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1. ABSTRACT 
  

Cardiac disease is commonly associated with 
changes in energy substrate metabolism. Fatty acid and 
glucose represent the main fuels used by the heart, and 
characteristic alterations in substrate preference and 
utilisation occur early in many cardiac disease processes. 
Different substrate classes (lipids, carbohydrates) have 
different metabolic efficiencies, both in terms of energy 
(ATP) yield and in terms of oxygen requirement; changes 
in metabolic efficiency may affect, positively and 
negatively, cardiac function. Furthermore, metabolic 
diseases alter substrate supply to the heart, which may have 
an impact on cardiac function. One challenge is to establish 
whether a primary metabolic abnormality in myocardial 
fuel utilisation leads to cardiac dysfunction, or whether 
changes in substrate selection are a consequence of the 
disease state. The distinction is important as the ability to 
manipulate cardiac substrate utilisation may offer a 
therapeutic opportunity for cardiac disease. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 
 The heart consumes large amounts of energy. 
This is required both for myofibre contraction and for 
maintenance of ionic gradients, and energy transduction 
involves a rapid turnover of high energy phosphate groups 
(ADP/ATP and creatine/phosphocreatine). The heart is 
unique in providing its own energy supply, via the coronary 
arteries, which is potentially precarious as coronary blood 
flow occurs principally in diastole. Hence, with limited 
coronary perfusion pressure and flow, there is a resulting 
high oxygen extraction. It is also unusual in the quantity of 
energetic substrate consumed. Also, unlike other tissues, 
the heart must continue its function uninterrupted. 
Available energy transduction/yielding pathways include 
both oxidative and non-oxidative processes; given the large 
requirement for energy, it is unsurprising that the heart 
derives most of this energy (> 90%) from oxidative 
pathways (oxidative phosphorylation), although glycolysis, 
despite its relatively low ATP yield, may have a vital role 
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Figure 1. Overview of principal metabolic pathways in the heart. Fatty acids, glucose and lactate are taken up into the 
cardiomyocyte; some ATP is derived from glycolysis in the cytosol, but most ATP is generated by oxidative phosphorylation in 
the mitochondrion. NEFA: non-esterified fatty acids, TAG: triacylglycerol, CM: chylomicrons, VLDL: very-low-density 
lipoprotein, LPL: lipoprotein lipase, CD36: fatty acid translocase, FA: fatty acid, FACS: fatty acyl-CoA synthase, GLUT: 
glucose transporter, PDH: pyruvate dehydrogenase complex, TCA: tricarboxylic acid cycle, KB: ketone bodies. 
 
in myocardial function by virtue of its intracellular 
compartmentation (1-8). The energy transduction pathway 
involves energy production (substrate utilisation and 
metabolism), energy transfer (oxidative phosphorylation), 
and energy utilisation (high energy phosphate 
metabolism)(9). Integrity of all three processes is required 
for optimal function (10). This review will focus on 
substrate utilisation and metabolism. 
 
3. ENERGY METABOLISM IN THE HEALTHY 
HEART 
 
 Some organs, such as brain, are specialised to 
utilise a limited selection of energetic substrates, yet the 
heart is adapted to use any of the classes of energetic 
substrate available, possibly an evolutionary requirement to 
maintain function at all times. Substrates include all the 
major energetic biomolecular classes – lipids (fatty acids 
(FA), triacylglycerols (TAG)) and their derivatives (ketone 

bodies), carbohydrates (glucose, lactate) and amino acids 
(3, 4, 11-16). Limited intracellular storage is provided by 
TAG and glycogen (Figure 1). However, although the heart 
is capable of using any plasma-borne substrate available for 
energy provision, its substrate preference, and hence 
substrate selection, is well defined, and varies according to 
prevailing physiological and pathological state. 
Furthermore, the substrate that the heart chooses, or is 
obliged to utilise, may impact on its resulting performance, 
emphasising the intimate relationship between cardiac 
metabolism and function (15, 16). It is the relationship 
between substrate utilisation and mechanical function that 
makes this area of fundamental importance to cardiac 
disease. 
 

Glucose is assimilated via glucose transporters, 
principally insulin-sensitive glucose transporter (GLUT4) 
(but also through insulin-insensitive GLUT1), and lactate 
via the monocarboxylate transporter, MCT. Besides being 
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Figure 2. Mitochondrial carnitine shuttle. Fatty acids in the form of acyl-CoAs are transported into the mitochondrion for β-
oxidation by the carnitine shuttle. CPT-I is inhibited by malonyl-CoA, providing a link between glucose and fatty acid oxidation. 
OMM: outer mitochondrial membrane, IMM: inner mitochondrial membrane, MCD: malonyl-CoA decarboxylase, ACC: acetyl-
CoA carboxylase, AMPK: AMP-activated protein kinase, CPT-I: carnitine palmitoyl transferase-I, CPT-II: carnitine palmitoyl 
transferase-II, CAT: carnitine-acylcarnitine translocase, CoASH: coenzyme-A. 

 
used to synthesise myocardial glycogen, glucose is split in 
glycolysis yielding limited ATP and pyruvate; following 
oxidative decarboxylation by pyruvate dehydrogenase 
complex (PDH) to acetyl-CoA in the mitochondrion, 
pyruvate may then be oxidized by the tricarboxylic acid 
(TCA) cycle to produce NADH and FADH2 for the 
electron transport chain, if sufficient oxygen is present. If 
not oxidized, pyruvate is converted to lactate (8, 11). Like 
glucose, lactate can be oxidized only if sufficient oxygen is 
available to permit TCA cycle activity (17). Lipids are 
delivered to the heart in plasma as non-esterified fatty acids 

