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1. ABSTRACT 
 

Staphylococcus aureus is an important pathogen 
involved in infections in both the community and hospital 
setting. Strains that are resistant to multiple classes of 
antibiotics, particularly methicillin-resistant strains (MRSA), 
are prevalent in nosocomial infections and are associated with 
high morbidity and mortality rates. Such antibiotic-resistant 
strains limit the therapeutic options and place a burden on the 
health care system. In the hospital setting, horizontal gene 
transfer plays an important role in disseminating antibiotic 
resistant determinants among S. aureus. However, resistance to 
all known classes of antibiotics have been attributed to genes 
found within the S. aureus chromosome or to due to mutation 
as a result of selection pressure. Spontaneous mutations, in 
particular, are pivotal in the emergence of novel resistances. 
Consequently, newer drugs with better activity and/or 
antibacterial agents with novel targets need to be developed to 
combat and control the further spread of antibiotic resistance.  

 

 
 
 
 
 
 
 
2. INTRODUCTION 

 
Staphylococcus aureus is a ubiquitous 

commensal and frequent pathogen of humans and animals, 
causing various types of pyogenic infections. S. aureus has 
a propensity to develop resistance to new and different 
classes of antibiotics especially after the implementation of 
these antibiotics in clinical practice (Table 1) (1-2). 
Antibiotic resistance can arise in S. aureus (Table 2) from 
horizontal gene transfer and spontaneous mutation. 
Although horizontal gene transfer plays an important role 
in antibiotic resistance, chromosomally-encoded genes and 
mutations that affect their expression and function are 
important in conferring resistance to a wide variety of 
antibiotics particularly towards novel antibiotics. 
Modifications within the antibiotic target or binding site, 
due to missense mutations, are commonly associated with 
the development of antibiotic resistance due to antibiotic 
repulsion or steric hindrance.  
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Table 1. Seminal events in the emergence of antimicrobial resistance in Staphylococcus aureus 
Date Event Country 
1936 Sulphonamides introduced into clinical use Germany 
1940s Penicillin used in humans UK, USA, Australia 
1943 Penicillinase detected in S. aureus UK 
1949 Tetracycline released USA 
1950 Aminoglycosides released USA 
1950s Penicillin resistance common in hospital strains of S. aureus UK, USA 
1952 Macrolides released USA 
1956 Vancomycin resistance occurs in vitro on serial passage France 
1957 Methicillin released UK 
1961 MRSA first reported UK 
1960s Increasing reports of MRSA, multiple hospital outbreaks UK, USA, Australia 
1962 Streptogramins and quinolones released USA 
1966 First MRSA isolated in Australia Australia 
1969 Gentamicin resistance detected UK 
1970s Penicillin resistance common in community S. aureus USA 
1976 Outbreak of gentamicin-resistant MRSA Australia, UK 
Late 1970s Multiple MRSA outbreaks throughout the world Worldwide 
1981 Extensive outbreaks of gentamicin-resistant MRSA Ireland, USA, Australia 
1980s MRSA becomes endemic in hospitals Australia, USA 
1990s MRSA endemic in most hospitals throughout the world Worldwide 
1990s Community-acquired MRSA emerges USA, New Zealand, Australia 
1990s Emergence of epidemic MRSA (“EMRSA”) strains UK 
1990s Emergence of gentamicin-susceptible MRSA strains France 
1992 MRSA strains found with teicoplanin MICs 8-16 mg L-1 France 
1992 In vitro transfer of vanA gene complex from VRE to S. aureus. UK 
1996 VISA (S. aureus Mu50) first described Japan 
1997 hVISA (S. aureus Mu3) first described Japan 
1998 VISA strains found elsewhere USA 
1999 Q-D released USA 
Early 2000s Q-D resistance demonstrated in isolates from retrospective large multi-center studies Worldwide 
2000 Linezolid released USA 
2001 Linezolid resistance detected USA 
2001 hVISA strains isolated in Melbourne Australia 
2002 MRSA strains with high level vancomycin resistance (VRSA) where vanA gene complex from 

vancomycin-resistant enterococcus entered S. aureus via Tn1546 
USA 

2003 Daptomycin released USA 
2005 Daptomycin resistance observed in VISA isolate from an endocarditis patient USA 
2005 Tigecycline released USA 

 
Table 2. Antibiotic resistance mechanisms of chromosomally-encoded genes and mutations in S. aureus  

Mechanism of resistance 
Antibiotic Target 

modification 
Drug 
inactivation 

Decreased 
accumulation 

Genes 
responsible Origina Cellular mechanism 

Cell Wall Active Drugs    
Beta-lactams       
Penicillin  Y  blaZIR Acquired/ 

intrinsic 
Inducible production of penicillinase 

Antistaphylococcal 
beta-lactams  
(e.g., methicillin) 

Y   SCCmec 
(mecAIR) 

Acquired Inducible production of modified PBP (PBP2a) 

Glycopeptides       
Vancomycin  
(high-level) 

Y   vanA Acquired Production of altered peptidoglycan terminal 
precursor D-Ala-D-Lac with low affinity for 
vancomycin 

Vancomycin 
(intermediate) 

