
[Frontiers in Bioscience S4, 1381-1392, June 1, 2012] 

1381 

Peptides: an arrival point in cancer vaccinology 
 
Joerg Willers1, Giovanni Capone2, Alberta Lucchese3 

 
1Current affiliation, Cytos Biotechnology AG, Wagistrasse 25, CH-8952 Schlieren, Switzerland, 2Department of Biochemistry 
and Molecular Biology, University of Bari, Bari, Italy, 3Department of Odontostomatology, Orthodontics and Surgical 
Disciplines, Second University of Naples, SUN, Naples, Italy 
 
TABLE OF CONTENTS 
 
1. Abstract 
2. Vaccines: an historical outline 
3. General concepts of vaccines 

3.1. Active versus passive immunization 
3.2. Prophylactic versus therapeutic vaccines 
3.3. B cell versus T cell responses 

4. Antigens used for vaccination 
4.1. Carbohydrates 
4.2. Proteins 
4.3. Peptides 
4.4. Conjugates 

5. Treatment modalities 
5.1. Antibodies against self-antigens 
5.2. Cellular vaccines 

6. Application to cancer vaccines 
6.1. Peptide-based vaccines 
6.2. Immunization with mimetic peptides (mimotopes) 
6.3. Towards low-similarity peptides in the design of vaccines 

7. References 
 
 
 
 
 
 
 
 
 
1. ABSTRACT 
 

During the past few decades, numerous 
approaches towards therapeutic vaccines have been 
investigated. In addition to traditional prophylactic 
vaccines against infectious microorganisms, there have 
been attempts to develop therapeutic vaccines for 
indications as complex as autoimmunity and cancer. 
Driven by an increasing understanding of the underlying 
mechanisms, researchers have attempted to interfere with 
complex molecular cascades during disease progression. 
Monoclonal antibodies have gained more importance, and 
their specificity has become more predictable. However, 
in spite of the advances in our knowledge, crucial 
problems linger unsolved in vaccinology, such as the 
major histocompatibility complex (MHC) degeneration 
phenomenon, the escape from immune surveillance of 
cancer and microbes, and the possibility of adverse 
events, perhaps linked to peptide cross-reactivity. In 
essence, it seems that in order to understand immune 
responses the peptide-peptide interactions have yet to be 
clearly defined. These issues will be discussed in the 
frame of current approaches to vaccine development with 
special focus on cancer vaccines. 

 
 
 
 
 
 
 
 
 
2. VACCINES: AN HISTORICAL OUTLINE 
 

Vaccine research began with the early 
vaccination trials of Edward Jenner and Louis Pasteur at 
the end of the 19th century. Since those early days, 
vaccines have been developed for many infectious 
diseases that were once major afflictions of mankind. For 
example, vaccine use has dramatically reduced the 
incidence of diphtheria, measles, mumps, pertussis, 
rubella, poliomyelitis, tetanus, and many more. Clearly, 
vaccination is a cost-effective weapon for disease 
prevention. An important example is the smallpox 
vaccine, the use of which has basically eradicated the 
disease (1). Experience with the smallpox vaccine has 
been recognized worldwide and has affected many 
contemporary disease control programs. Besides classical 
prophylactic vaccines, new treatment modalities have 
been explored. 

 
At present, there is also growing interest in the 

development of therapeutic vaccines to treat already 
established infections or endogenous diseases, as is 
reflected in growing numbers of recent publications (2). In 
this respect, detailed knowledge of the differences in the 
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epitopes recognized by T cells and B cells is of utmost 
importance and has enabled immunologists to design 
vaccines that activate the humoural and/or the cell-
mediated branches of the immune system (3). In order to 
be successful, the activation of the immune system has to 
provoke a response that specifically recognizes the 
disease-associated pathogen. Furthermore, vaccines 
should stimulate the immune system to develop a long-
lasting response that is both curative and protective. An 
example of an experimental approach that combines both 
characteristics is an isolated human monoclonal antibody 
(MAb) against the influenza antigen M2 (4). The MAb 
was able to protect vaccinated mice from a lethal 
challenge with influenza virus and cured infected mice as 
long as the MAb was given 2 to 3 days after infection. 
However, when the numerous approaches and 
encouraging preliminary data are translated to clinical 
practice, the results have not been as successful. For 
example, vaccine-based attempts to reprogram the 
immune system so that it will control tumour cell growth 
or fight infectious diseases have been failing so far (5, 6). 
With this background, the current review aims to explore 
the many approaches that have led to the current state of 
the art in vaccine development with special focus on 
cancer vaccines.  
 