(NEFA) bound to albumin, and are assimilated through the 
FA transporters CD36/FAT (fatty acid translocase), FATP 
(fatty acid transport protein) and FABPpm (plasma 
membrane fatty acid binding protein)(18-20). Following 
acylation to coenzyme-A and transport into the 
mitochondrion via the carnitine shuttle, FAs undergo β-
oxidation to acetyl-CoA then oxidation though the TCA 
cycle and electron transport chain to generate ATP (2, 7, 8). 
Plasma NEFA is derived primarily from TAG lipolysis in 
white adipose tissue, which is stimulated by “catabolic” 
hormones such as catecholamines, and inhibited by insulin. 
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Plasma FAs are also provided esterified in the form of 
TAG, present within the core of TAG-rich lipoproteins 
(TGRLP): endogenously-synthesised TAG from the liver 
within very-low-density lipoproteins (VLDL) and 
exogenous (dietary) TAG assembled as chylomicrons (CM) 
by the gut (21-23). TAG in the core of these lipoproteins is 
hydrolyzed to FA by the endothelial enzyme lipoprotein 
lipase (LPL) (24-26); LPL activity may liberate substantial 
amounts of “free” fatty acids into the circulation (27-30). 
Whole-particle assimilation also occurs through lipoprotein 
receptor-mediated uptake mechanisms (31, 32). Whether 
the uptake and subsequent intracellular channelling of 
NEFA- and TAG-derived FA are identical is currently 
uncertain (33-35). Some assimilated FA is re-esterified and 
incorporated into the intracellular lipid pool (10-25% of the 
assimilated TAG; mostly into TAG and phospholipid) 
whilst the remainder is oxidized (75-90%); this proportion 
varies according to the FA source (21, 35). The 
intracellular TAG pool is extremely labile and has a highly 
dynamic relationship with FA destined for β-oxidation; 
although the physiological significance of this pool, and its 
relationship to cellular lipid toxicity (see below), remains 
uncertain (36), it is probably an obligatory step in 
intracellular lipid buffering (> 10% of myocardial energy is 
derived from endogenous TAG stores in hearts perfused ex 
vivo, even when FA is present in the perfusate (37)). TAG 
are a potentially quantitatively important source of FA, 
given their high plasma concentration (≈ 10 x that of 
NEFA) and efficient and multiple uptake mechanisms; they 
may be the major cardiac fuel under physiological 
conditions (21, 25, 26, 38-40). Ketone bodies derived from 
the liver in catabolic states associated with TAG 
mobilisation and ketogenesis (e.g. starvation, diabetes) are 
also readily oxidized by the heart (8, 41-43). Amino acids 
(principally the branched chain amino acids) can be 
oxidized by the heart, although they are quantitatively less 
important than carbohydrates and lipids and relatively little 
is known of their metabolic significance and regulation (44-
51)(Figure 1 ). 

 
Hence, TAG, NEFA and glucose constitute the 

principal energy substrates for the healthy heart in vivo and 
this is partly a function of their availability (prevailing 
plasma concentrations), but also reflects myocardial 
preference.  

 
One of the problems in studying cardiac 

metabolism is that much work has been performed on the 
isolated perfused heart with typically only one or two 
substrates (e.g. glucose and FA) present in the perfusate. 
Although this technique has important advantages, (e.g. 
workload can be defined and fixed, and the substrates and 
effectors prescribed), these studies do not address the 
complex milieu of multiple substrates and 
hormones/mediators to which the heart is exposed in vivo. 
Some recent studies have addressed this by examining 
multiple substrates in the form of stable isotopes using 
positron emission tomography in vivo (52). 
 
3.1. Fetal cardiac metabolism 
 The fetal heart exhibits a pattern (program) of 
gene expression coding both metabolic and contractile 

proteins that differ from those seen in the adult heart – 
specific fetal isoforms of many contractile and metabolic 
enzymes and other proteins exist, reflecting the differing 
physiological status of the fetal heart. The fetal heart has a 
relatively low workload and, in addition, fetal plasma lipid 
levels are low (53), limiting FA availability (54, 55), and 
the PO2 is also relatively low (56). Probably for this reason, 
fetal myocardial metabolism relies principally on 
(anaerobic) glycolysis to provide ATP by substrate-level 
phosphorylation (56-61). Oxidative mitochondrial 
metabolism is mostly confined to lactate oxidation (62) 
with notably low rates of glucose and FA oxidation (61, 
63). The fetal heart expresses the fetal form of myosin 
heavy chain (β-MHC), and the liver form of carnitine 
palmitoyl transferase-1 (lCPT-1) predominates over the 
muscle form (mCPT-1) (64, 65), hence malonyl-CoA 
sensitivity is high, with resulting limited FA β-oxidation 
(Figure 2).  
 
3.2. Adult cardiac metabolism 

 Following birth and in the neonatal 
period, cardiac work increases, as do plasma lipids and 
arterial oxygen tension. The heart responds with a shift to 
an adult pattern of isoenzyme expression. A wide variety of 
metabolic and contractile protein adult isoforms are now 
expressed (66), including the adult form of myosin heavy 
chain (α-MHC) and the muscle form of CPT-1 (mCPT-1) 
together with decreased malonyl-CoA (14). The resulting 
metabolic profile is decreased glycolysis with increased 
glucose (pyruvate) oxidation, decreased lactate oxidation, 
and most notably, increased ketone body and FA oxidation 
(8, 58, 62, 63, 67, 68). In the adult heart under normal 
workload, FA oxidation accounts for about 60-70% of ATP 
synthesis, whilst glucose oxidation accounts for 25-35% of 
ATP synthesis, with the remainder derived from glycolysis. 
The relative contribution of NEFA and TAG-FA to 
myocardial FA utilisation in vivo is still uncertain (20, 21, 
33), though LPL is very active in cardiac tissue and recent 
evidence suggests that TAG is a quantitatively important 
source of myocardial FA in vivo (26, 38, 39). Of the two 
forms of plasma TGRLP, CM, being larger, are better 
substrates for LPL and dietary TAG is likely an important 
source of myocardial FA (21). Increases in workload result 
in increased FA oxidation, but a striking finding is the 
accompanying increase in glycogen metabolism and 
pyruvate oxidation (69). Amino acid and ketone body 
utilisation and metabolism are low in the fed state, 
reflecting their limited plasma concentrations and hence 
availability.  

 
Substrate selection by the healthy heart changes 

under varying physiological conditions, a reflection of the 
varying requirements as well as supply. Hence, when 
decreased plasma insulin levels lead to increased plasma 
NEFA concentrations during fasting, cardiac metabolism 
will shift away from glucose utilisation and towards FA 
oxidation (70, 71). The inverse relationship between 
glucose and FA utilisation was originally defined by 
Randle and co-workers (72) and is now termed the Randle 
cycle: increased FA utilisation inhibits glucose utilisation 
via increased acetyl-CoA and citrate levels inhibiting PDH, 
phosphofructokinase and GLUT – a classical glucose-
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sparing mechanism. The role of TAG in energy provision 
in either starvation (when CM are low, but VLDL still 
provides endogenously synthesised FA) or increased 
workload is not known. However, in the physiological state 
of lactation in the rodent, suppression of cardiac LPL 
redirects VLDL and CM TAG away from heart and 
towards assimilation by the lactating mammary gland for 
export as milk lipid (73); cardiac function is maintained 
despite increased cardiac output in this state, implying 
increased cardiac work and hence energy demand and 
altered myocardial substrate selection. 
 