Y   cell wall 
biosynthesis 
genes 

Intrinsic Thickened cell wall causing “affinity trapping” of 
vancomycin 

Lipoglycopeptides Y   cell wall 
biosynthesis 
genes  

Intrinsic Alteration of cell surface charge, thickened cell wall 

Nucleic Acid Synthesis Inhibitors    
Y   grlA, gyrA Intrinsic Topoisomerase IV and DNA gyrase mutations 

causing decreased affinity to quinolones  
Quinolones 

  Y norA Intrinsic Mutations causing overexpression of NorA efflux 
pump 

Coumarins Y   gyrB Intrinsic GyrB mutations causing decreased affinity to 
novobiocin  

Y   dpsA Intrinsic DHPS mutations causing decreased affinity to 
sulfamethoxazole  

Sulfamethoxazole 

Y   sulA Intrinsic Increased PABA production 
Trimethoprim Y   dfr Intrinsic DHFR mutations causing decreased affinity to 

trimethoprim  
Rifampicin Y   rpoB Intrinsic RNA polymerase beta-subunit mutations causing 

decreased affinity to rifampicin 
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Protein Synthesis Inhibitors    
Y   ermA, ermC Acquired Inducible ribosome methylation 
Y   ermB Acquired Constitutive ribosome methylation  
Y   Rrl Intrinsic Ribosomal mutations causing decreased affinity to 

MLS 

Macrolides, 
Lincosamides, 
Streptogramins 

Y   rplV, rplD Intrinsic Mutations causing structural changes of ribosomal 
proteins that line the peptide exit tunnel 

Oxazolidinones Y   rrl Intrinsic Ribosomal mutations causing decreased affinity to 
oxazolidinones 

Aminoglycosides  Y  aac, aad, aph Acquired Modification of aminoglycosides 
Y   tetA(M) Acquired Inducible production of proteins that protect the 

ribosomal tetracycline-binding site from tetracyclines 
Tetracyclines 

  Y tetA(K), 
tetA(L) 

Acquired Expression of efflux pumps 

Glycylcyclines   Y mepAR Intrinisic Mutations in mepR causing derepressed expression of 
MepA efflux pump 

Mupirocin  Y   ileS Intrinsic IleS mutations in causing decreased affinity to 
mupirocin 

Fusidic acid Y   fusA Intrinsic EF-G mutations causing decreased affinity to fusidic 
acid  

Adapted with permission from (161), aAcquired genes are present on mobile genetic elements which have integrated into the 
chromosome.
 
3. RESISTANCE TO CELL WALL ACTIVE AGENTS 
 

Antibiotic classes such as the beta-lactams (i.e., 
penicillins, cephalosporins, monobactams, carbapenems) 
and the glycopeptides prevent the biosynthesis of 
peptidoglycan, a crucial component of the bacterial cell 
wall. In S. aureus, peptidoglycan biosynthesis relies on the 
activity of four penicillin-binding proteins (PBP1-4) which 
are enzymes that have dual transglycosylase and 
transpeptidase (TPase) activities and are involved in 
peptidoglycan synthesis and cross-linking, respectively (3). 
The instability of the weakened cell wall caused by beta-
lactams and glycopeptides binding to the TPase domain of 
PBPs or the target site of PBPs, respectively, results in 
bacterial cell death during cell division. 

 
3.1. Beta-lactams 

S. aureus can be resistant to beta-lactams via one 
of two general mechanisms: production of beta-lactamases, 
enzymes which hydrolyze the beta-lactam ring; and/or 
production of altered PBPs. Beta-lactamases are inducible 
in the majority of S. aureus strains (4) and are encoded by 
the blaZIR operon. blaZ, which codes for the beta-
lactamase, is regulated by genes include blaI, blaR1, and 
blaR2 (5-6). blaZIR1 are typically found on large plasmids, 
but blaR2 is always chromosomal (4, 7). blaZ can also be 
found on the chromosome (e.g., S. aureus NCTC9789) (8) 
and can be translocated, along with other chromosomal loci 
by transposons (9-10). 
 

To combat staphylococcal beta-lactamases, 
methicillin, a penicillin with a side chain modification 
resistant to beta-lactamase activity, was developed. 
However, two years after the introduction of methicillin, 
the first methicillin-resistant S. aureus (MRSA) isolate was 
reported (11). MRSA typically possess a 30-50 kb 
staphylococcal cassette chromosome mec (SCCmec) that 
has integrated into the chromosome (12). Within SCCmec 
is the mec operon which contains the mecA gene required 
to confer methicillin resistance (13). mecA encodes 
PBP2A, an alternative PBP with a lower affinity for beta-
lactams compared to the wild-type PBPs (i.e., PBP1-4) 
(14). As a result, the S. aureus strain becomes resistant to  

 
all beta-lactam antibiotics except the new anti-MRSA 
cephalosporins (15-16). Interestingly, mecA could be 
derived from a fusion product of the upstream region of 
blaZ with a wild-type PBP gene (17). 

