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1. ABSTRACT 
 

Cardiomyocytes are terminally differentiated 
cells with limited regenerative capacity in the adult heart, 
making cell replacement therapy an attractive option to 
repair injured hearts. Embryonic stem (ES) cells and 
induced pluripotent stem (iPS) cells are pluripotent and 
capable of infinite expansion in vitro, implicating them as 
ideal cell types for cell replacement therapy. During the 
past several years, significant advances in iPS cell 
generation technology, cardiac differentiation, and cell 
purification protocols were achieved for the development 
of stem cell-based heart therapies. The discovery of iPS 
cells has also sparked the novel idea of direct conversion of 
mature cell types into another cell type without passing 
through a pluripotent stem cell state. Functional 
cardiomyocytes could therefore be directly reprogrammed 
from differentiated somatic cells by transduction of the 
three cardiac transcription factors, Gata4, Mef2c, and Tbx5. 
Herein, we review the recent research achievements and 
discuss future challenges in stem cell-based cardiac 
generation and direct cardiac reprogramming technology 
for heart regeneration.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Heart disease remains a major cause of mortality 
and morbidity worldwide, and current treatments offer no 
prospect of cure. Adult hearts have little regenerative 
ability, and malfunction or significant loss of 
cardiomyocytes due to disease is potentially lethal (1-4). 
Heart transplantation is an established therapy for heart 
failure, but is limited due to the number of donor organs 
available (5). There is, therefore, a pressing need to develop 
novel therapeutic strategies for lethal heart disease. Cell 
replacement therapy is an attractive option for myocardial 
repair and significant advances in regenerative research 
were achieved during the past decades (6). In particular, 
advances in stem cell research have generated tremendous 
excitement surrounding the possibility of using stem cells 
to repair damaged hearts (7-9).  

 
Several types of stem cells have been used to 

regenerate functional cardiomyocytes in damaged 
myocardium, including cardiac stem/progenitor cells, bone 
marrow-derived mesenchymal stem cells, and 
hematopoietic stem cells (10-11). Some stem cell therapies 
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Figure 1. G-CSF promotes cardiomyocyte proliferation and increases cell number in ES/iPS cell-derived cardiomyocytes. The 
upper panel represents the control treatment and the lower panel represents the G-CSF treatment. 

 
demonstrated beneficial effects on cardiac function, 
although the mechanisms underlying this improvement are 
ambiguous because the efficiency of cardiac differentiation 
from graft cells is unclear1. Embryonic stem (ES) cells are 
undifferentiated, pluripotent cells, isolated from the inner 
cell mass of preimplantation blastocyst-stage embryos (12-
14). Upon differentiation, ES cells can give rise to cells of 
all three embryonic germ layers and their derivatives, 
including cardiomyocytes (15-16). Although ES cells might 
be ethically and legally problematic (17-18), the recent 
development of induced pluripotent stem (iPS) cell 
generation may overcome such issues. The discovery of 
iPS cells has also sparked a new idea - conversion of 
mature cell types directly into another cell type without 
first becoming a stem cell (19-23). This article reviews 
recent research achievements in stem cell-based cardiac 
regeneration and direct cardiac reprogramming technology.  
 
3. EFFICIENT CARDIOMYOCYTE INDUCTION 
FROM EMBRYONIC STEM CELLS 
 

ES cells possess the ability to remain 
undifferentiated and propagate indefinitely in vitro or 
differentiate into all three embryonic germ layers 
(ectoderm, mesoderm, and endoderm) and their derivatives, 
including cardiomyocytes (24-25). Embryoid bodies, which 
are aggregates of ES cells, have a spontaneous propensity 
for cardiac differentiation, resembling stem cell 
development in utero. Numerous developmental biology 
studies have elucidated the step-wise stages of cardiac 
differentiation, from mesoderm to cardiac progenitor cells 
and finally to terminally differentiated cardiomyocytes (26-
30). In addition to cell-autonomous differentiation of 
cardiac cells, paracrine factors from the surrounding 
microenvironment influence and support reproducible 
cardiogenesis (31).  