4. ENERGY METABOLISM IN HEART DISEASE 
  
 Alterations in cardiac metabolism may be 
categorised as maintaining or increasing cardiac functional 
efficiency (“adaptive” changes) or decreasing functional 
efficiency (“maladaptive” changes) (15, 16). Substrate 
selection and utilisation changes in the diseased heart in a 
characteristic way, and a key question is whether the 
cardiac disease process causes the change in substrate 
utilisation, or whether a change in cardiac metabolism is a 
primary etiological event and, if the change decreases 
cardiac efficiency, whether this leads to cardiac mechanical 
dysfunction (heart failure). The order of these two events is 
still unknown; it is likely however that, in some instances, a 
shift in metabolism is secondary to a primary cardiac 
disease process, whereas in other instances the change in 
substrate utilisation is the primary event, impacting on 
cardiac performance and leading to cardiac dysfunction. In 
the former case the change may be adaptive, serving to 
preserve cardiac function; in the latter case, a maladaptive 
change in substrate selection adversely affects cardiac 
pump function. Regardless of primacy, the relationship 
between cardiac metabolism and mechanical function is 
probably so intimate that the distinction becomes irrelevant. 
 

The basis for the potentially beneficial or 
detrimental impact of substrate selection on cardiac 
performance hinges on the concept of metabolic efficiency. 
Cardiac efficiency may be expressed in several ways, 
including the ratio of external cardiac power to cardiac 
energy expenditure (2). As myocardial metabolism is 
predominantly (> 95%) oxidative, myocardial energy 
expenditure may be estimated from myocardial oxygen 
consumption. Because FAs are more reduced than 
carbohydrates, they yield more ATP per mol when oxidized 
(palmitate: 104 mol ATP/mol; glucose: 34 mol 
ATP/mol)(74) but this comes at a greater oxygen cost (P:O 
ratio; palmitate: 2.80 mol ATP/mol O2; glucose: 3.17 mol 
ATP/mol O2)(74-76). It is possible that the difference in 
vivo is even greater than this, partly due to the effect of 
mitochondrial uncoupling proteins (UCPs)(77). Hence, 
glucose can be regarded as a more “efficient” oxidative fuel 
than FA, at least in terms of oxygen consumption, and this 
may be critical in cardiac metabolism where oxygen supply 
through the coronary circulation is limited and precarious, 
and typically decreased in many cardiac diseases. 
Furthermore, whilst glucose metabolism is undoubtedly 
more flexible than FA metabolism, providing limited 
energy even anaerobically by glycolysis, the relationship 
between glycolysis and glucose oxidation may be critical in 

cardiac disease. Coupling of glucose (pyruvate) oxidation 
to glycolysis is thought to be necessary to prevent the 
generation of intracellular acidosis, although this 
mechanism has been challenged (78-80). Finally, glucose 
can be considered a more metabolically efficient fuel than 
FAs by virtue of its ability to replenish TCA cycle 
intermediates through anaplerosis (81-85), in contrast to 
cataplerotic (in the case of even chain carbon number) FAs 
and ketone bodies (43, 86). 
 
4.1. Cardiac hypertrophy  
 Hypertrophy of the cardiac ventricle involves a 
structural remodelling of the cardiomyocyte (87) and may 
be an adaptive process to physiological stimuli (e.g. 
exercise), or maladaptive to diverse pathological stimuli, 
which may be categorised as pressure overload (causing 
concentric hypertrophy with ventricular wall thickening) 
and volume overload (causing eccentric hypertrophy and 
ultimately leading to ventricular dilatation) (88). The 
natural progression of both these maladaptive processes is 
towards cardiac failure (inability to maintain an adequate 
cardiac output). Pressure overloading with ventricular 
thickening leads principally to diastolic dysfunction, 
whereas volume overloading with ventricular dilatation 
leads mainly to systolic dysfunction; primary cardiac 
muscle disease tends to cause uncompensated wall stretch: 
idiopathic dilated cardiomyopathy. Adaptive 
(physiological) and maladaptive (pathological) states have 
different phenotypes, including the remodelling of 
metabolic profiles (88-94). Whilst adaptive physiological 
hypertrophy normalises wall stress and oxygen 
consumption, the changes in pathological hypertrophy 
ultimately lead to heart failure and an inability to cope with 
stress, including ischemia and reperfusion. Attempts have 
been made to relate observed changes in myocardial 
metabolism to changes in cardiac function: adaptive 
metabolic remodelling preserves cardiac function, whilst 
maladaptive metabolic remodelling compromises cardiac 
function and may be the trigger for progression to heart 
failure (95). 
 

In physiological hypertrophy, increased long 
chain FA oxidation is observed, presumably a reflection of 
the increased workload (88, 93). However, glycolysis is 
decreased whilst glucose oxidation is increased, indicating 
more coupled glucose metabolism (88, 93, 96), an 
adaptation considered beneficial as glucose uncoupling 
increases cytosolic acidification (97) and disrupts sodium 
and calcium handling (see below)(2). Myocardial lactate 
oxidation is also increased in exercise/physiological 
hypertrophy: indeed, lactate may be oxidized preferentially 
to FAs (69, 98-104). The increase in long chain FA 
oxidation is mediated by increased peroxisome proliferator-
activated receptor-α (PPARα) and PPAR-γ coactivator-1α 
(PGC-1α) activity. By contrast, changes occurring in 
pathological hypertrophy are variable and time-dependent, 
according to the conditions leading to the hypertrophy. 
These changes have been interpreted as initially adaptive, 
but eventually render the ventricle less able to cope with 
additional stress (e.g. ischemia-reperfusion) when they 
become maladaptive, as they may contribute to the disease 
process itself. The pattern of metabolic phenotype observed 
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in pathological cardiac hypertrophy has been summarized 
as reverting to the fetal situation (105), with a 
recapitulation of the fetal metabolic gene expression 
program (66, 106). The patterns are similar, but not 
identical. Long chain FA oxidation is decreased (107-109) 
(though medium chain FA oxidation is unaffected (108, 
110) – medium chain FAs do not require carnitine shuttling 
for transport into mitochondria); there is an early decrease 
in FA oxidation gene expression, but decreases in proteins 
of FA oxidation are only seen late in the disease 
progression, when heart failure supervenes (111). 
Decreased FA oxidation in hypertrophy can be interpreted 
as an adaptive mechanism because of the inherent 
inefficiency of FAs as substrates (see above); however, the 
(im)balance between glycolysis and glucose oxidation 
(glucose coupling) is likely to have a significant impact on 
resulting cardiac efficiency (91). Strikingly, there is 
increased glucose uptake and glycolysis, but unchanged or 
even decreased glucose oxidation (88, 91, 93, 107). Hence 
glucose metabolism is more uncoupled with potentially 
deleterious consequences (see below). Despite the inherent 
inefficiency of FA as energetic substrate, it is notable that 
primary (genetic) defects in FA oxidation result in 
hypertrophic cardiomyopathy (112-116). The decrease in 
FA oxidation enzymes in hypertrophy may be mediated by 
increased FA gene transcription repressors (e.g. the chicken 
ovalbumin upstream promoter transcription factor (COUP-
TF), Sp1, Sp3)(106) together with decreased expression of 
PPARα and PGC-1α and potentially other transcription 
factors(66). A potential consequence of decreased FA 
oxidation is lipid accumulation within the cardiomyocyte, 
especially if FA supply and uptake is maintained or 
increased (and it is noteworthy that unlike the low plasma 
NEFA in the fetus, plasma NEFA concentrations are 
sometimes increased in cardiac failure) (117-119). 
 