 
Also within the mec operon are the regulatory 

mecI and mecR1 genes which exhibit strong suppression of 
mecA in the absence of beta-lactams making methicillin 
resistance an inducible phenotype (18-19). Similarities in 
molecular organization, function and regulation between 
mecIR1 and blaIR1 allows mecA expression to be 
controlled by both sets of regulatory genes whereby 
mutations affecting beta-lactamase induction also effect 
methicillin resistance (20-21). Thus, the absence of blaI 
and blaR1 (22), insertional inactivation of mecI and mecR1 
(18, 23) or point mutations/deletions inactivating mecI 
contribute to PBP2A being constitutively expressed at high 
levels (24). The interactions between mecI, mecR1, blaI, 
and blaR1 on the expression of methicillin resistance are 
complex, particularly the cascade from the detection of 
extracellular beta-lactam to the production of PBP2A, and 
remain to be elucidated in staphylococci (22).  

 
Isolates obtained prior to 1970 mostly have 

deletions of the penicillin-binding domain of mecR1 and 
the complete downstream mecI (24-25). Strains isolated 
since 1980 usually have intact regulatory genes but 
demonstrate polymorphisms in mecI and mutations in the 
mecA promoter (26). mecIR1 may also be truncated or 
absent due to the insertion of insertion sequences (e.g., 
IS1182, IS26, IS431) (27). Further deletions, 
rearrangements, and recombination events commonly occur 
between mecA and IS431 (14), a common staphylococcal 
insertion sequence associated with various resistance 
determinants. Such mutations likely reflect the selective 
pressure of beta-lactams for mutants lacking strong 
repressor activity, so that the amount of PBP2A produced 
will confer a survival advantage. 

 
Some S. aureus strains have raised methicillin 

MICs but do not possess mecA. Point mutations in the 
penicillin-binding domains of PBP1, 2 or 4 decreases their 
affinity for beta-lactams resulting in raised methicillin 
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MICs (28). Alternatively, a variety of point mutations in 
PBP2 and 4 (29-30) can result in altered PBPs that bind 
penicillin more slowly and release penicillin more rapidly 
compared to wild-type PBPs (31). Over expression of 
PBPs, especially PBP4, may also cause a minor rise in 
methicillin MIC (32). 
 
3.2. Glycopeptides 

Glycopeptides form complexes with the peptidyl-
D-Ala-D-Ala terminus of peptidoglycan precursors at the 
outer surface of the cell membrane, leading to inhibition of 
transglycosylation and transpeptidation steps in cell wall 
synthesis (33). The main clinical glycopeptides include 
teicoplanin and vancomycin, which is regarded as “drug of 
choice” to treat infections with MRSA (14). 

  
3.2.1. Vancomycin 

High-level vancomycin-resistant S. aureus 
(VRSA; MIC ≥32 g L-1) is extremely rare (34-35) and is 
caused by the acquisition of a plasmid-borne transposon 
(Tn1546) from vancomycin-resistant enterococci (VRE) 
which has the ability to integrate into the staphylococcal 
chromosome (36). Within Tn1546 is the vanA gene which 
encodes a peptidoglycan precursor with alternative C-terminal 
residues (D-Ala-D-Lac) to which vancomycin cannot bind 
(37).  
 

Vancomycin-intermediate S. aureus (VISA; MIC 4-
8 mg L-1) is more common and can be characterized by the 
absence of van genes, slower growth, pleomorphic colonial 
morphologies, thickened cell walls on electron microscopy, 
reduced susceptibility to lysostaphin, decreased autolysis and 
have alterations in cell wall metabolism (38-39). There is also 
a subset of VISA in which only a subpopulation of bacterial 
cells exhibits the resistance and is termed heterogeneous VISA 
(hVISA) (40). 

 
VISA strains were shown to have an altered 

peptidoglycan precursor terminus (D-Alanyl-D-Ala instead of 
D-Ala-D-Ala) which vancomycin is able to bind to but does 
not inhibit transglycosylation and transpeptidation. The 
combination of bound vancomycin and the thicker cell wall 
prevents vancomycin from penetrating deeper into the cell wall 
and thus raising the vancomycin MIC of the strain. This 
phenomenon is referred to as the “affinity trapping” hypothesis 
(40-41). Acquisition of the VISA phenotype appears to be a 
multistep process involving multiple pathways. Many of these 
gene mutations described to date, associated with the VISA 
phenotype, are involved with cell wall synthesis, involving at 
least the vraSR and walKR operons (38, 42). However, not all 
hVISA/VISA strains demonstrate these mutations. A 
comparative genomic whole genome sequencing study of the 
prototype hVISA and VISA isolates Mu3 and Mu50, 
respectively, identified missense mutations in the graR locus 
of Mu50 (43). Introduction of the mutant graR into Mu3 and 
in a VSSA strain conferred a VISA phenotype only in Mu3 
suggesting that additional mutations are required for a VISA 
phenotype. 

 
3.2.2. Teicoplanin 

While vancomycin resistance is typically 
associated with teicoplanin resistance, teicoplanin 

resistance is not always accompanied by vancomycin 
resistance. The mechanism of teicoplanin resistance may be 
multi-factorial especially in VISA strains. However, 
mutations involving genes encoding the anti-sigma factor 
RsbW and transcription factor SigB were found involved in 
decreased teicoplanin susceptibility (44). 
 
