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1. ABSTRACT  
 

Recent tremendous advances in our 
understanding of the regulation of food intake are expected 
to contribute to the treatment of obesity in the near future.  
The hypothalamus is a center for regulation of food intake 
and NPY/AgRP and POMC neurons are key regulators of 
food intake in the arcuate nucleus. The level of energy in 
the body is monitored by energy sensors in the 
hypothalamus. A variety of signals originating from 
peripheral organs to sense the status of energy converge on 
the hypothalamus and diverse neurons in the hypothalamus 
are involved in determining the output of signal to regulate 
food intake. Therefore, it is important to understand the 
signals and energy sensors in the hypothalamus. In this 
review, we describe the potential role of Akt/PKB signaling 
as an energy sensor that regulates food intake. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Obesity is a state of an individual having excess 
body fat defined as body mass index equal to or more than 
30 by the World Health Organization (1). The prevalence 
of obesity is rapidly growing and it has become a major 
health problem in undeveloped as well as developed 
countries. The imbalance induced by increased food intake 
and decreased physical activity causes severe obesity (2, 3).  
That said, body weight is normally quite precisely 
maintained by a balance between energy intake and energy 
expenditure (4). Our body has an integrative system to 
accurately maintain energy homeostasis by communicating 
via a variety of signals. The brain is a key part of 
controlling each arm of energy balance by sensing 
numerous inputs from central or peripheral organs such as 
gut, adipose tissue, pancreas, liver and central nervous 
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system. The signals can be hormonal, neuronal, or 
nutritional (5, 6). Neurons in specific regions of the brain 
respond to the inputs by sensing and integrating them. 
Many intracellular signaling molecules in neurons are 
involved in this process, with each having unique 
responsiveness to specific signals. Through this interaction, 
the neurons involved in energy homeostasis determine the 
output for maintaining whole energy balance. The output 
displays as meal initiation, termination, or a change of 
energy expenditure (6).  

 
In this review, we describe the regulation of 

energy balance in the hypothalamus and related 
neuroendocrine systems. We focus on signaling molecules 
involved in the process of fuel sensing and especially the 
role of Akt/protein kinase B (Akt/PKB) in the 
hypothalamus.  
 
3. CNS REGULATION OF ENERGY BALANCE 
 
3.1. CNS regions regulating food intake 

Food intake is a complex voluntary behavior 
involved in many neural circuits of the brain. Recent 
advances in understanding the neurobiology of energy 
balance allow us to categorize them into three parts (5, 6). 
First is the circuit regarding satiation signals, which arise 
during meals and control meal size following the pattern of 
cholecystokinin (CCK). The brain regions receiving signals 
from the liver- and gut-brain axis for satiation signals 
include the area postrema (AP) and the nucleus tractus 
solitarius (NTS) in the hindbrain. Second is related to 
adiposity signals such as leptin and insulin, which are 
released respectively from the adipose tissue and pancreas 
in proportion to the amount of body fat and transported in 
blood to neurons in the hypothalamus, hindbrain and other 
regions. Last are neural circuits related to food reward and 
pleasure including the prefrontal cortex (PFC), nucleus 
accumbens (NAc), and mesolimbic dopamine system. 
Although each of these is categorized and dominantly acts 
on its specific function and region of the brain, they are 
coordinated and integrated with other signals in the various 
brain regions (5-7).  

 
The hypothalamus is a critical player for 

regulation of food intake. Various regions in the 
hypothalamus such as the arcuate nucleus (ARC), 
paraventricular nucleus (PVN), ventromedial hypothalamus 
(VMH), perifornical area (PFA) and the lateral 
hypothalamic area (LHA) are involved in the regulation of 
food intake (8). Circulating leptin and insulin reach neurons 
in the ARC and act on at least two neuronal populations, 
neuropeptide Y/agouti-related peptide (NPY/AgRP) 
neurons and proopiomelanocortin (POMC) neurons. These 
in turn signal differentially to second-order neurons 
expressing thyrotropin-releasing hormone, corticotropin-
releasing hormone, arginine vasopressin and oxytocin in 
the PVN, and melanin-concentrating hormone (MCH) and 
orexins in the LHA and PFA (6, 8).  

 
In addition to this hypothalamic system, the 

hindbrain is also an important area for the regulation of 
food intake. Leptin receptors are expressed there and leptin 

can directly affect neurons within the NTS, where signals 
via vagal afferents or hormones released from the intestines 
or other peripheral tissues converge. CCK generated in the 
intestines in response to food consumption plays a role in 
meal termination via interaction with neurons within the 
NTS. In this region, the signal brought by CCK can be 
coordinated or integrated with the action of leptin to 
influence ongoing meals (9, 10).  