4.2. Cardiac failure 
 It has proved extremely difficult to categorize 
changes in myocardial metabolism with cardiac function in 
the development of heart failure (inability to maintain an 
adequate cardiac output; for review see (2, 8, 9, 120, 121). 
This is likely to be due to the variety of the multiple 
etiologies leading to the final outcome of cardiac failure; 
indeed, the distinction between hypertrophy and failure 
may be specious, as hypertrophy ultimately leads to failure, 
and many causes of failure (e.g. myocardial infarct) are 
associated with compensatory myocardial hypertrophy. 
Hence, the diversity of cardiac conditions leading to heart 
failure may be expected to be associated with diverse 
metabolic phenotypes and, within the limitations of the 
number of ways in which the heart is able to respond, this 
is found to be the case. Hence there are widely varying 
reports in the literature as to the characteristic changes in 
metabolism associated with heart failure, and the issue of 
whether heart failure leads to “metabolic failure” or, 
conversely, whether primary changes in metabolism are the 
primary cause of heart failure, remains uncertain. 
 

Heart failure is associated with increased 
circulating NEFA (117-119), a reflection of the stimulation 
of the sympatho-adrenal axis in low cardiac output states 
with resultant increased catecholamine activity and hence 

increased adipose tissue lipolysis. NEFA availability is 
increased and, as FA availability regulates the rate of 
myocardial β-oxidation (122), increased FA utilisation 
would be anticipated; however, increased (117), decreased 
(107, 108, 123-128) and unchanged (129, 130) rates of FA 
uptake and oxidation have all been reported in human 
patients and animal models of heart failure, and these have 
largely been associated with reciprocal changes in glucose 
metabolism (see (2). The observed rates of FA 
utilisation/oxidation probably reflect prevailing plasma 
NEFA levels. Plasma ketone body concentrations will also 
be increased in heart failure if NEFA concentrations are 
high, and preferential cardiac utilisation of ketones may 
also influence (decrease) FA and glucose utilisation and 
metabolism (131). It is likely that, in early heart failure, 
changes in metabolism are modest, which may argue 
against altered metabolism as a primary cause of heart 
failure; however, in advanced disease there is a general 
decrease in all metabolic enzymes (132), with decreased 
myocardial capacity for β-oxidation (decreased PPARα 
activity (133, 134)), together with decreased mitochondrial 
function and capacity (10, 135-137) (probably as a result of 
decreased PGC-1α activity (138)) – despite increased 
plasma NEFA concentrations – leading to suggestions that 
heart failure causes disruption of the PPARα/RXR/PGC-1α 
nuclear transcription complex (139, 140). The defects in 
metabolism in heart failure, including decreased 
mitochondrial and electron transport chain capacity (i.e. 
decreased oxidative capacity) result in decreased ATP, 
increased ADP (decreased energy charge and 
phosphorylation potential) and decreased creatine 
phosphate (119, 141). These changes impact on energy-
dependent mechanisms of contraction (excitation-
contraction coupling through myosin-ATPase) and 
relaxation (sarco/endoplasmic reticulum Ca2+-ATPase 
(SERCA2a)). The decrease in FA oxidation in severe heart 
failure has been interpreted as an adaptive mechanism, 
based on the intrinsic inefficiency of FA as a metabolic 
fuel, and has led to a variety of strategies to decrease FA 
oxidation and/or increase glucose oxidation (increase 
glucose coupling) in the treatment of heart failure (2, 120, 
142-148). These interventions include: 1. inhibitors of FA 
oxidation, including CPT-1 inhibitors (e.g. etomoxir, 
oxfenicine, perhexiline), partial β-oxidation inhibitors (e.g. 
trimetazidine, ranolazine), inhibitors of lipolysis and agents 
to lower plasma lipids (e.g. nicotinic acid, insulin, β-
blockers, PPARγ agonists (e.g. thiazolidinediones) and 
PPARα agonists (e.g. fibrates) to stimulate extracardiac FA 
oxidation and hence decrease plasma lipids), and 2. direct 
stimulators of glucose oxidation such as dichloroacetate 
(DCA), which inhibits PDH kinase (PDK), increasing PDH 
activity. In general, these strategies have demonstrated that 
partially decreasing oxidation of energetically inefficient 
FAs, and stimulating pyruvate oxidation, hence increasing 
glucose coupling, improves cardiac contractile function, 
although results to date have been modest and inconsistent, 
and their role in the clinical management of heart failure in 
humans is relatively limited (149), with fatty acids 
remaining a vital energy resource (121).  