3.2.3. Lipopeptides 

Daptomycin, a lipopeptide drug derived from 
glycopeptides, penetrates the cell wall leading to 
depolarisation and cell death (45). Reduced susceptibility to 
daptomycin (MIC >1 mg L-1) can be generated by exposure 
to either vancomycin or daptomycin. A possible 
explanation for this observation is the selection of a 
thickened cell wall, as in hVISA/VISA isolates, which acts 
as a diffusion barrier for daptomycin. However, not all 
hVISA/VISA isolates are resistant to daptomycin and not 
all daptomycin-resistant MRSA isolates have thickened cell 
walls (46).  

 
Genetic studies, mainly on laboratory generated 

isolates, have found genetic inconsistencies between non-
susceptible isolates (47) suggesting that daptomycin 
resistance may be the result of multiple mechanisms as 
opposed to a single mutation. However, a recent study 
found a missense mutation at codon 621 (A621E) in the 
rpoB gene of laboratory strain S. aureus 10*3d1 conferring 
heterogeneous cross-resistance to vancomycin and 
daptomycin (48). Mutations in rpoB, which encodes the 
beta-subunit of RNA polymerase, are often associated with 
rifampicin resistance (see below) but no rifampicin 
resistance phenotype was observed in this strain (48). The 
A621E mutation was also associated with cell wall 
thickening and decreased cell surface charge (a daptomycin 
resistance mechanism) often observed in hVISA strains 
(48). Although, microarray analysis of 10*3d1, compared 
to its vancomycin/daptomycin-sensitive parent strain and 
isogenic strains containing the wild-type allele, showed 
numerous transcriptional changes in genes involved with 
cell wall metabolism (48), further studies are required to 
ascertain the role of this rpoB mutation in relation to 
heterogeneous vancomycin/daptomycin cross-resistance. 
 
4. RESISTANCE TO NUCLEIC ACID SYNTHESIS 
INHIBITORS 
 
4.1. Quinolones 

 A large number of quinolones exist, putatively 
divided into first-generation (e.g., nalidixic acid, oxolinic 
acid), second-generation (e.g., norfloxacin, ciprofloxacin), 
third-generation (e.g., levofloxacin, sparfloxacin) and 
fourth-generation (e.g., moxifloxacin, gatifloxacin) agents 
with improved activity/spectrum in each successive 
generation (49-50). Surveys of resistance over time have 
shown resistance to quinolones has increased since the 
introduction of second generation quinolones into clinical 
use (51-52) with 60-90% of MRSA worldwide currently 
being resistant to commonly used quinolones (e.g., 
ciprofloxacin, levofloxacin) (35, 53-54).  

 
Quinolones inhibit the action of the type II 

topoisomerases (e.g., DNA gyrase and topoisomerase IV), 
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enzymes involved in DNA replication and segregation, by 
binding to and stabilising enzyme-DNA complexes and 
promoting the cleavage of DNA resulting in cell death (55-
56). DNA gyrase has A and B subunits, encoded by gyrA 
and gyrB respectively (57). Topoisomerase IV is also 
composed of A and B subunits, encoded by grlA and grlB, 
and exhibit homology to GyrA and GyrB respectively (58). 
All quinolones are active against both DNA gyrase and 
topoisomerase IV, but differ in their relative activities against 
these enzymes. While most quinolones primarily target 
topoisomerase IV in S. aureus, nalidixic acid preferentially 
targets DNA gyrase (55). 

 
Quinolone-resistant mutants are readily selected in 

the laboratory (56). Serial passaging results in the 
accumulation of multiple mutations and high-level resistance 
(59). Missense mutations observed in both grlA and gyrA 
occur within the quinolone resistance determining region of the 
two genes which encompasses codons 67-140 (60). Most low-
level quinolone resistance in S. aureus is associated with a 
mutation at codons 80 (S80Y) or 84 (E84K) of grlA (61-62). A 
pharmacokinetic study suggested that strains with grlA 
mutations are more prone to acquire secondary mutations and 
develop high-level quinolone resistance (63). Thus mutations 
in grlA are often seen prior to additional mutations in gyrA 
(62).  

 
Mutations in grlB and gyrB are rare and play a 

minimal role in quinolone resistance (64-65). However, one 
study observed a novel mutation (G A) 13 bp downstream 
of a putative ribosomal binding site of grlB in a clinical 
strain grown in vitro in the presence of premafloxacin, a 
quinolone in veterinary use (66). This mutation was 
associated with low-level quinolone resistance due to 
decreased grlB and grlA expression as both genes are in an 
operon under the control of the grlB promoter (66). A loss 
of fitness was observed when the G A mutation was 
introduced in the quinolone-sensitive parent strain but not 
in the in vitro-derived mutants probably due to compensatory 
increases in gyrAB and topB (encoding topoisomerase III) 
expression observed in these mutants (66). 