 
Food intake is regulated by not only the 

integrated action of neurocircuits on signals from 
peripheral organs but also via the involvement of cognitive, 
visual, and taste inputs, among many others, in the brain.  
The neurocircuits related to food reward, such as those in 
the NAC, amygdala, VTA, globus pallidus in the striatum 
and the cortical area, are intimately connected to the LHA, 
where food intake is stimulated and is controlled by tonic 
inhibition of signals from adjacent hypothalamic areas (5).  
Dopamine is important for augmentation of ‘wanting’, 
which increases the incentive salience of food, and mu-
opioid receptor activity is important for ‘liking’, which 
includes objective affective reactions to pleasurable stimuli 
are important components to deliver the signals in the 
reward neurocircuits, especially from the VTA to NAC 
within the striatum and other regions in the brain (7, 11, 12) 
 
3.2. Neuroendocrine sensing of adiposity signals in the 
ARC 

Circulating leptin and insulin increase or decrease 
depending on the amount of stored body fat.  Both can 
cross the blood-brain barrier and act on their receptors in 
specific regions of the brain, especially the ARC. Both 
hormones act on two distinctive neuronal populations, 
POMC neurons and NPY/AgRP neurons in the ARC, 
which are important components of catabolic and anabolic 
effector pathways of energy balance (8, 13).  

 
POMC neurons in the ARC, in response to 

increased action of adiposity signals, increase synthesis of 
the large precursor polypeptide, POMC, which is cleaved 
into a number of biologically active peptides via multiple 
post-translational processing steps. Among the cleaved 
products, alpha-MSH plays a critical role in catabolic 
action of energy balance. Central administration of 
exogenous alpha-MSH or its synthetic analogues decreases 
food intake and body weight mainly via melanocortin-4 
(MC4) receptors in the hypothalamus (14-19) while 
SHU9119, a melanocortin antagonist at the MC3 and MC4 
receptor and HSO14, a selective antagonist at the MC4 
receptor increases food intake (15, 20-23). The phenotype 
of MC4 receptor-deficient mice includes increased food 
intake and body weight and reveals the crucial role of 
melanocortins in the tonic inhibition of food intake (24).  

 
 NPY/AgRP neurons in the ARC produce both 
NPY and AgRP (25, 26), which increase food intake and 
body weight (27-29) in opposite to the action of POMC 
neurons. The expression of NPY and AgRP is increased in 
fasting and when leptin is low (25, 30, 31). However, rapid 
ablation of NPY/AgRP neurons induces severe anorexia in 
adult mice (32, 33). In contrast, genetic deletion of NPY or 
of AgRP (34, 35), rapid ablation of NPY/AgRP neurons 
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during the neonatal period (32), or gradual ablation (36-38), 
induces only mild effects on energy balance. This suggests 
that compensatory mechanisms for chronic deletion of 
NPY/AgRP neurons occur.  Therefore, NPY/AgRP neurons 
and POMC neurons in the ARC are crucial players for 
energy balance by integrating adiposity signals informing 
the state of the stored body fat.   
 
3.3. Nutrient sensing of metabolic substrates in the ARC 
 Metabolic substrates such as glucose and fatty 
acids also play a role as signals in carrying information 
about the energy status to the neurons in the ARC. Jean 
Mayer proposed the ‘glucostatic theory’, postulating that 
the glucoreceptors in the hypothalamus can monitor the 
level of blood glucose in order to regulate food intake (39, 
40). This hypothesis is supported by the findings that 
central administration of 2-deoxy-D-glucose (2-DG), a 
glucose analog that inhibits glycolysis and causes 
intracellular glucopenia, increases food intake. In addition, 
central 2-DG is more efficacious at stimulating food intake 
than peripheral 2-DG (41), and local administration of 2-
DG into hypothalamus or hindbrain increases neuronal 
activity in these areas (42-44). Ambient glucose levels are 
rapidly sensed in the hypothalamus as well as peripheral 
tissues depending on the situation and this fluctuating 
glucose level is monitored by “glucosensing” neurons 
located there. The glucosensing neurons can be subdivided 
into glucose-excited neurons and glucose-inhibited (43, 45, 
46). Both neurons reciprocally respond to the rapid changes 
of ambient glucose levels to regulate food intake. 
   
 Although the mechanism by which the glucose 
sensing neurons sense the change of glucose levels is 
uncertain, ATP-sensitive potassium channels that exist in 
neurons but not in glia, are thought to be mainly involved 
in this process (47). The KATP channel is composed of two 
subunits, Kir6.2 and SUR1. Similar to pancreatic beta cells 
secreting insulin in response to glucose (48), when glucose 
is oxidized to generate ATP in neurons, the increased 
intracellular ATP:ADP ratio increases intracellular K+ level 
via inactivating or closing inwardly-rectifying potassium 
channels after ATP directly binds to the Kir6.2 subunit. 
This causes depolarization of the neurons and increases the 
firing rate by increasing Ca2+ influx (44, 49). The ‘glucose-
excited’ neurons, like pancreatic beta cells, play an 
important role in regulation of blood glucose levels in 
response to ambient glucose. The failure to close KATP 
channels selectively in POMC neurons by overexpression 
of the mutant Kir6.2 subunit impairs glucose tolerance (50). 
Pharmacologic inhibition of the KATP channels or a genetic 
deletion of the SUR1 subunit of the KATP channels 
suppresses the inhibitory action of insulin on hepatic 
gluconeogenesis in rats or mice, indicating the direct link 
between the hypothalamus and liver (51).  
 