 
GLUT1 and GLUT4 expression are both 

decreased in heart failure (105, 119, 150), implying 
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decreased basal and insulin-stimulated glucose uptake, 
together with decreased PDH activity (151), but PDK4 is 
also decreased (105, 150) (a PPARα-dependent enzyme) 
which may account for the observed increase in glucose 
metabolism in advanced heart failure (125, 150); it is 
possible that glucose utilisation increases in response to 
decreased FA oxidative capacity, rather than as a primary 
mechanism. Therefore, it seems likely that decreases in 
enzymes of oxidative metabolism (including FA β-
oxidation and electron transport chain complexes (136)) in 
heart failure result in increased reliance on glucose for 
energy (notably glycolysis) by the failing heart. One 
possible explanation for the reversion to a fetal pattern of 
metabolism in the hypertrophied and failing heart, with 
decreased oxidative metabolism and increased reliance on 
glycolysis, is the potentially unifying mechanism of 
hypoxia: the fetal heart is hypoxic (56) and its gene 
expression pattern and metabolic phenotype reflect this (58, 
61, 105, 152, 153). The pathologically hypertrophied 
ventricle, with its thickened wall muscle and increased 
distance from epicardial coronary vascular supply to 
subendocardial regions increased, together with increased 
wall tension, may have critically limiting coronary blood 
flow especially in the subendocardial region, with resulting 
hypoxia, conditions that could also pertain to the dilated 
and thinned ventricular wall in the volume overload of late-
stage cardiac failure. The resulting hypoxia would trigger 
reversion to a glycolytic energy economy, resulting in the 
observed increase in lactate production; such a mechanism 
may be mediated by induction of the oxygen-sensing 
transcription factor hypoxia-inducible factor (HIF). 
Physiological hypertrophy allows adequate neovascular 
growth, and hence adequate oxygen delivery is maintained 
to permit increased FA and glucose oxidation. The 
prevailing difference between fetal and adult 
hypertrophy/failure phenotypes would be the plasma NEFA 
concentration – low in the fetus and athletes, high in 
failure, which may account for some of the differences seen 
in physiological and pathological states. 
 
4.3. Ischemia-reperfusion injury 
 Profound changes in substrate metabolism are 
also seen during ischemia and subsequent reperfusion 
(154), but again these are variable and highly condition-
dependent. An acute fall in cardiac output, secondary to 
myocardial ischemia, activates the sympathoadrenal axis 
and hence adipose tissue lipolysis is activated, leading to a 
rise in plasma NEFA levels and FA availability (155); 
however, cardiac substrate utilisation will critically depend 
on coronary flow (156). Total ischemia results in increased 
glycolysis from endogenous glycogen stores and cessation 
of oxidative metabolism, with rapid onset of necrosis and 
cell death. However, partial ischemia, in which some 
limited coronary blood flow remains, is characterized by 
increased glycolysis, plus some preservation of pyruvate 
oxidation (albeit at a decreased rate) and hence uncoupling 
of glucose metabolism (157, 158) with intracellular lactate 
and proton production. FA oxidation is decreased at this 
time due to the relative lack of oxygen availability; this 
may account for an accumulation of FA intermediates 
(including fatty acyl-CoA)(159), leading to mitochondrial 
damage. On restoration of coronary flow (reperfusion), 

cellular energy-sensing mechanisms (such as 5’AMP-
activated protein kinase (AMPK)(160), acting on acetyl-
CoA carboxylase and malonyl-CoA decarboxylase to 
decrease malonyl-CoA levels; Figure 2) stimulate FA 
oxidation to excessively high rates (161-163), and AMPK 
inhibition may improve cardiac functional recovery on 
reperfusion (164). This may be further aggravated by 
increased LPL activity in reperfusion (165), although LPL 
activity has been reported to be decreased in ischemia 
(166). FAs, both as oxidative substrates and tissue lipid 
substrates, have consistently been found to impair cardiac 
function in reperfusion (167, 168); cardiac function 
correlates with phosphorylation potential, which is 
decreased in ischemia-reperfusion (169). The combination 
of uncoupled glucose metabolism (glycolysis > pyruvate 
oxidation) and an oxidative balance favoring FA oxidation 
over glucose oxidation in reperfusion (170) is energetically 
inefficient and also leads to intracellular acidification, 
which is suggested to be central to the abnormalities of 
Na+, and hence Ca2+, handling which result in intracellular 
calcium overload in these hearts (171), causing contractile 
dysfunction (“stone heart”), further mitochondrial damage, 
and apoptosis (see (2)). Again, the balance between 
glycolysis, pyruvate oxidation, and FA oxidation, is critical 
to cardiac function and outcome. 
 
4.4. Unloading 
 The structural and metabolic changes observed in 
cardiac hypertrophy, and the ultimate progression of 
hypertrophy to heart failure, have been termed “ventricular 
remodelling” and have obvious clinical importance (172, 
173). Recently, the phenomenon of “reverse ventricular 
remodelling” in the unloaded myocardium has attracted 
considerable interest (174). The prevalence of heart failure 
has prompted the development of mechanical “ventricular 
assist” devices in clinical practice that pump blood in 
parallel with the native heart, resulting in pressure and 
volume unloading of the failing ventricle (175). This 
intervention was conceived as a “bridge to transplant” for 
cardiac failure patients awaiting heart transplant, but it 
became clear that partial recovery of cardiac function 
occurred following explantation of devices in some patients 
(176), a surprising finding given that the structural and 
functional changes observed in cardiac failure were thought 
to be irreversible (177). Clinically, this has led to the 
concept of ventricular assist devices as bridges to recovery, 
but has also prompted considerable research interest in the 
structural and metabolic changes that occur in the unloaded 
myocardium (178). 
 

The changes seen may be categorised as 
structural (trophic), cellular, metabolic/molecular and, 
ultimately functional (177, 178). Although the changes may 
be considered atrophic in nature (179, 180), recovery of 
function suggests alternative mechanisms. The changes are 
multifaceted and complex, but a striking feature is a partial 
reversion to the fetal gene expression program (64, 65, 181-
183). In unloading, fetal isoforms of contractile proteins 
(e.g. MHCα to MHCβ) and metabolic enzymes (e.g. 
GLUT4 to GLUT1; mCPT-1 to lCPT-1) are re-expressed, 
together with enhanced expression of characteristically 
fetal growth factors (e.g. transforming growth factor-β 
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(TGFβ), insulin-like growth factor-1 (IGF-1), fibroblast 
growth factor-2 (FGF-2) and proto-oncogenes (e.g. c-fos) 
(64, 65, 184). In addition, calcium handling machinery 
(SERCA2a, ryanodine receptor (RyR), Na+/Ca2+ exchanger 
(NCX))(185) and calcium transients (177, 186-188) 
improve; these changes are associated with improved 
contractile function. Furthermore, hypertrophy of failing 
hearts regresses (186). The observation that re-expression 
of a fetal pattern of components of energy metabolism 
precedes changes of MHC and trophic factors has led to the 
concept that the changes may be primarily related to energy 
provision. This would complement the situation in heart 
failure, where there is a general decrease in components of 
energy release, suggesting energy “starvation” itself leads to 
contractile dysfunction (10, 110, 189). Expression of fetal 
isoforms of metabolic enzymes, and hence patterns of 
metabolism (i.e. reversion to a glucose-based energy supply) 
may indicate that the metabolic strategy in this state is 
concerned with energy sparing rather than contractile 
efficiency (64) (though see comments on relative efficiencies 
of glucose and FA utilisation); furthermore, a particularly 
striking observation is that a similar recapitulation to the fetal 
pattern of metabolism seen in unloading also occurs in 
pressure-overload hypertrophy - the opposite extremes of 
cardiac workload and trophic response, yet having a similar 
metabolic transcriptional profile and phenotype, together with 
similar signalling mechanisms (179). Whilst this may simply 
reflect the limited ways in which the myocardium can respond 
to “stress”, a teleological explanation would suggest a 
concerted molecular mechanism to spare energy, rather than 
optimise contractile efficiency (64). Hence the changes in 
metabolism seen in both hypertrophy and unloading are 
adaptive in nature; however, one major difference between the 
two conditions is that unloading does not progress beyond a 
limited state (atrophy) whereas hypertrophy will eventually 
progress to heart failure. In this case, there is down regulation 
of all metabolic machinery (see, e.g. (2, 8, 120, 173, 183, 189) 
resulting in inadequate energy supply (energy starvation), 
culminating in loss of contractile function (132, 190).  