 
Quinolone resistance can also independently 

emerge by the overexpression of efflux pump genes 
norA, norB or norC. NorA is the most studied efflux 
pump in S. aureus and exports hydrophilic quinolones 
(e.g., norfloxacin, ciprofloxacin) and lipophilic, 
monocationic substances (e.g., antiseptics and ethidium 
bromide) (67). Overexpression of norA can augment the 
level of hydrophilic quinolone resistance in strains that 
already possess mutations in grl or gyr genes (67-68). 
Increased norA expression levels can be associated with 
singe nucleotide mutations in and around the -10 
promoter motif, particularly at a position 89 bp 
upstream of the transcriptional start codon (T-89G) (67, 
69). The T-89G mutation is predicted to increase mRNA 
stability by generating an additional hairpin structure in 
the norA leader mRNA (70). Furthermore, insertions 
downstream of the -10 promoter motif can also have 
upregulatory effects (71). Interestingly, the ability of 
antiseptics to select for norA promoter mutations 
suggests that norA overexpression is a response to 

chemical factors in the environment rather than quinolone 
selection by itself (69). 
 
4.2. Coumarins 

Coumarins (e.g., novobiocin) competitively 
inhibit the ATP hydrolytic activity of GyrB (72). Mutations 
in gyrB, resulting in amino acid substitutions (e.g., I102S 
and R144I) in the ATP-binding site have been associated 
with high-level coumarin resistance (65). While mutations 
in the coumarin-binding region of topoisomerase IV (e.g., 
S80F) do not effect novobiocin resistance (73), mutations 
in the A subunit (A116P/E) or B subunit (N470D) confer 
coumarin hypersensitivity and increased quinolone 
resistance levels by altering the catalytic activity of the 
enzyme (65, 74-75).  

 
4.3. Folate Synthesis Inhibitors 

Purine and thymine synthesis relies on the 
production of tetrahydrofolate, the physiologically active 
form of folic acid (76). Dihydropteroate synthase (DHPS) 
utilises p-aminobenzoic acid (PABA) to form precursors 
involved in the synthesis of dihydrofolate (77). Dihydrofolate 
is subsequently converted to tetrahydrofolate by dihydrofolate 
reductase (DHFR) (78-79). Sulfamethoxazole (a PABA 
structural analogue) and trimethoprim are antibiotics that bind 
to and inhibit the activity of DHPS and DHFR, respectively, 
thus preventing tetrahydrofolate synthesis and ultimately 
preventing DNA synthesis leading to cell death (78). Due to 
the synergistic activity of both of these antibiotics, they are 
usually administered in combination as a drug called 
cotrimoxazole. However, despite the efficacy of 
cotrimoxazole, resistance rates in MRSA vary from 16-66% 
worldwide (53-54). 

 
Sulphonamide resistance was reported in S. aureus 

soon after the introduction of these agents. A study of clinical 
isolates has shown that sulfamethoxazole resistance in S. 
aureus is complex and is associated with a variety of missense 
mutations in dpsA which encodes DHPS (77). Despite 
crystallographic studies of DHPS, no amino acid changes have 
been determined to be the underlying resistance mutation (77). 
In some instances, strains expressing the chromosomal gene 
sulA have been shown to overproduce PABA and therefore 
outcompete sulfamethoxazole allowing DHPS activity to 
continue (33, 80-81). 

 
Trimethoprim resistance in S. aureus is due to 

mutations in dfrA which encodes DHFR (82). Low-level (MIC 
16 mg L-1) trimethoprim resistance is occasionally due to 
overproduction of DHFR (83). However, a single mutation in 
DHFR (F98Y) is the primary mechanism for conferring low-
level trimethoprim resistance due to a conformational change 
in the trimethoprim binding pocket resulting in inefficient 
trimethoprim binding (84). Additional mutations in the 
promoter region and within the protein (e.g., H30N, H149R) 
can confer intermediate-high levels of resistance (79, 85).  
 
4.4. Rifamycins 

Rifampicin, the most commonly used rifamycin, 
is a bactericidal drug with typically very low MICs (<0.05 
mg L-1) (14) and has resistance rates varying between 5-
45% in MRSA worldwide (54). Rifampicin prevents the 
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initiation of transcription by interacting with the RNA 
polymerase beta-subunit, encoded by the rpoB gene (33). 
Rifampicin resistance is the result of decreased rifampicin 
affinity for RNA polymerase beta-subunit due to mutations 
in two regions; cluster I (AA 471-495) and/or cluster II 
(AA 515-530) (86-88). The most common mutations occur 
in cluster I (e.g., H481N) and confer low level rifampicin 
resistance (MIC 2-4 mg L-1) (89-90). High level resistance 
(MIC ≥128 mg L-1) generally requires additional mutations 
(e.g., L466S, G468K, A477T, I527L, S529L) but other 
rifampicin resistance mechanisms may exist as studies 
described in clinical and in vitro-derived rifampicin-
resistant S. aureus possessing only a single mutation in 
cluster I (88, 90-91).  
 
5. RESISTANCE TO PROTEIN SYNTHESIS 
INHIBITORS 
 

In bacteria, proteins are translated in the 70S 
ribosome which consists of two subunits; 50S and 30S. The 
50S subunit further consists of the 23S RNA subunit 
(encoded by rrl), the 5S RNA subunit (encoded by rrf) and 
other small proteins (e.g., L22). The 30S subunit consists of 
the 16S RNA subunit as well as small proteins. Antibiotics 
such as the macrolides, lincosamides, streptogramins and 
oxazolidinones all inhibit protein synthesis by strongly 
interacting with domain V of the 23S RNA subunit while 
aminoglycosides and fusidic acid, a steroidal antibiotic, 
target the 30S subunit. 
 