 There are also several reports supporting the role 
of KATP channels in the regulation of food intake. Leptin 
hyperpolarizes and inhibits hypothalamic neurons 
depending on phosphatidylinositol-3-OH kinase (PI3K) 
signaling by activating KATP channels (52, 53). 2-DG 
induced increases in food intake are blunted in the Kir6.2 
mutant mice, and this regulation of food intake is 

independent of leptin and NPY (54). However, it has been 
also found that the phosphatidylinositol-(3,4,5)-
triphosphate phosphatase, Pten deficiency in POMC 
neurons, which enhances phosphatidylinositol-3,4,5-
trisphosphate (PIP3) signaling, causes diet-induced obesity 
and hyperphagia in mice by activation of the KATP 
channels. In these mice, leptin is not able to increase the 
neuronal activity of POMC neurons, which is restored by 
PI3K inhibitors and by the KATP blocker, tolbutamide (55). 
Therefore, these studies support the involvement of KATP 
channels in regulation of food intake.   
  

Although it is not yet clear whether neurons use 
lactate formed by metabolizing glucose or from the 
anaerobic glycolysis in astrocytes (56), lactate followed by 
pyruvate is essential for regulation of glucose via the KATP 
channels in the hypothalamus (57). Central administration 
of pyruvate suppresses the increased food intake induced 
by 2-DG via presumably AMPK-activated protein kinase 
(AMPK) in AgRP neurons triggered by a change of ATP 
levels (58). Central administration of lactate or pyruvate 
decreases food intake and body weight, and the change of 
food intake induced by circulating lactate requires 
hypothalamic lactate sensing (59).  

 
 In spite of a range of evidence about the role of 
glucose or its metabolism in regulation of food intake, the 
‘glucostatic hypothesis’ has limitations. Eating occurs 
independent of the fluctuating plasma glucose levels in a 
normal situation. Most meals occur when blood glucose is 
normal or high. Animals eat while glucose is infused (60). 
Therefore, there may be a limited role of glucose in normal 
circumstances, but it may be most important under extreme 
situations of low glucose. 
 
 In addition to glucose, fatty acids play a role to 
potentially impact fuel sensors in the brain. Central 
administration of oleic acid, a long-chain fatty acid, but not 
octanoic acid, a short-chain fatty acid, reduces food intake 
and body weight (61). Modulation of fatty acid synthesis 
and lipid oxidation also affect food intake although fatty 
acids cannot be used as a fuel in neurons. Formation of 
malonyl-CoA, the commitment step of fatty acid synthesis, 
is crucial for sensing fatty acids in the neurons of the 
hypothalamus, but not fatty acid synthesis per se because 
only inhibition of fatty acid synthase (FAS), a 
multifunctional polypeptide complex, decreases food intake 
while inhibition of the production of malonyl-CoA using 
acetyl-CoA carboxylase inhibitors, does not affect food 
intake (62). The suppression of carnitine 
palmitoyltransferase-1 in the hypothalamus, a key regulator 
of lipid oxidation by regulating the entry of long-chain fatty 
acid into mitochondria, sufficiently decreases food intake, 
and hypothalamic overexpression of malonyl-CoA 
decarboxylase (MCD) involved in degradation of malonyl-
CoA decreases food intake (63, 64).  Therefore, 
hypothalamic malonyl-CoA is an important player in 
feeding behavior and indicator of energy status (65) (Figure 
1). However, this anorectic action of FAS inhibitor within 
the CNS does not solely depend on increased malonyl-CoA 
and subsequently long-chain fatty acids. The ample levels 
of glucose within the neurons and alternative fuel from glia 
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such as glutamine and lactate to alleviate the demand of 
neuronal glucose are crucial to determine the action of FAS 
inhibitor in food intake (66). The anorectic action of FAS 
inhibitors and long-chain fatty acid are mediated via a 
suppression of the fasting-induced increase of NPY/AgRP 
gene expression and decrease in POMC, however, repeated 
administration of FAS inhibitor blunts the change in 
hypothalamic gene expression (62, 67, 68). The 
hypothalamic FAS system is associated with two important 
metabolic sensors, AMPK and mammalian target of 
rapamycin (mTOR) in the regulation of food intake (69, 
70).  
 