 
Whilst the underlying  signalling mechanisms 

responsible for the rapid change to fetal isoenzyme gene 
expression are still being investigated, it has become clear that 
downregulation of PPARα expression mediates at least some 
of the changes, both in relation to lipid and glucose metabolism 
(179, 183, 191): there is simultaneously decreased expression 
of many PPARα-regulated metabolic components, including 
medium chain acyl-CoA dehydrogenase (MCAD), uncoupling 
protein-3 (UCP3) and PDK4 (184), a mechanism likely 
mediated by the transcription factor NF-κB (nuclear factor 
kappa-light-chain-enhancer of activated B cells). Hence, both 
increased and decreased cardiac work increase glucose and 
decrease FA utilisation, likely to have been orchestrated by the 
decreased PPARα occurring in hypertrophy and unloading, 
with decreased PDK4, MCAD and UCP3 protein expression. 
The central importance of PPARα in orchestrating these 
changes, and their adaptive nature, is emphasised by the severe 
contractile dysfunction which results following reactivation of 
PPARα in hypertrophy (192). 

 
Not all the changes seen in unloading have been 

interpreted as beneficial – the issue of atrophy with decreased 

contractile reserve has been raised (180, 183, 193), together 
with controversy regarding cellular calcium regulation and 
increased myocardial collagen and fibrosis (178, 194). 
However, progression to full fibrosis does not occur, and the 
changes in protein metabolism reported (increased protein 
synthesis and simultaneously increased protein degradation, 
based on mammalian target of rapamycin (mTOR) and 
ubiquitin proteosome proteolysis (UPP) levels)(195, 196) 
suggest an active remodelling process, dissimilar in nature to 
the true atrophy seen in skeletal muscle denervation 
(decreased mTOR and increased UPP)(196). 

 
Increased caveolin expression occurs in unloading 

and is associated with increased CD36/FAT expression (197) 
and, while this latter finding seems unexpected in the context 
of decreased FA oxidation, it may contribute to improved lipid 
metabolism; it may also improve cardiomyocyte insulin 
sensitivity: CD36-/- knockout hearts are insulin-resistant and 
develop hypertrophic cardiomyopathy (197). This is a 
particularly striking finding, given the putative relationship 
between caveolins and integrins (caveolin-1 is involved in 
integrin signalling). In turn, integrins may form the basis of 
mechanoreception, sensing contraction through the 
extracellular matrix. The relationship between cardiac 
contraction and insulin sensitivity is also suggested by the 
finding that myocardial glycogen levels are increased in 
unloading, together with decreased active glycogen synthase 
(GS-I), slower glycogen synthesis and less activation of GS by 
infused insulin (198) – contraction is required to maintain 
insulin responsiveness. Some investigators have reported 
unchanged levels of cardiac glycogen in unloading (182), but 
their finding of decreased active GS is consistent, and therefore 
also argues for the importance of contraction, and myocardial 
glycogen levels, in cardiac insulin sensitivity (182, 199). The 
shift from GLUT4 (insulin sensitive; decreased) to GLUT1 
(constitutive; increased) expression in unloading also results in 
a loss of insulin responsiveness in this state. 

 
Besides the observed relationship between FA 

oxidation rate and contractile function in unloaded (as well as 
pressure overloaded) hearts ex vivo (182), the importance of 
lipid metabolism in cardiac function is also demonstrated by 
the finding of increased cardiolipin levels in unloaded hearts, a 
finding associated with improved mitochondrial function in 
these hearts (200); this may also account for the observed 
decrease in apoptosis in unloaded hearts compared to the 
increased apoptosis which is considered a central feature of 
heart failure (178) – although Bugger et al (180) report atrophy 
and decreased electron transport chain complexes 1 and 2, and 
decreased state 3 respiration in 8 day unloaded rat hearts. 
Glucose metabolism is also linked to cell survival (199). 
 
4.5. Diabetes 

 Diabetes mellitus is the classic 
metabolic disease and, as such, would be expected to 
involve changes in substrate metabolism in many tissues, 
including heart, which has consistently been found to occur 
in both type 1 (insulin-deficient) and type 2 (insulin-
resistant) diabetes. The observation that cardiac contractile 
function may be decreased in this disease (“diabetic 
cardiomyopathy”) in the absence of associated coronary 
vascular or hypertensive disease (201-203) has stimulated a 



Substrate metabolism in cardiac disease 

564 

large effort to define the underlying mechanism (203-209). 
Whilst decreased mitochondrial function, impaired calcium 
signalling and dysfunctional contractile machinery have all 
been described in the diabetic myocardium (210-212), it is 
possible that there is a central role for altered metabolism in 
diabetic cardiac dysfunction, which has led to the 
suggestion that the etiology may be primarily based on the 
changes in substrate flux and cardiac utilisation that 
characteristically occur. 