3. GENERAL CONCEPTS OF VACCINES 
 
3.1. Active versus passive immunization 

Before focusing on specific treatments it is 
necessary to define the various vaccine types. Immunity to 
infectious microorganisms can be achieved by either 
active or passive immunization. Furthermore, immunity 
can be acquired by natural processes or by artificial means 
involving administration of Abs or vaccines. Detailed 
knowledge of the mechanism of action is a prerequisite 
for beneficial interference in situations where the immune 
system is out of balance. 

 
Active immunization with a dead or attenuated 

viral pathogen generally provokes a long-term protective 
memory. Similar results are observed using vaccinations 
with virus-like particles (VLPs) against human papilloma 
virus (HPV) infections (7) or with bacterial toxoids, such 
as tetanus (8). Therefore, active vaccination has the goal 
of stimulating the immune system to generate a specific 
and sustained response. Such a response can consist of 
Abs (humoural immune response), T cells (cellular 
immune response), or both (combined immune response). 

 
In contrast, passive immunization with 

polyclonal serum (9) or MAbs (10, 11) against the 
pathogen provides instant help in situations where the 
disease or infection has already manifested in the body. 
However, no long-term protection can be achieved since 
the treatment does not generate an immunological 
memory and the effect vanishes with the decay of the 
therapeutic (12). 
 
3.2. Prophylactic versus therapeutic vaccines 

Vaccinations can be distinguished according to 
the time point of application. An active vaccination can be 

performed prophylactically, that is before infection or 
with the purpose of treating an existing disease. In 
contrast to prophylactic vaccines that are extensively 
known and used (1, 7), therapeutic use of active 
vaccination is a relatively new approach. In this respect, it 
is important to closely examine the target antigens. 
Targets for therapeutic vaccines can be either foreign- or 
self-antigens. Depending on the nature of the antigen, the 
vaccine has to fulfil different criteria. A vaccine against 
tumour cells (self-antigen), for instance, should stimulate 
specific T cells in order to be effective (13), while a 
vaccine against microbes (foreign antigens) should lead to 
the generation of neutralizing Abs (14). 

  
3.3. B cell versus T cell responses 

It is expected that Abs will deal with the 
pathogen itself (i.e., bacteria, free viruses, and parasites) 
and T cells act upon infected cells. With this paradigm in 
mind, what would be the best or appropriate attack against 
malignant cells or pathologically over-expressed self-
structures such as tumour necrosis factor alpha (TNF-
alpha) in inflammatory autoimmune diseases? Researchers 
are trying different approaches. Let us take a closer look at 
tumour cells. With their tumour-antigen expression 
profile, do they resemble more parasites, bacteria or 
viruses, or are they more like infected cells? In the first 
case, a humoural immune response would be appropriate 
to deal with the disease. In fact, numerous therapeutic Abs 
are under investigation (15). The success of these Abs, 
either passively given or actively stimulated, is diverse. It 
seems that Abs are a powerful weapon to identify and 
eliminate single circulating tumour cells, resulting in a 
prolongation of tumour-free time. However, as a 
therapeutic to decrease the tumour burden, they are rather 
disappointing (16). 
 

However, if tumour cells are considered to be 
more like infected cells, then a cell-mediated immune 
response would be appropriate. As is the case for infected 
cells, the immune system requires the presentation of the 
tumour antigen in association with MHC class I or II; only 
then can T cells be activated. In this respect, a T cell 
vaccine is more likely to reduce a tumour mass. Taking 
both options into consideration, one comes to the 
conclusion that malignant cells bear both features, those of 
invading pathogens as well as of infected cells, thus 
suggesting that a combination therapy consisting of both 
humoural and cellular attacks will likely be the most 
effective. 
 