4. HYPOTHALAMIC AKT/PKB SIGNALING IN THE 
REGULATION OF FOOD INTAKE 

 
Numerous signals converge onto neurons in the 

hypothalamus and initiate a cascade of phosphorylation 
steps in the signaling pathway. Since the ob gene was 
cloned and its role in energy homeostasis was discovered 
(71, 72), numerous studies helped understand the action of 
leptin in regulation of food intake. Leptin exerts its effects 
via interaction with specific receptors located in distinct 
classes of neurons. Leptin initiates its action by binding to 
the leptin receptor (Lepr) in the hypothalamus. Various 
isoforms exist, as there is a short form of Lepr and a long 
form (LeprB). While several isoforms of the leptin receptor 
have been identified, the LeprB form that includes the long 
intracellular domain that has signaling capacity appears to 
mediate most of the biological effects of leptin (5,6). LeprB 
is predominantly expressed in hypothalamus, and mutation 
of LeprB in hypothalamus increases body weight and food 
intake as occurs in db/db mice (73). Both isoforms activate 
the Janus kinase (JAK2) and insulin receptor substrate 
(IRS) pathways, however, only LeprB can phosphorylate 
signal transducer and activator of transcription (STAT3). 
LeprB has a much more potent action in reducing food 
intake than the short-form of Lepr through the 
JAK2/STAT3 signaling pathway. When leptin binds to 
hypothalamic LeprB, JAK2 undergoes dimerization and 
phosphorylates STAT3 (74). pSTAT3 enters the nucleus 
and is involved in regulating gene transcription. The 
existence of pSTAT3 in hypothalamus is an important 
indicator for activation of leptin signaling (75).  The 
STAT3 pathway was the first signaling mechanism 
associated with the leptin receptor (7). Neural-specific 
inactivation of STAT3 leads to hyperphagia and obesity in 
mice (8). In addition, disrupting the ability of the leptin 
receptor to activate the STAT3 pathway in mice leads to 
severe obesity and several other neuroendocrine 
abnormalities (9–11). More recently, other intracellular 
signaling mechanisms, including PI3K (12), AMPK (13), 
mTOR (14), have been shown to play an important role in 
the action of leptin on food intake.   

 
In many aspects, hypothalamic pathways 

involved in leptin-induced anorexia overlap with those 
involved in insulin’s intracellular actions. Hypothalamic 
PI3K, which is an important downstream mediator of 
leptin’s actions, is also regulated by insulin via JAK2-
medicated phosphorylation of IRS (76-78). Although the 
impact of PI3K signaling involved in leptin-induced 

anorexia is less potent than JAK/STAT3 signaling pathway, 
PI3K inhibitors in hypothalamus also block the anorectic 
action of leptin (76). In addition to this, the action of both 
leptin and insulin in the hypothalamus control the 
regulation of food intake by acting on other important 
signaling molecules such as forkhead transcriptional factor 
subfamily forkhead box O1 (FoxO1) (79), mTOR (80), 
suppressor of cytokine signaling (SOCS3) (81-83), protein 
tyrosine phosphatase 1B (PTP1B) (84) and inhibitor of 
kappa B kinase beta (IKK beta) (85). 

    
PI3K is a key molecule for insulin and leptin-

induced reduction of food intake (76, 86). When insulin 
binds to the insulin receptor (IR), IRS is phosphorylated on 
tyrosine residues. Activated IRS converts 
phosphatidylinositol-4,5-bisphosphate (PIP2) to PIP3, 
which further activates phosphoinositide dependent protein 
kinase-1 (PDK1). PDK1 initiates Akt/PKB enzymatic 
cascades by phosphorylation of Akt/PKB on Thr308. 
Activated Akt/PKB is involved in a variety of cellular 
functions, including growth, angiogenesis, proliferation, 
glucose uptake, metabolism and survival. These cellular 
processes are mediated by regulation of multiple substrates 
such as FOXO, IKKβ, BAD, Casp9, AS160, eNOS, TSC2, 
PRAS40, p27, MDM2, and GSK3 (87). Among these 
substrates, FOXO1 and mTOR are key targets of Akt/PKB 
regarding regulation of food intake (79, 80). 