 
Although plasma insulin levels vary in diabetes 

(decreased in type 1 diabetes, increased early, but 
decreased late, in type 2 diabetes), as do blood glucose 
levels (increased in type 1 diabetes, normal in early, but 
increased in late type 2 diabetes), changes in plasma lipids 
are more consistent. Diabetic dyslipidemia is characterised 
by increased plasma NEFA levels (mainly a result of 
increased adipose tissue lipolysis secondary to decreased 
insulin action in this tissue)(213-215) and 
hypertriglyceridemia (increased plasma VLDL levels)(214, 
216-218). Increased VLDL is due to increased hepatic 
production (219, 220), and also decreased uptake by certain 
tissues (220), a consequence of tissue-specific changes in 
LPL activity in diabetes (221), but also a result of the 
abnormal composition of TGRLP in diabetes (220, 222). 
The complex pattern of prevailing substrate availability 
(glucose, NEFA, TAG, ketone bodies) together with 
changes in hormonal milieu (insulin, leptin) in vivo make 
studying cardiac substrate utilisation by the diabetic heart, 
and relating this to cardiac mechanical function, 
problematic, and caution must be applied when interpreting 
studies that have examined diabetic cardiac metabolism ex 
vivo. This is especially true when considering the role of 
other quantitatively important substrates in diabetes, such 
as ketone bodies (and amino acids). Furthermore, it has 
proved difficult to assess the degree of insulin 
sensitivity/resistance in the heart compared to other tissues 
(e.g. skeletal muscle)(119, 121, 223-228). However, a 
consensus pattern of changes in cardiac metabolism in the 
diabetic heart has emerged. 

 
Diabetic heart may be characterised as having 

increased reliance on FA as energetic substrate; ex vivo 
studies have indicated that, when perfused with glucose and 
FA, FA oxidation accounts for > 90% of ATP generation 
(see (2, 207, 229-233)). Some dissenting studies have failed 
to demonstrate this effect (234, 235), but most studies in 
both insulin-deficient and insulin-resistant diabetes show 
increased FA oxidation. Furthermore, this increased FA 
utilisation and oxidation by the diabetic heart is associated 
with decreased cardiac efficiency (the relationship between 
contractile power and myocardial oxygen 
consumption)(231, 236), which may provide a mechanistic 
basis for diabetic cardiomyopathy. The decreased 
efficiency is only partly accounted for by the fact that FAs 
are more reduced than carbohydrates and therefore require 
more oxygen for complete oxidation; increased FA 
utilisation also results in increased ATP hydrolysis for non-
contractile purposes (237) (including mitochondrial 
uncoupling of oxidative phosphorylation and increased 
substrate cycling(2)).The driving force behind this effect is 
likely the increased plasma NEFA perfusing the heart from 

increased adipose tissue lipolysis: FA availability 
determines FA utilisation (including regulation of β-
oxidation)(122). However, increased NEFA levels also 
stimulate cardiac PPARα (238-242), resulting in up-
regulation of lipid metabolising pathways (including FA 
transport proteins, β-oxidation components, and 
mitochondrial uncoupling proteins). Indeed, it is striking 
that PPARα-overexpressing mice have a phenotype very 
similar to diabetes (36, 203, 207, 243, 244). Inhibition of 
glucose utilisation and pyruvate oxidation by increased FA 
oxidation, a mechanism based on the Randle cycle, also 
contributes to dysregulation and decreased efficiency in 
these hearts in diabetes; the importance of glucose 
metabolism to metabolic efficiency via anaplerotic 
reactions has been demonstrated (81, 82, 85, 245, 246). 

 
In addition, it is found that diabetes is 

accompanied by increased PGC-1α levels (138, 243, 247), 
a co-activator of PPARα, strongly suggesting upregulation 
of FA utilising mechanisms and accounting for the 
(generally) observed increase in cardiac FA utilisation in 
this state. The reciprocal nature of glucose and FA 
oxidation in hypertrophy and diabetes is emphasised by the 
finding that PGC-1α is downregulated in hypertrophy (66, 
138), coincidentally with the decreased lipid (and increased 
glucose) utilisation, compared with the opposite pattern in 
diabetes, suggesting a role for PGC-1α as a central energy 
regulator (248-251). 

 
Furthermore, the increased cardiac FA uptake 

seen in diabetes is also associated with increased 
accumulation of intracellular lipids (205, 207, 252-256). 
Since cardiomyocytes are not specialised to store lipid, this 
finding suggests a deleterious effect, and cellular lipid 
overloading underlies the concept of “lipotoxicity” as a 
potential mechanism for impaired cardiac function (36, 
257-259). The importance of the cellular lipid (TAG) pool 
was highlighted by studies by Saddik et al (37, 254, 260), 
who demonstrated the dynamic nature of this intracellular 
pool. The disjunction between increased FA uptake and 
increased cellular lipid deposition, despite increased FA 
oxidation, has led to controversy regarding the importance 
of the balance between uptake and disposal (oxidation) in 
determining cardiac lipid accumulation; for example, 
PPARα downregulation leading to decreased FA oxidation, 
and hence decreased intracellular FA disposal, in some rat 
studies has been proposed as a mechanism leading to 
cellular lipid accumulation in diabetes (16, 235). 
 

Whilst some FA provision appears essential for 
normal cardiac function (261), excess FA utilisation clearly 
has the capacity to be deleterious  to cardiac function (256, 
262). It is unlikely that TAG itself is cytotoxic, but some 
other intracellular FA derivative, increased in 
hyperlipidemic conditions, including (but not limited to) 
diabetes, may be responsible for the observed impaired cell 
function. One suggestion is fatty acyl-CoA (205, 263-265), 
and in this respect it is noteworthy that mitochondrial 
uncoupling proteins (increased in diabetes (229)) have been 
suggested as mechanisms to transport FA anions, via 
activity of mitochondrial thioesterase-1, to replenish 
intramitochondrial coenzyme-A (266-268). Another 
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suggestion is that sphingolipid derivatives may be 
involved: excess FA leads to increased ceramide levels 
(269, 270), causing increased apoptosis with subsequent 
impairment of cardiac function, an effect observed in the 
diabetic heart (258, 259, 271). By contrast, FAs may exert 
protective effects on the diabetic myocardium: although the 
diabetic myocardium is more susceptible to ischemia-
reperfusion injury than healthy hearts (272), FAs are 
protective during low-flow ischemia (273). 

