 1,25(OH)2D
to attenuate excessive Th1-driven inflammatory responses
and potential downstream autoimmunity (79). In addition,
while there are conflicting results concerning the role of
vitamin D signalling in controlling HIV infection, it should
be noted that human cathelicidin was found to inhibite the
replication of a number of HIV isolates (142) and that the
human and porcine homologues reduced the infectivity of
lentiviral vectors (143), thus suggesting that vitamin D
signalling may play an antiretroviral activity (Figure 4).

In a recent study Marina Rode von Essen et al
(144) have shown that vitamin D controls T cell antigen
receptor signalling and activates human T cells. Naive
human T cells have very low expression of VDR and PLC-
γ1. However, TCR signals through the alternative p38
pathway induced VDR expression. VDR binds
1,25(OH)2D, translocates to the nucleus and activates the
gene encoding PLC-γ1, which results in the accumulation
of PLC-γ1 protein in the cytoplasm of primed T cells,
approximately 48 hours after the initial activation signals
(144). Because of PLC-γ1 central role in classical TCR
signalling and T cell activation (145,146), the differences in
PLC-γ1 expression in naive and primed T cells might
explain the process of functional avidity maturation
observed in T cells.

11. CONCLUSIONS

Vitamin D3 has a critical in human life. Direct
correlations were found between many diseases and
vitamin D3 deficiency (47, 48) due to the lack of sun
exposure, to geographical or cultural reasons (60, 61), or
low daily dietary intake (49, 56, 57, 58, 59). It has been
widely shown that people living farther from the equatorial
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region are more susceptible to vitamin D3 deficiency and
autoimmune diseases (104, 105, 106, 107). Moreover, the
importance of vitamin D3 in viral and bacterial infections
has also been shown (115, 116, 119, 124).

Introduction in the diet of foods rich in vitamin
D3 may certainly play a crucial role in vitamin D3 levels
for well-being in individuals with vitamin D3 deficiency .
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