 
Several signaling molecules close to the 

PI3K/PDK1/PKB signaling pathway involved in the 
regulation of food intake have been reported (76, 79, 80, 
86, 88, 89). Upstream of this pathway, IRS2 and the IR 
play a role in regulating energy balance (88, 89). Neuron-
specific insulin receptor knockout (NIRKO) mice have 
increased food intake and obesity, and mild insulin 
resistance with hypertriglyceridemia. The NIRKO mice 
also have higher leptin levels consistent with greater 
adiposity. The phenotype of NIRKO mice was more 
prominent in female mice. The neuronal disturbance of IR 
signaling induces an impaired reproductive system (88). 
The deletion of IRS-2, which is rapidly phosphorylated on 
tyrosine residues in response to insulin and insulin-like 
growth factor-1, also causes increased food intake and body 
weight in mice similar to NIRKO mice. The increased food 
intake occurs in spite of higher leptin levels without 
activation of hypothalamic STAT3 signaling, indicating the 
essential role of IRS2 in regulation of food intake mediated 
by leptin. It also supports that the hypothalamic leptin 
resistance is associated with insulin action in the nervous 
system (89). A study on the role of hypothalamic insulin in 
regulation of food intake using two PI3K inhibitors, 
wortmannin and LY294002, strongly supports the 
involvement of insulin signaling in phenotypic findings of 
the IRS2 and NIRKO knockout mice (86). In this study, 
systemic or intraventricular administration of insulin into 
the ventricle adjacent to the ARC increases the expression 
of PI3K in the ARC and the anorectic effect of insulin on 
food intake is reversed by the PI3K inhibitors. PIP3 and 
IRS2 are colocalized in ARC neurons indicating the 
preferential insulin-induced PI3K activity within cells 
containing IRS-2 (86). As mentioned earlier, leptin also 
reduces food intake via PI3K signaling (76). Both leptin 
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Figure 1. Convergent intracellular signaling cascades in the hypothalamus regarding food intake. Hormones and nutrients 
produce a change of food intake by modulating the activity of signaling molecules in the neurons within the hypothalamus. The 
intracellular signaling molecules participate in the process of food intake regulation by responding to a specific signal and also 
interacting with other signaling molecules. Leptin and insulin have a common signaling pathway to regulate food intake in the 
hypothalamus via IRS. AMPK and mTOR has a reciprocal action in food intake. AMPK-ACC-Malonyl-CoA axis is an important 
regulator of food intake. Each line represents the interaction between two signaling molecules. Black line indicates the positive 
regulation and red negative. BCAA means branched amino acid.     

 
and insulin stimulate activity of PI3K in POMC neurons in 
parallel and in AgRP neurons in an opposite way. This 
leptin-mediated PI3K activation in POMC neurons does not 
require STAT3 activation (90). The acute but not chronic 
anorectic action of leptin is mediated via PI3K activity in 
POMC neurons. Mice with deleted function of PI3K in 
POMC neurons by reducing the level of p85 subunit show 
normal long-term energy homeostasis (91). Although acute 
leptin and insulin regulate PI3K signaling in POMC 
neurons, their populations within mediobasal hypothalamus 
are distinctive (92). The role of PI3K in energy balance is 
not limited to the ARC. Specific deletion of p100 alpha 
subunit of PI3K in steroidogenic factor 1 (SF1) neurons of 
the VMH increases body weight in mice by reducing 
increased energy expenditure (93).  These reports suggest 
that hypothalamic insulin signaling pathway upstream of 
Akt/PKB signaling is an important regulator for food intake 
and associated with hypothalamic leptin signaling in 
regulation of food intake. 

 
Downstream of PI3K signaling pathway, several 

key molecules play a role as a fuel sensor to regulate food 

intake. FoxO1, one substrate for Akt/PKB, is involved in 
regulation of energy balance in the hypothalamus (79, 94) 
(Figure 1). Activation of Akt/PKB inhibits action of FoxO1 
via polyubiquitination-induced proteosomal degradation 
and nuclear excursion in vitro and in vivo (95, 96). 
Administration of insulin or leptin, which reduces food 
intake, suppresses hypothalamic expression of FoxO1 and 
PI3K inhibitor blocks the suppressive effect of insulin and 
leptin on FoxO1. Hypothalamic FoxO1 increases food 
intake and body weight by stimulating the transcriptional 
level of NPY/AgRP and suppressing POMC. FoxO1 
directly stimulates promoter activity of NPY by binding to 
insulin responsive elements (IREs) and AgRP, but 
indirectly that of POMC through inhibition of STAT3 (79).   

 
Although IKK beta/NF-kappa B may not be a 

direct target for Akt/PKB regarding regulation of food 
intake, constitutional activation of IKK beta in the 
mediobasal hypothalamus impairs the suppressive action of 
insulin in fasting-induced increases of food intake in mice 
and also inhibits the phosphorylation of Akt/PKB in the 
hypothalamus induced by ICV administration of insulin. 
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This was confirmed by immunohistochemistry staining of 
PIP3 in hypothalamus (85). High-fat diets containing 
saturated acyl-CoA cause hypothalamic insulin 
insensitivity via inflammation because of the fat, but not 
the excess calories (97). However, the occurrence of 
hypothalamic insulin resistance depends on the type of fatty 
acid. Oleic acid, a monounsaturated fatty acid, in the 
hypothalamus decreases food intake as well as hepatic 
glucose production (61). Palmitic acid causes hypothalamic 
insulin resistance via increased localization of PKC-theta to 
membranes in the hypothalamus (98). The inhibitory action 
of IKK beta/NF-kappa B in regulation of food intake also 
extends to hypothalamic leptin signaling. Hypothalamic 
activation of IKK beta blunts leptin-induced 
phosphorylation of STAT3 in the hypothalamus and 
reduces the suppressive action of ICV leptin in fasting-
induced increase of food intake (85) (Figure 1). 