 
The process of cardiogenesis in mice provides the 

framework to understand stem-cell-derived cardiogeneis in 
vitro, and so far the most successful differentiation 
approaches with ES cells are those that recapitulate the 

regulatory pathways in the early embryo (26-30, 32). Using 
cues from developmental biology, significant advances 
have been made in cardiac differentiation from mouse and 
human ES cells. Stage-specific induction of ES cells with 
exogenous factors, activin A, bone morphogenetic protein-
4, basic fibroblast growth factor, vascular endothelial 
growth factor, and Dickkopf-1 results in the generation of 
cardiac progenitor cells, marked by the expression of 
vascular endothelial growth factor receptor-2 (KDR/Flk-1) 
and platelet-derived growth factor receptor (PDGFR)-
alpha. The KDR/PDGFR-alpha double-positive mouse and 
human cardiac progenitor cells can efficiently differentiate 
into cardiomyocytes in vitro and further modifications of 
this protocol may enable the induction of a large enough 
number of cardiomyocytes for regenerative purposes (27, 
32). Willems and colleagues developed a human ES cell-
based high-throughput screening assay to identify small 
molecules that drive cardiogenic differentiation from 
mesodermal cells (33). Using this assay, they found that 
Wnt inhibition was sufficient to drive human ES cell-
derived mesoderm to a cardiac fate in the absence of other 
signaling modulators. Importantly, all of the tested small 
molecules, which target different cellular components of 
the pathway and are structurally diverse Wnt inhibitors, 
showed higher cardiogenic potential than the natural Wnt 
inhibitor DKK1.  

 
We investigated key molecules that promote 

cardiomyocyte proliferation in early embryos and cardiac 
cells derived from stem cells at the later developmental 
stages (30, 34). In developing embryos, cardiomyocytes 
abundantly expressed G-CSF receptor at embryonic day (E) 
9.5 and intrauterine G-CSF administration strongly 
promoted the proliferation of embryonic cardiomyocytes. 
Moreover, G-CSF receptor knockout mice exhibited fetal 
death in 50% of mice due to myocardial wall thinning. 
Based on these in vivo findings, we applied G-CSF to ES 
and iPS cell-derived cardiomyocytes and found that G-CSF 
dramatically increased the number of stem cell-derived 
cardiomyocytes (Figure 1). These results indicated that G-
CSF directly regulates cardiomyocyte proliferation in vitro 
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and in vivo, and that G-CSF can be used to expand cardiac 
cell number (34).  

 
As stem cell-derived cardiac cells mature in vitro, 

specialized heart muscle cells become evident with 
characteristic ion channel sets of the ventricular, atrial, and 
pacemaker cell types. The developmental changes in ES 
cell-derived cardiomyocytes correlate with the length of 
time in vitro, in which pacemaker cells appear early and 
working myocardial cells (atrial and ventricular myocytes) 
appear late, although in general a heterogeneous population 
of all three cardiac cells is seen in culture. One of the 
remaining challenges is to produce stem cell-derived 
cardiomyocytes that are functional, but immature in the 
calcium handling and electrophysiological properties that 
might be arrhythmogenic in cell transplantation (35). 
Indeed, the derivation of specific cardiac cell types and 
terminally differentiated cardiomyocytes that are not 
arrhythmogenic is an area of tremendous interest for future 
research. 
 
4. GENERATION OF IPS CELLS AND IPS CELL-
DERIVED CARDIOMYOCYTES   
 

ES cell-derived cardiomyocytes are an attractive 
cell source for cardiac repair, but immune rejection and 
ethical concerns remain problematic for clinical application 
(17). Accordingly, Dr Yamanaka and colleagues recently 
opened a new paradigm in regenerative research that 
changed the stem cell research field dramatically (36-37). 
They discovered that four ES cell-specific transcription 
factors (Oct4, Sox2, Klf4, and c-Myc) can reprogram 
mouse and human fibroblasts into ES cell-like cells, the so-
called iPS cells (36-37). Importantly, many other 
laboratories reproducibly generated iPS cells after the 
initial reports (38-43). In order to use iPS cells as efficient 
research tools and ultimately translate this technology into 
clinical applications, suitable techniques of factor delivery 
are crucial. Initially, iPS cells were made from somatic 
cells by retroviral or lentiviral transduction of the required 
transcription factors for gene integration into the host 
genome (36-37, 44-49). Strategies to derive iPS cells free 
of transgenic sequences were aimed at circumventing the 
potentially harmful effects of insertional mutagenesis, and 
the first integration-free iPS cells were generated using 
adenoviral vectors and with plasmids (50-52). These 
experiments provided the proof of principle that transient 
expression of the four reprogramming factors is sufficient 
to induce pluripotency in somatic cells. However, 
reprogramming efficiencies with these methods were much 
lower (0.001%) than those with integrating vectors (0.1-
1%). We successfully generated integration-free iPS cells 
from human activated T cells (in peripheral blood) using a 
temperature-sensitive mutated Sendai virus that encodes 
human Oct4, Sox2, Klf4, and c-Myc (53). Sendai virus 
vector is a minus-strand RNA virus that is not integrated 
into the host genome and is not pathogenic in human (54). 
The generation of human iPS cells by this method is easy, 
efficient (0.1%), and safe, achieved within a month (Figure 
2). More recently, successful reprogramming has been 
achieved without using viral or plasmid vectors, when iPS 
cells were generated from fibroblasts by delivering the 

reprogramming factors as purified recombinant proteins 
and modified RNA (55-57). 
  