5.1. Macrolides, lincosamides & streptogramins 

Macrolides, lincosamides and streptogramin 
(MLS) antibiotics are bacteriostatic agents that inhibit 
protein synthesis (33). Macrolides, comprised of 14- (M14; 
e.g., erythromycin), 15- (M15; e.g., azithromycin) or 16- 
(M16; e.g, spiramycin) membered ring structures, act by 
preventing 50S subunit assembly, preventing the peptidyl 
transferase reaction or obstructing the polypeptide exit 
tunnel of the 50S subunit causing premature release of 
peptidyl-tRNA during elongation (92-93). The 
lincosamides (L; e.g. clindamycin) and the streptogramins 
(consisting of components A (SA; e.g., dalfopristin) and B 
(SB; e.g., quinupristin) which act synergistically) are 
structurally distinct antibiotic groups compared to the 
macrolides but share similar modes of action and target 
sites with the macrolides (94). While erythromycin 
resistance rates are particularly high among MRSA strains 
worldwide (75-95%) (54), quinupristin-dalfopristin (Q-D) 
remains effective with very low levels of resistance seen in 
large surveys (95-97).  

 
The adenine residue A2058 (Escherichia coli 

numbering) within the target site of the 23S RNA subunit 
(domain V) plays an important role MLSB resistance (98). 
In staphylococci, methylases, encoded by genes (e.g., 
ermA-C) present in mobile genetic elements are able to 
integrate into the chromosome (99-100). These enzymes 
methylate A2058 causing a conformational change of the 
rRNA preventing MLSB binding (98). SA, however, is not 
affected by the A2058 epimutation (94). Although ermA 
and ermC confer inducible resistance to M14-15 in the 
presence of M14-15 only (94), M16LSB exposure can select 

for strains having mutations (e.g., deletions, tandem 
duplications, point mutations and disruption by IS256) in 
the regulatory units of the methylase genes converting an 
ErmA or ErmC-producing strain from being inducibly-
resistant to constitutively resistant as seen in ErmB-
producing strains (99, 101). In contrast to inducible strains, 
constitutively resistant strains express additional resistances 
(i.e., M14-16LSB). 

 
Nucleotide substitutions at A2058 (e.g., 

A2058G/T) in rrl genes also confer resistance to MLSB. 
However, resistance is difficult to develop in this method as 
there are 5-6 rrl alleles present in the staphylococcal 
genome (102); thus the effects of one mutated rrl gene can 
be overcome by the remaining wild-type rrl alleles. 
Interestingly, SA resistance was observed in a clinical 
isolate with the A2058G mutation and a concurrent deletion 
in the rplV gene which encodes the L22 protein (103). The 
L22 protein lines a portion of the peptide exit tunnel of the 
50S ribosomal subunit near the MLSB target site. Although 
amino acid duplications within L22 have also been 
associated with varying levels of MLSB resistance, 
deletions in L22 can also widen the peptide exit tunnel 
allowing protein synthesis to remain active (104-105). rplV 
mutants have also been shown to contain an insert from 
part of the rplB gene which is approximately 790 bp 
upstream of the insertion site (106). A non-reciprocal 
recombination event is believed to have transferred a 
section of rplB to rplV between homologous sequences in 
both genes (106). It is proposed that these insertions may 
reduce antibiotic binding due to 50S surface property 
alterations or structural perturbations of the 23S subunit 
(104). However, the rplB-rplV mutation imparted a fitness 
cost as the doubling times of mutants, in nutrient-rich 
media, were 3-4 times slower than the sensitive parent 
strain (106). 

 
Amino acid changes in the L4 protein (e.g., 

G69A and T70P), encoded by rplD, have also been 
associated with MLSB resistance in two S. aureus isolates 
independently isolated from different cystic fibrosis 
patients (107). It is predicted that MLSB resistance is 
caused by structural changes in the peptide exit tunnel as 
the mutations in L4 are present between two α-helices 
which are important in binding to the 23S RNA subunit 
(107). Interestingly, higher level resistance, including SA, 
was observed in one of these strains which possessed an 
additional R168S mutation in L4 (107). 
 
5.2. Oxazolidinones 

The oxazolidinones (e.g., linezolid, eprezolid) 
have bacteriostatic activity and are the only fully synthetic 
class of antibiotics in clinical use. Oxazolidinones bind to 
the 23S RNA subunit and prevents the peptidyl transfer 
reaction causing a premature release of aminoacyl-tRNA 
(108).  

 
Although linezolid resistance is rare (35), point 

mutations in the rrl alleles (within the domain V region) are 
the predominant mechanism for linezolid resistance. There 
appears to be a positive correlation between the level of 
linezolid resistance and the number of mutated rrl alleles. 
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In a clinical report, a linezolid-susceptible MRSA (MIC 8 
mg L-1), with a G2576T mutation in 2/6 rrl alleles, became 
linezolid-resistant (MIC 32 mg L-1) after the mutation 
developed in a further 3 alleles (109). The G2576T also 
confers cross resistance to Q-D and chloramphenicol, 
another type of protein synthesis inhibitor (110). 