4. ANTIGENS USED FOR VACCINATION 
 
4.1. Carbohydrates 

Carbohydrates or polysaccharide antigens are 
large molecules consisting of repeating epitopes that are not 
processed by antigen-presenting cells (APC), but interact 
directly with B cells, inducing antibody synthesis in the 
absence of T cells (thus designated T-independent 
antigens). T-independent responses are restricted in a 
number of ways. For example, they fail to induce 
significant and sustained amounts of antibody in young 
children (17). While polysaccharides are immunogenic in 
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older children and adults, the characteristics of the antibody 
responses are rather restricted. They are dominated by IgM 
and IgG2, are relatively short lived, and a booster response 
cannot be elicited on repeated exposure. This failure to 
induce immunological memory is also reflected in the 
absence of demonstrable affinity maturation.  

 

4.2. Proteins 
While attenuated pathogens provide effective 

protection from viral infections (18), it is rare to see an 
attenuated version of a bacterial or parasitic pathogen used 
as vaccine (19). Thus, the choice is generally limited to 
immunization with killed pathogens. Activation of both 
the humoural and cellular immune responses is important 
(20-22). As the genome sequences of many pathogenic 
bacteria have become available, a new systematic 
approach for identification of vaccine candidates, termed 
reverse vaccinology, has been developed (23). The 
process begins with the identification of all putative 
surface proteins, which are a logical choice for vaccine 
candidates. The surface proteins can be predicted from 
genomic sequences using computer programs based on 
signal peptides, transmembrane helices, and other surface 
protein prediction algorithms (24). The candidate genes 
are then cloned and the proteins expressed in Escherichia 
coli. The immune responses of animals are determined 
after injection of the purified proteins. This approach was 
successfully applied to identify vaccine candidates in 
Neisseria meningitidis and has since been applied to 
identify vaccine candidates for other bacterial pathogens. 
However, the developed vaccines are constantly 
challenged by continuous adaptation of surface 
meningococcal structures to external stimuli resulting in a 
genetic shift of the epitopes initially recognized by 
immune responses (25). 

 
T cells influence antibody responses to protein 

antigens. The consequence of this T cell help is that 
antibody responses to protein antigens can be elicited in 
immature immune systems. In addition, immunity is long 
lived due to the generation of immunological memory. 
Antibody responses to protein antigens are dominated by 
the IgG1 and IgG3 subclasses, and affinity maturation 
influenced by B-cell receptor-antigen binding can be 
demonstrated over time (26). 

 
4.3. Peptides 

Small peptides and in particular self-peptides are 
poorly immunogenic by themselves and require co-
administration with strong adjuvants. For example, Kel et 
al. (27) administered a self-peptide derived from the 
proteolipid protein together with complete Freund’s 
adjuvant to mice with experimental encephalomyelitis and 
observed an inhibition of disease progression. In contrast, 
self-peptides derived from the glucose-6-phosphate 
isomerase protein have been shown to induce autoimmune 
arthritis in a murine model (28). The use of self-peptides 
also carries the risk of enhancing the pre-existing disease 
instead of healing it. 

4.4. Conjugates 
A conjugate vaccine is created by covalently 

attaching a poorly immunogenic antigen to a carrier 

protein, thereby conferring the immunological attributes of 
the carrier on the attached antigen. This technique for 
creating an effective immunogen can be applied to 
peptides, small chemical entities, and last but not least to 
bacterial polysaccharides for the prevention of invasive 
bacterial disease.  
 

The ability to enhance the immunogenicity of 
polysaccharide antigens was first noted by Avery and 
Goebel in 1929 (29, 30). They demonstrated that the poor 
immunogenicity of purified Streptococcus pneumoniae 
type 3 polysaccharide in rabbits could be enhanced by 
conjugation of the polysaccharide to a protein carrier. 
Their observations have formed the foundation for the 
modern development of conjugate vaccines. 
 