As ES cells give rise to cardiac tissue in vitro, 
iPS cells have also demonstrated a capacity for cardiac 
differentiation. Using methodology established for ES-cell-
derived cardiogenesis, iPS cells can be differentiated into 
cardiomyocytes through mesoderm lineages and cardiac 
progenitors (32, 58-59). Generation of patient-specific iPS 
cells might also represent a novel platform for 
understanding mechanisms of heart disease (60-63). 
Patient-specific iPS cell-derived cardiomyocytes could also 
be useful in regenerative medicine by avoiding ethical and 
legal concerns. Moreover, iPS cells can offer the possibility 
of understanding the mechanisms and finding new 
therapeutic interventions for genetic diseases by generating 
patient-specific cardiac cells (62, 64). 

 
However, there are several concerns arising 

because iPS cells and ES cells are similar but not identical. 
For example, Jiang et al. reported electrophysiological 
differences between human iPS cells and ES cells (70). 
While the ion channel expressions in human iPS cells 
largely resemble those in ES cells, there are specific 
differences in their properties and biological roles. A better 
understanding of the basic biology and further investigation 
of iPS cell-derived cardiomyocytes may facilitate their 
future clinical application (65). 
 
5. ES AND IPS CELL-BASED CARDIAC 
REGENERATION 
 

Heart disease is a serious problem in developed 
countries, as cardiomyocytes are terminally differentiated 
cells and myocardial regeneration is very limited. Stem 
cell-derived cardiomyocytes are a potentially promising 
cell source for cardiac repair and several studies have been 
conducted using animal models (66-69). Laflamme et al. 
reported an improvement in cardiac function in 
immunodeficient rats 4 weeks after coronary ligation by 
injecting human ES cell-derived cardiomyocytes (66). In 
contrast, van Laake et al. reported improvements in mouse 
heart function at 1 month, but not at 3 months after 
myocardial infarction with the injection of ES cell-derived 
cardiomyocytes into the hearts (72-73). Grafted 
cardiomyocytes are easily washed out from transplanted 
hearts and the majority of cells disappear several days after 
the direct injection (66, 70). Thus, to enhance the effect of 
stem cell-based cardiac regeneration, it is critical to 
improve the survival and attachment of grafted cells. To 
this end, administering prosurvival factors with the grafted 
cells may improve cell survival (66, 71). We reported that 
aggregate formation of stem cell-derived cardiomyocytes 
through homophilic cell-cell adhesion improved their 
survival in the immunodeficient mouse heart (72) (Figure 
3). We confirmed the expression of basic fibroblast growth 
factor, epidermal growth factor, platelet-derived growth 
factor-beta dimer, and endothelin-1 and their receptors in 
these aggregates. Application of these growth factors in 
culture strongly enhanced the growth of cardiomyocyte 
aggregates, suggesting that both autocrine and paracrine 
stimulation promotes the survival and growth of grafted 
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Figure 2. The upper panel illustrates an original iPS cell generation method that uses retroviral vectors for iPS generation from 
fibroblasts. The lower panel demonstrates that integration-free vectors, such as Sendai viruses, reprogram blood cells into iPS 
cells. This new method might be more efficient, easier, and safer. 
 

 

 
 
Figure 3. The upper panel illustrates the direct injection of single cardiomyocytes into hearts. Cardiomyocytes are easily washed 
out and not retained in the heart. The lower panel shows that cardiomyocyte aggregates survive and attach better than those 
delivered by single cell injection.   
 
cardiomyocytes. Okano et al. reported that myocardial cell 
sheets generated in temperature-sensitive culture dishes 
were successfully transplanted into murine hearts (77-78). 
However, they could not observe functional benefits, as the 
triple-layered cardiomyocyte sheets might not be sufficient 
for functional recovery in the damaged hearts. Further 
modifications and appropriate environmental factors such 
as blood supply and support cells might be necessary to 
consider for successful cell therapy in the future (73).  