 
Besides the involvement of IKK beta/NF-kappa 

B in leptin resistance, which is often defined as a state of 
decreased LeprB signaling induced by prolonged 
stimulation of LeprB with leptin, there have been several 
important advances in revealing its mechanism. Activated 
JAK2 stimulates phosphorylation of 3 tyrosine residues like 
Tyr985, Tyr1077 and Tyr1138. Each tyrosine residues has own 
downstream target to recruit. Tyr985 residue stimulates 
SHP2 or protein tyrosine phosphatase, non-receptor type 11 
(PTPN11) and subsequently extracellular-signal regulated 
kinase (ERK) pathway. Phosphorylation of Tyr1107 residue 
recruits STAT5 signaling pathway and Tyr1138 residue 
STAT3 (99). A part of studies reveal that LeprB signaling 
itself has a negative feedback loop. Activation of STAT3 at 
the Tyr1138 residue increases the accumulation of SOCS3, 
which binds to Tyr985 residue decreasing LeprB signaling 
(83, 100, 101). Female mutant mice at the Tyr985 residue 
show decreased food intake, resistance to diet-induced 
obesity and hypersensitivity to leptin (102). Neuronal 
specific SOCS3 deficient mice are resistant to diet-induced 
obesity and show an enhancement of hypothalamic STAT3 
responsiveness to leptin and POMC (100). In addition to 
SOCS, PTPB1 participates in leptin resistance via 
mediating the process of direct dephosphorylation of JAK2 
(103, 104). Whole body PTP1B deficient mice have lower 
adiposity with increased energy expenditure and increased 
insulin sensitivity (105, 106). Brain PTPB1 contributes to 
the reduced body weight. Neuronal PTP1B deficient mice 
have lower adiposity and body weight on both chow and 
high fat diet while there is no change of body weight in 
muscle- and liver-specific PTP1B knockout mice and 
increased body weight in adipose-specific PTP1B deficient 
mice. Neuronal PTP1B deficient mice show reduced food 
intake as well as increased energy expenditure and activity, 
and are also hypersensitive to leptin (84). Recently, it is 
reported that POMC neuron-specific PTPB1 knockout mice 
have reduced adiposity, increased energy expenditure and 
leptin sensitivity while POMC neuron-specific SHP2 
knockout mice show opposite phenotypes indicating that 
PTP1B and SHP2 in POMC neurons are reciprocal 
regulators of energy balance (107). Finally, endoplasmic 
reticulum (ER) stress and low-grade inflammation induced 
by obesity plays an important role in development of leptin 
resistance. Increased ER stress and the unfolded protein 

response (UPR) signaling pathway causes leptin resistance 
in the hypothalamus of obese mice and pharmacologic 
administration of chemical chaperones such as 4-phenyl 
butyric acid (PBA) and tauroursodeoxycholic acid 
(TUDCA) to reduce ER stress improves leptin sensitivity. 
Genetic depletion of XBP1 in the CNS of mice, which is a 
key regulator of ER folding capacity, causes severe leptin 
resistance and aggravation of diet-induced obesity (108). 
MyD88 deficiency in the CNS, which is essential for TLRs 
signaling and the induction of proinflammatory cytokines, 
protects from diet-induced obesity and leptin resistance 
(109). 

 
4.1. Mammalian target of rapamycin (mTOR) 

One of the main targets for Akt/PKB is mTOR, 
which is a member of the phosphatidylinositol kinase-
related protein kinase family. mTOR is also called as 
FRAP, RAFT, RAPT, or SEP and is critically involved in 
regulation of  growth and development by stimulating 
protein synthesis or inhibiting autophagy (87, 110). 
Originally, it was known to exist in an evolutionarily 
conserved complex, which is rapamycin-sensitive (mTOR 
complex 1) by binding to two proteins such as regulatory-
associated protein of mTOR (raptor) and G protein β-
subunit-like protein (GβL). The mTOR complex 1 
phosphorylates S6K1 at multiple residues (111-113). 
mTOR also forms another signaling complex, which is 
rapamycin-resistant (mTOR complex 2), with GbetaL and 
AVO3, or rapamycin-insensitive companion of mTOR 
(rictor). The mTOR complex 2 mediates Akt/ PKB 
phosphorylation in conjunction with PDK1 
phosphorylation at the upstream of S6K1 (114). After 
insulin activates Akt/PKB through IRS/PI3K/PKB 
signaling, Akt/PKB phosphorylates Tuberous Sclerosis 
Complex protein 2 (TSC2), which inactivates TSC1/2 and 
increase GTP-bound Ras homolog enriched in brain 
(Rheb). Activated TSC1/2 through GTPase-containing 
domain converts GTP-bound Rheb into the GDP-bound 
Rheb. The increased GTP-bound Rheb directly activates 
mTOR complex 1 inducing phosphorylation of S6K1. S6K 
exists as two isoforms such as S6K1 and S6K2. S6K1 also 
has long or short isoforms. S6K1 increases protein 
synthesis via S6 ribosomal protein, EIF4E binding protein, 
end eukaryotic elongation factor 2 kinase (112, 114). S6K1 
knockout mice are resistant to diet-induced obesity and 
insulin-sensitive (115). 