 
The role of TAG in cardiac energy provision and 

(dys)function in diabetes has been difficult to define (274, 
275), partly because of the conflicting results in animal 
models and uncertainty regarding the regulation of cardiac 
LPL activity, and partly because the physiological role of 
TGRLP in energy provision in the healthy heart is still 
uncertain (Figure 1)(21, 34). Increased (276-282), 
unchanged (22, 283-286) and decreased (280, 282, 287-
292) myocardial LPL activity have all been reported in 
response to diabetes or nutritional manipulations that alter 
insulin; these results reflect the complex nature of LPL 
biology (27, 29). That TAG is a major cardiac fuel (24, 34) 
and LPL is essential for heart function are demonstrated by 
the loss of cardiac function observed in heart-specific LPL 
knockouts (26, 38, 39) – NEFA cannot replace TAG-
derived FA in vivo (despite increased glucose utilisation 
(39)); its importance is emphasised by the fact that hearts 
overexpressing LPL accumulate cellular lipid and show 
mechanical dysfunction (256, 293). Furthermore the 
importance of cardiac LPL for whole body TAG 
metabolism (and the quantitative importance of heart LPL 
as a TAG “sink” (38, 40, 294)) is demonstrated by the 
finding that heart LPL rescue in LPL-/- knockout mice 
normalises plasma TAG concentration (38, 294). However, 
on the balance of published studies, the current consensus 
view is that fasting and diabetes increase heart LPL activity 
(i.e. the opposite effect to that seen in white adipose tissue) 
(28, 29) although this effect is modest. Increased cardiac 
LPL activity in diabetes would account in part for the 
lipotoxicity and cardiomyopathy seen in the diabetic heart 
(22, 29, 229, 295, 296), although this is difficult to 
reconcile with the hypertriglyceridemia that is 
characteristic of the diabetic state. It is possible that CM-
TAG, but not VLDL-TAG, utilisation is increased in 
diabetic hearts (22) (since CM are a better substrate for 
LPL than VLDL) and compositional changes to CM in 
diabetes may enhance this effect. However, VLDL, and in 
particular diabetic VLDL, is a relatively poor substrate for 
cardiac LPL (219) and undergoes significant compositional 
change in diabetes (220, 222, 274, 297, 298). Recent 
evidence that AMPK regulates cardiac LPL may provide a 
clue as to the (dys)regulation of cardiac LPL in diabetes 
(and other disease states) – it is possible that PPARα 
provides “chronic” regulation of cardiac LPL activity (and 
TAG-FA derived from cardiac LPL is known to act as a 
PPARα ligand (299-301)), whilst AMPK acts to regulate 
the enzyme acutely (278, 302, 303). However, AMPK 
inhibition by siRNA does not decrease LPL protein or 
activity (304). A further mechanism likely to be involved in 
cardiac TAG metabolism is lipoprotein receptor-mediated 
uptake. Several lipoprotein receptors have been implicated 
in cardiac FA uptake, including the apo-E-binding VLDL 

receptor (VLDL-R)(31) and the apo-B-binding TGRLP 
receptor (305). These receptors provide the cell with 
cholesterol, but also account for significant bulk uptake of 
TAG-FA, both by particle and remnant uptake and by 
selective core uptake (34, 35), and it is possible that FA 
assimilated by this route is differentially channelled 
between tissue deposition and oxidation (35). Indeed, 
evidence suggests that LPL-derived FAs also enter a 
different intracellular metabolic pool (and may enter the 
cell through distinct FA transporters) than NEFA (35), 
although it is striking that both LPL and CD36/FAT seems 
to be similarly regulated (including by AMPK, PPARα and 
insulin). The putative role of muscle contraction in LPL 
expression, stimulating CD36/FAT (306), remains to be 
elucidated. Intracellular channelling may direct FA from 
different sources (NEFA; LPL; lipoprotein receptors) to 
different metabolic fates, and this may account for some 
aspects of myocellular lipid accumulation and subsequent 
lipotoxic cardiomyopathy. Besides hydrolysis of TGRLP, 
LPL has an important “bridging” function, facilitating 
TGRLP-lipoprotein receptor binding (307, 308); the effect 
of diabetes on this process is not known. However, VLDL-
R is downregulated in STZ-treated (insulin-deficient) rats 
(309); VLDL-R is involved in LPL transcytosis from 
parenchymal cells to the active site on the endothelium 
(310, 311). LPL is also regulated by angiopoietin-like 
protein-4 (angPTL-4; an LPL inhibitor)(312) but again the 
significance of this in diabetes is uncertain. Stress does 
upregulate cardiac LPL (313), and this may be related to 
glucocorticoid secretion (314) although catecholamines do 
not directly alter the activity of cardiac LPL in vivo (315) 
or in vitro (316). 

 
Whilst the issue of insulin sensitivity/resistance 

in diabetic cardiomyocytes remains controversial, with rat 
studies generally suggesting myocardial insulin resistance 
in type 2 diabetes (227, 228, 317) but human studies 
demonstrating little or no cardiac insulin resistance in this 
condition (318), it is apparent that glucose oxidation is 
decreased in the diabetic myocardium, despite high glucose 
exposure (319, 320). This may be a reflection of the 
decreased GLUT4 expression seen in these hearts (321). 
The issue of insulin sensitivity is central to the resulting 
cardiac metabolic phenotype. Type 1 (insulin-deficient) 
diabetic hearts retain insulin sensitivity and hence the 
ability to switch metabolic substrates (“metabolic 
flexibility”): the prevailing high lipid (NEFA; TAG) 
concentrations, together with PPAR-stimulated lipid 
metabolic pathways (LPL, CD36/FAT, fatty acyl-CoA 
synthetase (FACS), MCAD, UCP &c.), and downregulated 
glucose utilising machinery (322), ensure that the resulting 
metabolism is principally lipid based, with lipotoxicity if 
FA uptake pathways exceed FA oxidation/uncoupling 
mechanisms. Metabolic flexibility is however maintained – 
these hearts are capable of increasing glucose utilisation 
(228). Type 2 diabetic hearts, however, demonstrate 
metabolic inflexibility in vivo (227), which may represent 
insulin resistance in the cardiomyocyte itself. The issue of 
insulin resistance in the diabetic heart remains controversial 
however – cardiomyocytes, but not hearts, isolated from 
db/db diabetic mice are insulin sensitive in vitro. Again, the 
importance and complexity of the hormone and substrate 
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milieu in vivo demands cautious interpretation of ex vivo 
data. 
 
5. PERSPECTIVE 
 
 Significant advances have been made in 
characterizing energetic substrate utilisation by the heart in 
both health and disease, and in defining the regulatory 
mechanisms controlling substrate selection by the 
myocardium under varying pathophysiological conditions. 
The importance of multiple levels of regulation, from 
substrate supply to the regulation of transcription of 
substrate transport components and metabolic enzymes is 
now apparent, together with the fact that they change 
profoundly in heart disease. However, the fundamental 
question of whether cardiac pathology causes changes in 
myocardial metabolism, or whether a primary alteration in 
substrate utilisation is responsible for cardiac dysfunction, 
remains uncertain. Regardless of this, the ability to 
manipulate cardiac metabolism is a promising therapeutic 
intervention. 
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