 
The iPS cell technology is clearly not yet ready 

for clinical use, with the main issue being safety; iPS cells, 
like ES cells, tend to form teratomas, and current 
differentiation protocols cannot eliminate undifferentiated 
cells (37, 74-75). Cardiomyocyte-specific gene reporter 
systems might be successfully applied for the high-grade 
purification of cardiomyocytes, although this method 

requires genetic modifications (76-77). We found that a 
fluorescent dye that labels mitochondria, 
tetramethylrhodamine methyl ester perchlorate, can 
selectively mark ES/iPS cell-derived cardiomyocytes (72, 
78). Cardiomyocytes could subsequently be enriched (> 
99% purity) by fluorescence-activated cell sorting (FACS) 
using this dye, and purified cardiomyocytes transplanted 
into testes did not form teratomas. However, as 
cardiomyocytes are fragile and sensitive to high-pressure 
passage during FACS, non-genetic methods without FACS 
are necessary for future clinical applications. 
 
6. DIRECT CONVERSION TO CARDIOMYOCYTES 
 

The discovery of reprogramming of fibroblasts to 
iPS cells raises the possibility that a somatic cell could be 
reprogrammed to an alternative differentiated cell fate 
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Figure 4. The upper panel represents the derivation of cardiomyocytes through iPS cell generation from fibroblasts in a process 
requiring several steps. The lower panel demonstrates direct reprogramming of fibroblasts into cardiomyocytes by defined factors 
such as Gata4, Mef2c, and Tbx5. 

 
without first becoming a stem cell. If target cells could be 
obtained directly without passing through the stem-cell 
stage, the possibility of tumor formation after the cell graft 
is very low. Zhou et al. reported that a combination of 
transcription factors comprising Neurogenin3, Pdx1, and 
Mafa could efficiently reprogram pancreatic exocrine cells 
into functional β-cells in mouse, while Vierbuchen et al. 
reported that neuronal transcription factors, Ascl1, Brn2, 
and Myt1l, convert dermal fibroblasts into functional 
neurons (31-32). Although embryonic mesoderm can be 
induced to differentiate into cardiomyocytes, no “master 
regulator’’ of cardiac differentiation, like MyoD for 
skeletal muscle, was identified (79-81).  

 
We hypothesized that rather than a single key 

developmental cardiac gene, a combination of genes might 
be capable of directly converting cardiac fibroblasts into 
cardiomyocytes. To determine candidate factors for cardiac 
reprogramming, we identified genes that are specifically 
expressed in embryonic cardiomyocytes and critical for 
cardiogenesis. We developed a novel cell purification 
system in which embryonic cardiomyocytes and cardiac 
fibroblasts can be purified using FACS and selected 14 
genes as candidates for cardiac reprogramming (31). We 
developed a screening system using alpha myosin heavy 
chain (alpha MHC) promoter-driven EGFP-IRES-
puromycin transgenic mice (alphaMHC-GFP) in which 
only mature cardiomyocytes express the green fluorescent 

protein (GFP) (82-83). Transduction of all 14 factors into 
fibroblasts induced 1.7% of GFP+ cells, and serial removal 
of individual factors demonstrated that a combination of 
three factors (Gata4, Mef2c, and Tbx5) was sufficient for 
GFP+ cell induction (around 15%). We designated these 
GFP+ cardiomyocyte-like cells induced cardiomyocytes 
(iCMs) (Figure 4). The three cardiac reprogramming 
factors, Gata4, Mef2c, and Tbx5, are core cardiac 
transcription factors in early heart development and are 
known to interact with each other, coactivate cardiac gene 
expression, and promote cardiomyocyte differentiation (84-
89).  
  

The iCMs are similar to cardiomyocytes in 
genetics and epigenetics, although not identical. The 
global gene expression profile of iCMs is similar to 
neonatal cardiomyocytes, but different from the 
original cardiac fibroblasts. The histone 
modifications and DNA methylation patterns of iCMs 
were also similar to those in cardiomyocytes (90). In 
addition, a subset of iCMs exhibited intracellular 
Ca2+ transient and contracted spontaneously after 4 
weeks of culture. A subgroup of reprogrammed cells 
had physiological properties of bona fide 
cardiomyocytes, but the others seemed to be only 
partially reprogrammed. As shown in iPS cell 
generation, the cardiac reprogramming process is 
slow and may take time for full reprogramming. 
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Thus, the efficiency of generating functional 
cardiomyocytes should be improved by further 
modifications.  
 