 
Cota and colleagues found that this mTOR/S6K 

signaling plays an important role in regulation of food 
intake in the hypothalamus (80). pmTOR at Ser 2448 is 
highly localized in the PVN and ARC. pS6K1 at Thr389 is 
also colocalized with pmTOR mostly in neurons. They are 
found within about 90% of NPY/AgRP neurons and about 
45% of POMC/CART neurons in the ARC. mTOR activity 
depends on the level of fuel, which is low in the ARC when 
the rats are fasted. Intraventricular administration of L-
leucine, but not valine, decreases mTOR activity as well as 
food intake in 24-hour fasted rats, accompanied by a 
decrease in NPY. The study using the mTOR inhibitor, 
rapamycin, showed that the hypothalamic mTOR signaling 
is required for the decrease in food intake induced by L-
leucine. The crucial role of hypothalamic mTOR signaling 
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as an intracellular fuel sensor extends to the anorectic 
action of other cytokines or agents. The hypothalamic 
mTOR signaling is also required for leptin-induced 
anorexia (80) and contributes to leptin resistance induced 
by diet-induced obesity (116). In addition, constitutive 
activation or inactivation of S6K in the mediobasal 
hypothalamus bidirectionally alters leptin sensitivity and 
food intake through the change of NPY and AgRP 
expression. Overactivation of S6K1 protects against high-
fat diet-induced overeating (117). In contrast to this, there 
is a discrepancy of the role of mTOR activity between 
acute studies and chronic genetic model studies. It is 
reported that chronic activation of TSC1-mTOR pathway 
by targeted disruption of TSC1 in POMC neurons impairs 
anorectic action of POMC neurons and causes hyperphagia 
and obesity in mice (118). In spite of the strong evidences 
of the role of mTOR activity in regulation of food intake in 
the acute studies, the opposite results from chronic 
activation of mTOR in the POMC neurons might reflect the 
situations observed in obese mice. Another potent anorectic 
cytokine, ciliary neurotrophic factor also depends on the 
action of S6K1 (116). The anorectic action of fatty acid 
synthase inhibitors such as C75 and cerulenin is closely 
related to the hypothalamic mTOR signaling through 
utilization of neuronal glucose (69). 

 
4.2. AMP-activated protein kinase (AMPK) 

AMPK, a heterotrimer complex comprising a 
catalytic alpha submit and two regulatory beta and gamma 
subunits, is a master switch of energy balance in peripheral 
tissues as well as in the hypothalamus. AMPK within the 
ARC, PVN and VMN regulates food intake, but not in the 
LH, where leptin increases activated form of STAT3 (119, 
120). Recently, a new conceptualization for regulation of 
AMPK was proposed (121). The ratio of AMP to ATP, 
representing the status of cellular energy, activates AMPK 
by allosteric regulation of AMPK. This leads to a change of 
balance between constitutive active LKB1 and 
dephosphorylation activity of protein phosphatse-2C alpha 
induced by AMP (122). Activation of Ca2+/calmoduline-
dependent protein kinase kinase alpha induced by Ca2+ 
phosphorylates AMPK independent of AMP (123). 
Increases in a complex of cell-death-inducing like-effector 
A (CIDEA) and beta subunit of AMPK produces 
ubiquitination-mediated proteolysis of AMPK independent 
of AMP or the process of phosphorylation and 
dephosphorylation (124). Although regulation of AMPK is 
not yet well studied at the upstream level, AMPK responds 
to leptin level as well as to nutritional status, which is 
closely associated with the hypothalamic neuropeptide 
system. Modulation of AMPK activity using constitutive 
active or dominant-negative expression of AMPK in the 
mediobasal hypothalamus regulates food intake and body 
weight (120). The activity of AMPK in the hypothalamus is 
also modulated by various factors. The anorectic factors 
such as feeding (120), leptin (120), insulin (120), glucose 
(120, 125), MC3/4 receptor agonist (120), fatty acid 
synthase inhibitor (70), alpha-lipoic acid (125), GLP-1 
(126), CNTF (127), citrate (128) and high protein diet 
(129) all decrease the hypothalamic AMPK activity 
whereas orexigenic factors such as fasting (120), AgRP 
(120), ghrelin (119, 130), endocannabinoids (131), 

adiponectin (132) and glucocorticoids (133) all increase it. 
Interestingly, central or peripheral administration of resistin 
reduces food intake while it increases phosphorylation of 
hypothalamic AMPK (134).   