Recent investigations of HIV-1 infections have 
demonstrated that virus-like particle (VLP)-carbohydrate 
conjugates are even more immunogenic when the 
carbohydrate motif has been slightly altered (31). A 
vaccine composed of a VLP-carrier conjugated to gp120-
derived glycans was able to elicit specific Abs that 
recognized the altered gp120. Additionally, binding could 
be inhibited by the known anti-HIV-1 MAb 2G12. 
However, generated Abs did not show cross-reactivity 
with wild-type gp120 (31). 

 
Following animal studies, initial human infant 

studies confirmed the immunogenicity of Haemophilus 
influenzae type b (Hib) capsular polysaccharide 
(polyribosylribitol phosphate [PRP]) conjugate vaccines. 
Formulations of Hib conjugates with different protein 
carriers, including tetanus toxoid, diphtheria toxoid, 
mutant diphtheria toxin, and outer membrane protein, 
have been developed and have been shown to vary both 
quantitatively and qualitatively in their immunogenicity 
(32). For example, the PRP antigen conjugated to outer 
membrane protein has been shown to be immunogenic 
following a single dose in infancy, while the other 
formulations have only demonstrated significant 
immunogenicity after two or three doses. Antibody avidity 
induced by different Hib conjugates has also been shown 
to vary, as has Hib variable region gene usage. Prototypes 
of the pneumococcal and meningococcal conjugate 
vaccines demonstrated enhanced immunogenicity 
compared with plain polysaccharide formulations in 
infants and young children. Furthermore, formulations 
using different carrier proteins have similarly been shown 
to vary in their avidity. 

 
The relative importance of memory versus 

circulating antibody levels for clinical protection by 
conjugate vaccines is unclear; however, it is interesting 
to note that even the least immunogenic of the Hib 
conjugates, PRP-D, has been shown to be efficacious in 
reducing the incidence of invasive Hib infection in 
Finland. The efficacy of such formulations may thus be 
related to the ability of the conjugate vaccines to prime 
for memory, even in the face of poor primary 
immunogenicity (33). Demonstration of the presence of 
immunological memory is thus increasingly being used 
in the evaluation of further formulations. The success 
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of the Hib conjugate vaccines in reducing the incidence 
of invasive Hib disease in childhood has accelerated the 
development of conjugate vaccines designed to prevent 
infection by other encapsulated bacteria. The imperative 
driving the development of such vaccines has been the 
need to find a vaccine formulation that renders bacterial 
capsular polysaccharides immunogenic in those patients 
who are most at risk for infection. 

 
5. TREATMENT MODALITIES 
 
5.1. Antibodies against self-antigens 

During the past few decades, increasing numbers 
of MAbs against self-structures have been developed to 
cope with various diseases. Initially very successful, these 
MAbs turned out to carry increasing risks of unwanted side 
effects. One of the best-investigated examples is 
rheumatoid arthritis (RA) where MAbs against TNF-alpha 
reduce inflammatory symptoms in the patient, but also 
increase the patient’s susceptibility to infections like 
tuberculosis (34). In this context some researchers are 
sceptical of the safety and efficacy of such approaches (35). 

 
Vaccination against self-structures is an old 

concept adopted from the area of cancer therapeutics. Here, 
researchers tried for a long time to stimulate Abs effective 
against cancer cells. Cancer cells are basically self-
structures with a misdirected cell program and the immune 
system has learned to tolerate such altered tissue. This 
tolerance was originally thought to be manifested by the 
absence of autoreactive immune cells; however, recent 
research has shown that it is more likely due to 
regulation/suppression of existing autoreactive cells (36, 
37). This self-tolerance has to be overcome if an effective 
anti-tumour therapy is to be achieved. As a consequence, 
one has to try to develop an artificial autoimmune disease 
in the cancer patient where immune cells are directed 
against self-structures. If the self-tolerance has been 
broken, the important task in this scenario is how to control 
the resulting immune response, so that it is not overacting 
and/or causing negative side effects. 