Ding et al. showed that transient overexpression 
of Yamanka 4 factors, Oct4, Sox2, Klf4, and c-Myc, could 
convert mouse fibroblasts directly into spontaneously 
contracting cardiomyocytes mediating through cardiac 
progenitor cells, but not through a pluripotent intermediate 
(91, 97). Compared to our transdifferentiation protocol, 
they showed spontaneous contraction beginning after 11 
days and a 6-fold higher efficiency yield of cTnT+ 
cardiomyocytes. This latter result might reflect the 
generation of mitotically active cardiac precursor cells first 
rather than terminally differentiated cardiac cells in their 
protocol. However, transplantation studies are needed to 
confirm that their fibroblast-derived cardiomyocytes are 
functionally integrated into host myocardium and that the 
graft cells do not form teratomas.   
 
7. THE HOPE AND HURDLES OF CELL 
THERAPIES FOR FUTURE CARDIAC 
REGENERATION  
 

During the past several years, tremendous 
progress has been achieved in the field of cardiac 
regeneration (76, 92-94). Efficient and safe stem cell-based 
cardiac regeneration protocols have been reported by many 
laboratories. For the process of cardiac regeneration using 
iPS cell-derived cardiomyocytes, first, the patient’s own 
blood T cells or fibroblasts would be harvested, expanded 
ex vivo, and transduced with Yamanaka’s four factors. The 
Sendai virus can make integration-free iPS cells that might 
be safer than those derived using retro or lentiviral vectors. 
Cardiomyocytes are differentiated from iPS cells using the 
accumulated knowledge from developmental biology and 
purified by FACS to avoid contamination of 
undifferentiated cells and other cell types. The iPS cell-
derived cardiomyocytes could be transplanted into patient 
hearts as aggregates or cell sheets by a surgical operation. 
In this case, the process is straightforward and sufficient 
numbers of cardiomyocytes might be generated from iPS 
cells for cardiac repair, because stem cells can expand 
infinitely. However, there are concerns that stem cell-
derived cardiomyocytes are phenotypically young and 
immature cardiomyocytes compared with adult 
cardiomyocytes (65, 95-99). It also seems difficult to make 
stem cell-derived cardiac cells mature using conventional 
culturing methods, and there are concerns that cell-based 
therapies might produce electrical heterogeneities and 
abnormal conduction that could trigger arrhythmias. 
Continued efforts to produce more mature cardiac cells and 
successful integration into the recipient myocardium are 
necessary for clinical success.   

 
The new direct cardiac reprogramming 

technologies may change the field of cardiac regeneration 
in the future (91, 100). Yamanaka 4 factor-transduced 
fibroblasts can be converted into cardiomyocytes, and after 
cardiac cell selection the cells might be transplanted into 
damaged hearts. Gata4/Mef2c/Tbx5-transduced cardiac 
fibroblasts could be transplanted into mouse hearts and be 

converted into cardiomyocyte-like cells within the heart. 
Moreover, in the future, cardiomyocytes might be directly 
generated from endogenous cardiac fibroblasts in the 
infarct area by injecting the reprogramming factors. Such 
direct administration into the damaged heart may 
reprogram the endogenous fibroblast population, which 
represents more than 50% of the cells, into new 
cardiomyocytes. This possibility carries several significant 
advantages: first, the process is simple and short; second, 
the avoidance of reprogramming to pluripotent cells before 
cardiac differentiation would greatly lower the risk of 
tumor formation; third, direct injection of defined factors 
can avoid cell transplantation in which long term cardiac 
cell survival is still challenging (66, 70, 77, 101). However, 
the functional properties of induced cardiomyocytes should 
be characterized more carefully and it is still unclear 
whether direct cardiac reprogramming is possible in human 
cells. Moreover, the efficiency of cardiac reprogramming, 
particularly generation of bona fide cardiac cells, is still 
low and needs to be improved by future research. Studies in 
human cells and understanding of the molecular 
mechanism of direct cardiac reprogramming are necessary 
to advance this technology for future clinical applications. 
 
8. CONCLUSIONS 
 

Heart disease is still one of the most life-
threatening diseases worldwide. Given the general lack of 
heart transplantation donors, cell replacement therapy is 
one of the most promising and exciting research areas to be 
pursued. It is clear that the discovery of iPS cells has 
fundamentally altered the approach to regenerative 
medicine, but the field is still in its infancy. The work of 
numerous laboratories has led to significant therapeutic and 
scientific advances in cell therapy to cardiac regenerative 
medicine. However, many questions and challenges 
remain. The issues of appropriate cardiac differentiation, 
risk of tumor formation due to contamination of immature 
cells, and proper integration into the recipient myocardium 
need to be improved before clinical applications can be 
considered. The new direct cardiac reprogramming 
technology has just emerged and much refinement and 
characterization of the reprogramming process will be 
necessary. We hope that cardiac regeneration therapy will 
become a next-generation strategy for helping heart disease 
patients in the future. 
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