 
The presence of identical mutations in each rrl 

gene suggests that recA-dependent recombination is 
involved in gene conversion of wild-type alleles (111). An 
in vitro study showed that recA-deficient S. aureus mutants 
developed different mutations in the rrl alleles and required 
longer linezolid exposure to develop resistance (111). 
Although mutations such as G2576T can be stable even 
after 15 passages in antibiotic-free media (112) they may 
impart a biological cost to the bacterium and may explain 
the reversion of mutated rrl alleles to wild-type alleles 
observed in some strains (113). Provided a bacterium has at 
least one wild-type rrl allele, recA can also be involved 
with the reversion of mutated rrl alleles to wild-type alleles 
after prolonged linezolid-free periods and thus confer 
linezolid susceptibility (113).  

 
5.3. Aminoglycosides 

Aminoglycosides (e.g., gentamicin, netilmicin, 
and tobramycin) inhibit protein synthesis by binding to the 
30S ribosomal subunit and inhibiting protein synthesis 
(114). However, these aminoglycosides are not useful 
clinically as single agents due to the excessive toxicity if 
therapeutic levels are achieved, and due to the propensity 
for resistance to readily emerge (115). The major 
mechanism of resistance in staphylococci is 
aminoglycoside modification by cellular enzymes 
(aminoglycoside acetyltransferases (aac), 
adenyltransferases (aad), and phosphotransferases (aph)) 
that reduce their ribosomal binding affinity (116). 

 
Most aminoglycoside modifying enzyme genes 

are located on mobile genetic elements. pCL4, a 35.5 kb 
highly conjugative plasmid conferring resistance to 
multiple aminoglycosides (gentamicin, tobramycin, 
kanamycin, amikacin, astromicin, and arbekacin), contains 
an aacA/aphD gene complex that is able to integrate into 
the chromosome at multiple sites (117). Other notable 
mobile elements carrying aminoglycoside modifying 
enzymes that integrate into the chromosome include 
Tn5405 with aphA3 and aadE (118) and SCCmec with 
aadD conferring tobramycin resistance to a large 
proportion of MRSA strains (119-120).  
 
5.4. Tetracycline antibiotics 

Tetracyclines are bacteriostatic agents that inhibit 
protein synthesis by binding to the peptidyltransferase 
center (PTC) within the 70S ribosome and causing 
premature aminoacyl-tRNA release (121). The tetracyclines 
encompass a commonly used group of antibiotics which 
include tetracycline, doxycycline and minocycline. 
Resistance to the tetracyclines can result from ribosomal 
protection whereby inducible chromosomally-encoded 
proteins (e.g., TetA(M)) interact with the tetracycline target 
site preventing tetracycline binding while allowing protein 
synthesis to continue (122). Alternatively, the TetA(K) or 

TetA(L) efflux pumps, encoded by genes found in both the 
chromosome and on plasmids, confer inducible resistance 
to the tetracyclines but not semisynthetic analogues such as 
minocycline (33, 123-124) to which >98% of MRSA 
strains are susceptible to, worldwide (35).  
 

Tigecycline, the first and only glycylcycline in 
clinical use, is a tetracycline-derivative having a 
minocycline backbone. Tigecycline resistance is rare due to 
the presence of a glyclamido side chain that allows evasion 
of conventional tetracycline resistance mechanisms (i.e., 
efflux and ribosomal protection) providing increased 
binding and activity over the tetracyclines (125). However, 
tigecycline is a substrate of MepA, a multidrug and toxin 
efflux pump encoded by mepA (126). An in vitro study 
found mutations (e.g., single nucleotide mutation or 
deletion) resulting in the formation of a premature stop 
codon in mepR, which represses mepA expression, in S. 
aureus strains Mu3 and N315 after passaging in media 
containing increasing concentrations of tigecycline for 16 
days (126). Although mepA was overexpressed in these 
strains, only low-level tigecycline resistance was observed 
suggesting other mechanisms must be involved to confer 
high-level resistance (126). 
 
5.5. Pseudominic Acid 

Mupirocin (pseudomonic acid A) is effective for 
the topical treatment of S. aureus infections (14). 
Mupirocin inhibits protein synthesis by acting as an 
isoleucine analogue binding to isoleucyl-tRNA synthetase, 
IleS (127). tRNA synthetases catalyse the formation of 
aminoacyl-tRNA whereby amino acids are charged to their 
respective tRNA for peptide formation in ribosomes.  

 
High-level mupirocin resistance has emerged in 

strains possessing a plasmid-encoded mupA gene which 
codes for a novel IleS which is not affected my mupirocin 
(128). Low-level mupirocin resistance (MIC 8-64 mg L-1), 
however, is associated with single amino acid changes 
(e.g., V588F, G593V or V631F) in IleS from both clinical 
strains and in vitro-derived mutants (129-130). These 
mutations occur near the binding pocket (Rossman fold) of 
IleS and cause steric hindrance and conformational changes 
preventing mupirocin binding. Extended mupirocin 
resistance was observed in in vitro derived mutants with a 
combination of these mutations but came at a fitness cost 
compared to single mutants in both in vivo and in vitro 
models (129). Although double mutants may revert to a 
mupirocin-susceptible phenotype, revertants still retain the 
double mutations but acquire other intra- and extra-genic 
mutations which affect the conformation of IleS allowing 
mupirocin to remain active (129). As topical concentrations 
(20,000 mg L-1) of mupirocin are well above the MICs of 
strains with low-level resistance, clinical failure is not 
common (14). 
 