 
Immunosuppressive MAbs act by one of two 

general mechanisms. Some MAbs trigger the destruction 
of lymphocytes in vivo, and are referred to as depleting 
[e.g., Rituximab (38)], while others are non-depleting and 
act by blocking the function of their target protein without 
killing the cell that bares it [e.g., Ipilimumab (39)]. 

 
Autoimmune disease is only detected once the 

autoimmune response has caused tissue damage or 
disturbed specific functions. There are three main 
approaches to treatment. First, anti-inflammatory therapy 
(e.g. IL1) can reduce tissue injury caused by an 
inflammatory autoimmune response; second, 
immunosuppressive therapy (e.g. steroids) may be aimed at 
reducing the autoimmune response; and third, treatment 
may be directed specifically at the organ systems damaged 
by the disease. The diabetes induced by autoimmune attack 
on pancreatic cells is treated with insulin. Insulin is used to 
directly compensate for the loss of beta-cells while most 
recently anti-IL-1b therapy has shown additional benefit of 

anti-inflammatory action. Anti-inflammatory therapy for 
autoimmune diseases includes the use of anti-cytokine Abs; 
anti-TNF-alpha, or more recently anti IL-17 Abs induce 
striking temporary remissions in rheumatoid arthritis (40, 
41). Abs can also be used to block cellular migration to 
sites of inflammation. For example, anti-CD18 Abs prevent 
tight leukocyte adhesion to vascular endothelium and 
reduce inflammation in animal models of disease (42). In 
contrast to passive immunization with MAbs, several 
approaches have explored to break self-tolerance and 
thereby to stimulate a therapeutic immune response. 
Approaches, such as a combination of chemotherapy and 
protein vaccination [murine cancer model (43)] or a virus-
like particle conjugate [human hypertension (44)] 
positively interfere with the immune system. Additionally 
in cancer, the tumour microenvironment can be modified 
with transforming growth factor-beta to increase 
susceptibility of the immune system towards the vaccine 
(45-47). Selective inhibition of IgE may benefit patients 
with allergies. In animal models, for example, MAbs to IL-
4 have been used to decrease IgE production (48). 

 
5.2. Cellular vaccines 

Cellular vaccines using antigen-presenting cells, 
such as dendritic cells (DCs), are known to reliably 
generate effective T cell immunity. Recently, virus-infected 
DCs that express Her-2/neu have been reported to induce 
stronger Her-2/neu-specific cytotoxic T lymphocytes 
(CTLs) than did DNA vaccination (49). Furthermore, 
several reports have shown that mature DCs can break self-
tolerance against tumour-associated antigens, thus inducing 
activated self antigen-specific CTLs (50-53). Although a 
peptide-loaded DC immunization can break self-tolerance 
at the cellular level by activating autoreactive CTLs, host 
levels of antitumor responses are governed by a diverse 
regulatory mechanism established between the host and 
tumour environments. 

 
6. APPLICATION TO CANCER VACCINES 
 
6.1. Peptide-based vaccines 

Often a peptide is not sufficient to immunize, but 
needs to be combined with T cells and cytokines (54). In 
this way, the tolerant (silent) stage of autoreactive T cells 
can be converted (55), which is vital for development of an 
effective vaccine against pathologic autoantigens. Although 
many adjuvants have been investigated for peptide 
immunotherapies, to-date current strategies such as 
particulates, oil emulsions, toll-like receptor ligands, 
immunostimulatory complexes, and other biologically 
sourced materials utilize chemically or structurally 
heterogeneous materials, making their characterization, 
mechanistic understanding, and anticipation of side-effects 
challenging (56-59). In general, the development of peptide 
vaccines has been challenged by imprecise antigen display 
and the use of heterogeneous immune adjuvants whose 
mechanisms of action are both complex and incompletely 
understood (45).  

 
Within the last decade, we and others (60-67) 

proposed vaccines based on low-similarity peptides (e.g., 
peptide sequences not present or scarcely represented in the 
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host proteome). This approach promises to be specific, 
flexible, and universal. Indeed, synthetic peptides are useful 
as antigens because their precise chemical definition allows 
one to specify the exact epitopes against which an immune 
response has to be raised (68, 69). Moreover, short peptide 
modules can be easily synthetized and administered, are 
less likely to induce collateral adverse events (70, 71), may 
be selected for activity against a broad range of (sub)strains 
and species of a given microbe, and are quickly modifiable 
to fight emerging mutated types (72-74).  