 
AMPK plays a key role in integrating signals 

regarding regulation of food intake in the hypothalamus 
with mTOR. Both AMPK and mTOR often refer to 
“molecular fuel sensors” (120, 135). AMPK interacts with 
mTOR in regulation of food intake in the hypothalamus. 
Central administration of the AMPK agonist, 5-
aminoimidazole-4-carboxamide-1-beta-D-ribose (AICAR), 
decreases phosphorylation of S6K and 4EBP1 at a dose that 
does not increase food intake while it increases 
phosphorylation of AMPK and ACC in the hypothalamus 
(136). ATP depletion directly or indirectly inhibits mTOR 
signaling via AMPK regulation of TSC2 (114). In addition, 
high protein diets and central administration of leucine 
reduces food intake via decreased phosphorylation of 
AMPK and increased mTOR signaling pathways (129). 
Pretreatment with leucine in the hypothalamus at the dose 
that does not reduce food intake inhibits 2-DG-induced 
increase in food intake and phosphorylation of AMPK, 
indicating that mTOR activity regulates food intake via 
AMPK in the hypothalamus (129). Therefore, AMPK and 
mTOR have a bidirectional reciprocal inhibitory action in 
regulation of food intake (Figure 1). 

 
AMPK regulates energy balance in the 

hypothalamus via AMPK-malonyl-CoA-CPT1 axis (119) 
similar to what occurs in peripheral tissues (122). Acetyl-
CoA carboxylase (ACC), which regulates fatty acid 
metabolism, is a main target for AMPK. The activation of 
AMPK induced by fasting and ghrelin subsequently 
phosphorylates acetyl-CoA carboxylase (ACC), which 
leads to decrease the conversion of acetyl-CoA to malonyl-
CoA and decreases gene expression of fatty acid synthase 
via SREBP1-dependent mechanism in the hypothalamus. 
This leads to decreased concentration of malonyl-CoA in 
the hypothalamus and increased activity of 
carnitine:palmitoyl-CoA transferase-1 (CPT-1) on the outer 
membrane of mitochondria, a rate-limiting step for 
increasing fatty acid oxidation by enhancing the entry of 
long-chain acyl-CoA into mitochondria (119). The net 
outcome of activated AMPK in the hypothalamus increases 
food intake. The inactivation of AMPK induced by C75, a 
fatty acid synthase inhibitor, also decreases food intake, 
possibly by decreasing NPY expression in the 
hypothalamus via inactivation of cAMP response element-
binding protein (CREB) (70) (Figure 1).  

 
 The direct interaction of AMPK with Akt/PKB in 
the hypothalamus remains unclear. A high protein diet and 
leucine do not change the Akt/PKB activity induced by 
insulin in the periphery (129). However, Akt1 prevents 
activation of AMPK via LKB1 or other AMPK kinase in 
the heart (137).  Adiponectin induces the phosphorylation 
of AMPK, Akt/PKB, and endothelial nitric oxide synthesis 
in human umbilical vein endothelium cells (HUVECs). 
Dominant-negative AMPK inhibits the phosphorylation of 
Akt/PKB induced by adiponectin indicating that AMPK is 
upstream of Akt/PKB (138). Therefore, the cross-talk 
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between AMPK and Akt/PKB in the hypothalamus is 
possible in the regulation of food intake.  
 
5. CONCLUSION 
 

Energy balance is tightly regulated by 
coordinating and integrating signals from the periphery in 
key circuits within the CNS. Some pharmacologic agents, 
nutrients, and hormones have been introduced to affect 
food intake by a direct action within the hypothalamus. 
However, the underlying mechanism of anorectic or 
orexigenic action is different among the various factors. 
The classical hypothalamic neuropeptide system has been 
demonstrated to be a key mechanism by which certain 
substances affect food intake in the hypothalamus.  Recent 
studies about AMPK from Kahn’s laboratory as well as 
mTOR from our laboratory as being key CNS fuel sensors 
open a new way to demonstrate how the energy balance is 
regulated via intracellular cascades in neurons within the 
hypothalamus. These intracellular molecules participate in 
regulation of food intake by interacting with other kinases 
involved in different signaling pathways.  Akt/PKB is a key 
intracellular molecule for the insulin signaling pathway and 
communicated with other kinases such as mTOR and IKK 
beta. Akt/PKB is also shared with other important 
cytokines such as leptin. However, the role of Akt/PKB and 
its relationship with newly-emerging signaling molecules 
involved in regulation of energy balance remains unclear. 
Precise molecular mechanisms at the cellular level will 
allow us to understand how energy balance is specifically 
regulated within the CNS.  

 
Given the rapid increase in the prevalence of 

obesity and subsequent metabolic disease, there are only a 
few way to meet the serious situation. The understanding of 
the CNS network regarding energy balance at the molecular 
level will offer us scientific evidences to develop a 
pharmacologic agent or other ways such as genetic 
modulation without undesired effects. Therefore, scientific 
efforts to reveal the CNS sensing mechanism will provide 
new opportunities to fight against obesity and metabolic 
disease.     
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