5.6. Steroids 

Fusidic acid is a steroid-based antibiotic with 
high activity against S. aureus including MRSA strains 
(131). Fusidic acid prevents the release of elongation factor 
G (EF-G) which binds to the ribosome and catalyzes 
translocation during protein synthesis (132). Resistance to 
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fusidic acid may be chromosomally or plasmid encoded. 
Chromosomal resistance is associated with missense 
mutations in fusA, which encodes EF-G, that results in a 
decreased affinity for fusidic acid (133). While numerous 
EF-G mutations have been associated with low-
intermediate fusidic acid resistance (134-135), mutations 
within domain III (e.g., H457Y or L461K) confer high-
level resistance (136-137). Other EF-G mutations have 
been observed, especially in clinical strains, but are 
believed to be compensatory mutations (e.g., S416F) as in 
vitro mutants with single mutations (e.g., L461K) have 
reduced fitness (134-135). Naturally resistant 
subpopulations exist at rates of 106-107 and are rapidly 
selected by exposure to fusidic acid alone (138). However, 
such mutants grow more slowly than wild-type strains, 
exhibit a reduced virulence and revert to susceptibility on 
removal of fusidic acid (139). 
 
6. SMALL COLONY VARIANTS OF S. AUREUS 
 

Small colony variants (SCVs) of S. aureus appear 
as small, pale or colourless, slow-growing colonies on agar 
plates, often resembling (and can be mistaken for) 
coagulase-negative staphylococcal species (140). They are 
important intracellular pathogens (141), particularly in 
biofilms (142), which is likely to explain why certain 
staphylococcal infections such as infected bioprostheses are 
refractory to standard antibiotic treatment (e.g., beta-
lactams, vancomycin) which do not have intracellular 
activity (143-144). Most SCVs have defective electron 
transport chains resulting in the inability to take up cationic 
antibiotics (145). The SCV phenotype is inducible by 
exposure to antibiotics such as beta-lactams (146), 
gentamicin (147), quinolones (148) and cotrimoxazole 
(145).  
 
7. CONCLUSION & FUTURE PERSPECTIVE 
 

Staphylococcal infections, particularly those 
caused by MRSA strains are important as they are 
typically resistant to an additional 3-6 antibiotics, all 
belonging to different classes (54). Although antibiotic 
resistance can emerge by horizontal gene transfer and 
the spread of resistant clones, the independent 
acquisition of different mutations in chromosomally-
encoded genes, arising from a single strain, plays an 
important role in developing resistance particularly to 
novel antibiotics (68). New cephalosporins in clinical 
trials such as ceftobiprole and ceftaroline have good 
inhibitory activities towards PBP2A in MRSA strains 
(149-151). However, an in vitro study has already 
generated ceftobiprole-resistant mutants in a laboratory 
strain of S. aureus (COLnex) cloned with a plasmid 
bearing the mecA gene only (independent of SCCmec) 
(152). Spontaneous mutations in mecA that developed 
after prolonged exposure to ceftobiprole were shown to 
be responsible for ceftobiprole resistance (MIC 128 mg 
L-1). Additionally, transformation of plasmids with the 
mecA mutant alleles into the same plasmid-naive 
COLnex parent strain conferred an equivalent level of 
resistance (152). 

 

Other novel antibiotics include the semisynthetic 
glycolipopeptides (e.g., oritavancin, telavancin) which 
combine the activities of the glycopeptide and lipopeptide 
antibiotics. In addition to cell wall depolarisation, the lipid 
side chains of glycolipopeptides allow the drug to 
concentrate in the cell membrane allowing easier access to 
their target site (peptidyl-D-Ala-D-Ala terminus of 
peptidoglycan precursors) (153). Furthermore, both oritavancin 
and telavancin demonstrate activity against VRSA (154-155). 
Telavancin has now been approved for use in the United States 
for the treatment of complicated skin and skin structure 
infections (156). 
 

Advances in molecular biology provide an 
opportunity to develop novel strategies in combating 
antibiotic-resistant bacteria. Antisense agents are 
oligonucleotides which can target the expression of particular 
genes such as those responsible for antibiotic resistance. This 
principle has successfully been used to restore vancomycin 
susceptibility in a VanA-producing Enterococcus faecalis 
isolate (157). However, there are issues in delivering antisense 
oligonucleotides into the bacterial cell. Research into modified 
nucleic acids and attachment to cell-permeabilizing peptides 
has improved the stability and uptake into the cytoplasm of the 
antisense agents (158). 

 
Whole genome sequencing approaches may also 

yield novel targets. Recently, toxin-antitoxin (TA) systems, 
usually found on plasmids as a maintenance mechanism, have 
been described on the chromosomes of clinically-relevant 
genera including the enterococci, lactobacilli and staphylococci 
(159-160). The role of such chromosomally-encoded TA 
systems remains to be elucidated; however, if they are required 
for chromosomal maintenance within dividing cells, they may 
prove to be an important target for new antibacterial agents.   
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