 
Finally, and of no less importance, short epitopic 

amino acid modules might also be of help in autoimmune 
disorders. Specifically, they have the potential to block 
circulating autoantibodies against recognizing self-
molecules and tissues (75). 

 
6.2. Immunization with mimetic peptides (mimotopes) 

The definition of epitope peptide mimics, i.e., 
mimotopes, was made feasible by the screenings of random 
peptide phage display libraries (76). Immunization with 
mimotopes may induce epitope-specific anti-cancer Abs 
(77). They are capable of eliciting Abs with biologic 
properties comparable to those of the original MAbs, with 
the advantages of production by the patient him- or herself. 
Additionally, the resulting Abs are not restricted to one 
given isotype, but are of various antibody classes, and thus 
able to mediate the full range of immune effector 
mechanisms. Moreover, the induction of immunological 
memory could prove beneficial in the event of disease 
recurrence. So far only animal studies are available, but 
these are very promising for a variety of antigens, and 
warrant translation of this approach into humans. 

 
Recent investigations have transposed the 

principle of vaccination against tumour antigens using 
carbohydrates, particularly GD2. GD2 is a ganglioside 
expressed on tumour cells of neuroectodermal origin, and 
the antigen used for vaccination is a peptide mimic of GD2. 
This so-called mimotope elicited GD2 cross-reactive IgG 
Abs, as well as MHC class I-restricted CD8+ T cells, to 
syngeneic neuroblastoma tumour cells (78). Furthermore, 
the same principle is applied to certain other carbohydrate 
tumour antigens. It was shown in non-human experiments 
that immunization with a carbohydrate-peptide conjugate 
resulted in a substantial humoural immune response 
specific for antigen-expressing tumour cells (79, 80). 
Additionally, small chemical entities profit from 
conjugation to a carrier and gain immunogenicity in 
humans (81). 

 
One special type of conjugate contains a carrier 

component that resembles viral structures. So-called ‘virus-
like-particles’ (VLPs) are typically protein shells with an 
ordered structure that displays the antigen of choice in a 
repetitive way. Unlike ‘real’ viruses, VLPs do not replicate 
or integrate into the host’s genome. The strong 
immunogenicity of VLPs helps to break the self-tolerance 
to stimulate a humoural immune response, at least in animal 
disease models of clinical relevance (82, 83). Several VLP-
based vaccines have been shown pre-clinical efficacy (84-

86) and some have entered clinical development (44, 87, 
88). 

 
6.3. Towards low-similarity peptides in the design of 
vaccines 

A wide array of themes has unfolded in the 
previous paragraphs, although they do not cover all 
research areas due to space constraints. Nevertheless, we 
have shown several pathways that scientists have explored 
to find ‘the vaccine’. The theoretical vaccine formulation 
platform must be able to fight/neutralize a disease, be safe 
for the patient, and be globally applicable. However, 
looking at the numbers, it seems that despite the high 
hopes, the results have been scarce in terms of global 
health. In 2011, we still witness the emergence of new 
infectious diseases, the re-emergence of old diseases, and 
the persistence of intractable diseases. For example, 
influenza pandemics and West Nile virus outbreaks 
represent constant threats. HIV/AIDS, HCV, human B19 
erythrovirus, malaria, and tuberculosis – to cite only a few 
diseases - show an increasing incidence, and most attempts 
to develop vaccines have failed (89-91). Cancer continues 
to be a plague (92, 93). With the due caveats and proper 
proportions, the current clinical situation is not so much 
different from that of 1905, when Ehrlich shifted from 
immunology to chemotherapy: “I have, generally speaking, 
the impression that it is necessary that I concentrate all of 
my energy, consistent with my innate ability, to chemical 
therapy. Now is the moment to confront the major types of 
illness (protozoan diseases) from the direction of chemical 
approaches, which are not very open to immunization 
therapy” (94), as cited by Silverstein (95). In other words, 
the immunological armamentarium accumulated during the 
last century and outlined above has not defeated cancer and 
infectious diseases. In this regard, the main obstacles to the 
translation of this immunological theoretical framework 
into effective clinical applications are represented by 
unsolved phenomena such as the heavy degeneracy of 
MHC molecules (96-98). 

 
The broad binding capacity of MHC molecules 

and the consequent lack of discrimination expected in their 
peptide-binding capability are obvious obstacles to specific 
immune targeting. To complicate the issue, Buus et al. (99) 
observed that only 5-10% of affinity-purified MHC class II 
molecules are available to bind, the others being 
constitutively occupied by self-peptides. It seems that 
evoking effective T cell responses implies careful tests such 
as analysis of the TCR affinity threshold delimiting 
maximal CD8 T cell function (100, 101), identification of 
factors which accelerate the dissociation of the peptide 
from an unstable intermediate of the binding reaction, thus 
mediating the binding of the high-affinity peptide to class I 
(102), and measurement of the peptide-MHC class II 
complex stability that possibly governs CD4 T cell clonal 
selection. 

 
An additional major safety question is how to 

control an immune response to self-peptides in a way that 
does not lead to overacting autoimmune disease. One major 
objection to vaccination protocols consists of the potential 
adverse effects that are ascribed to adjuvants (103-105). 
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Figure 1. Peptide-based vaccines: methodology and technologies 
 
It is possible that, as recently suggested (106-

109), adverse effects ascribed to adjuvants and cross-
reactions with the host proteins might be related. Indeed, a 
massive peptide overlap exists between microbes and 
human proteins (73, 106, 107, 110-117). Hence, it is logical 
to hypothesize that human anti-microbial immune reactions 
are prevented by the tight self-tolerance mechanisms that 
protect our organism. That would also explain the well-
known phenomenon of microbial escape from immune 
surveillance and the consequent necessity of adding 
adjuvants to anti-microbial vaccine formulations in order to 
evoke immune responses. In parallel, the highest peptide 
redundancy exists among human proteins, thus underlying 
tumour escape mechanisms (113, 118). In addition, 
adjuvant-induced immunogenicity might also derange 
immune system activity and its fine modulation, therefore 
explaining autoimmunity, which usually accompanies 
cancer regression and microbe neutralization following 
adjuvanted vaccination (108, 119-122). 

 
In such a complex context, analysing the 

structural and molecular features of the interactions 
between effector cells, Abs, and antigens at the peptide 
level might provide the tools for designing targeted 
vaccines. Indeed, analysis of peptide commonality between 
the antigen and the human host appears to be a practical 
method for designing safe, targeted, and effective peptide 
vaccines (65, 66, 71-74, 123). Selection of peptide 
sequences unique to microbes or tumour-associated-
antigens would specifically hit the microbial agents or 
tumours without cross-reacting with host proteins. That is, 
the risk of autoimmunity would be nullified in such low-
similarity peptide vaccines. The positive implications of 
this approach for clinical practice would obviously be 
paramount. 

 
In conclusion, notwithstanding our increasing 

knowledge of the mechanism of vaccination, there is still a 

long way to go until therapeutic vaccines can be broadly 
used. The most critical obstacles are firstly, the multiple 
measures the immune system can take to prevent or 
circumvent autoimmunity; it is of course of eminent 
importance for the survival of the organism to avoid self-
attacks. Secondly, one has to be able to control a potential 
therapeutic autoimmune response; otherwise the effects are 
even worse (124). This can be accomplished via 
neutralizing Abs or immune-suppressant treatments. 
However, in any case the benefits and risks have to be 
judged before a therapeutic vaccination is started.  

 
Within this framework, based on the scientific 

and clinical problems that have constellated the field of 
vaccine research, Figure 1 illustrates a methodological 
pathway and describes already available technologies for 
designing safe and effective immunotherapeutic approaches 
against cancer, infectious diseases, and autoimmune 
pathologies.  
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